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Abstract— Block replacement refers to the process of selecting a block of data or a cache line to be evicted or replaced when a new block 

needs to be brought into a cache or a memory hierarchy. In computer systems, block replacement policies are used in caching mechanisms, 

such as in CPU caches or disk caches, to determine which blocks are evicted when the cache is full and new data needs to be fetched. The 

combination of LRU (Least Recently Used) and LFU (Least Frequently Used) in a weighted manner is known as the "LFU2" algorithm. LFU2 

is an enhanced caching algorithm that aims to leverage the benefits of both LRU and LFU by considering both recency and frequency of item 

access. In LFU2, each item in the cache is associated with two counters: the usage counter and the recency counter. The usage counter tracks 

the frequency of item access, while the recency counter tracks the recency of item access. These counters are used to calculate a combined 

weight for each item in the cache. Based on the experimental results, the LRU-LFU combination method succeeded in increasing cache hits 

from 94.8% on LFU and 95.5% on LFU to 96.6%. 
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I.  INTRODUCTION 

Cache memory is a small, high-speed memory component 

used in computer systems to improve overall system 

performance. It acts as a buffer between the CPU (central 

processing unit) and the main memory (RAM), storing 

frequently accessed data and instructions to reduce the time it 

takes for the CPU to retrieve information [1]. The primary 

purpose of cache memory is to bridge the speed gap between the 

fast CPU and the relatively slower main memory. CPUs can 

access cache memory much faster than accessing data from 

RAM, which helps to alleviate the performance bottleneck 

caused by the speed disparity.  

Cache memory operates based on the principle of locality of 

reference, which states that programs tend to access a relatively 

small portion of data and instructions repeatedly in a short period 

of time [2]. The cache exploits this principle by storing copies of 

frequently accessed data from the main memory. When the CPU 

needs to read or write data, it first checks the cache [3]. If the 

data is present in the cache (a cache hit), the CPU retrieves it 

directly from there, resulting in faster access time. If the data is 

not in the cache (a cache miss), the CPU has to fetch it from the 

main memory, and a copy of the data may be stored in the cache 

for future use [4]. 

Cache memory is organized into different levels, typically 

referred to as L1, L2, and L3 caches. L1 cache is the closest and 

fastest cache to the CPU, followed by L2 and L3 caches, which 

are larger but slower. The different cache levels are designed to 

store progressively larger amounts of data but with increasing 

access latency. The size of cache memory is relatively small 

compared to main memory, as larger caches would be more 

expensive to implement. Cache effectiveness depends on factors 

like cache size, cache replacement policies, and the access 

patterns of the running programs. By utilizing cache memory, 

the overall performance of a computer system can be 

significantly improved by reducing the average time it takes for 

the CPU to access data. 

Block replacement, also known as cache replacement policy, 

is a mechanism used in cache memory to determine which data 

should be evicted from the cache when a new data block needs 

to be loaded [5]. When the cache is full and a cache miss occurs 

(the data being accessed is not present in the cache), a block 

replacement policy decides which cache block to replace with 

the new block [6]. Block replacement is important in cache 

memory because it directly affects the cache's effectiveness in 

improving system performance [7]. 

The primary goal of cache memory is to increase the speed 

at which the CPU can access frequently used data and 

instructions. When a cache hit occurs (the requested data is 

found in the cache), the CPU can retrieve the data much faster 

compared to accessing it from the main memory. By choosing 

an effective block replacement policy, the cache can maximize 

the probability of cache hits, thus increasing overall system 

performance.  

Programs tend to exhibit locality of reference, meaning they 

access a relatively small portion of data and instructions 

repeatedly in a short period of time. The block replacement 

policy should take advantage of this behavior by keeping the 

most frequently accessed data in the cache. By doing so, the 
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cache can satisfy a larger portion of the CPU's data requests and 

reduce the need to fetch data from slower main memory. Cache 

memory is typically limited in size due to cost and 

implementation constraints. As a result, cache space needs to be 

utilized efficiently. The block replacement policy determines 

which data blocks should be evicted when new blocks need to 

be loaded. An effective policy ensures that the cache stores the 

most useful and frequently accessed data, avoiding unnecessary 

evictions of data that may be needed in the near future. 

Workloads executed by a computer system can vary over time, 

with different programs and data patterns causing fluctuations in 

data access patterns.  

A good block replacement policy can adapt to these changing 

workloads by dynamically evicting less useful or less frequently 

accessed data and replacing it with more relevant data. This 

adaptability helps maintain a high cache hit (lower cache miss) 

rate and improves performance under varying conditions [8]. 

II. LITERATURE REVIEWS 

Block replacement is important in cache memory because it 

directly influences cache hit rate [9], helps exploit locality of 

reference, optimizes cache space usage, and enables adaptability 

to dynamic workloads. By making informed decisions about 

which data to keep in the cache, the system can maximize the 

benefits of cache memory and enhance overall performance.  

There are several block replacement policies commonly used 

in cache systems. 

• Random Replacement: This policy selects a random cache 

block to be replaced. It does not consider any information 

about the accessed data or the cache contents. While 

simple to implement, it may not always make optimal 

decisions in terms of cache hit rate. 

• Least Recently Used (LRU) Replacement: LRU 

replacement policy evicts the cache block that has been 

least recently used. It maintains a timestamp or a reference 

bit for each cache block and updates it whenever a block is 

accessed. When a replacement is needed, the block with 

the oldest timestamp or the least recently accessed block is 

chosen for eviction [10], [11]. 

• First-In, First-Out (FIFO) Replacement: In the FIFO 

replacement policy, the cache block that was first loaded 

into the cache is replaced. It uses a queue structure to track 

the order in which blocks were loaded, and the block at the 

front of the queue is evicted when necessary [12]. 

• Least Frequently Used (LFU) Replacement: LFU 

replacement policy tracks the frequency of cache block 

accesses. Each block has a counter associated with it, 

which is incremented each time the block is accessed. The 

block with the lowest access frequency is replaced when 

replacement is required. This policy aims to keep 

frequently accessed blocks in the cache. 

• Most Recently Used (MRU) Replacement: MRU 

replacement policy evicts the most recently used cache 

block. It assumes that the block that was accessed most 

recently will likely be accessed again soon. This policy is 

useful in certain scenarios where temporal locality is high 

enough. 

 

Jaafar Alghazo in 2004 made a study entitled “SF-LRU 

Cache Replacment Algorithm” which is a modification of the 

Least Recently Used and Least Frequently Used methods [13]. 

The approach is put up against the LRU and LFU algorithms in 

a thorough comparison. The SF-LRU greatly lowers the number 

of cache misses when compared to the other two algorithms, 

according to experimental results. According to the findings of 

the simulation, our technique can, at most, improve the miss ratio 

in the data cache by 6.3% and the instruction cache by 9.3% 

when compared to the LRU algorithm. Figure 1 is the SF_LRU 

operating system designed by Jaafar. 

 

 

Figure 1.  SF-LRU operation by Jaafar Alghazo [13] 

In 2004, G.E. Suh studied entitled "Dynamic Partitioning of 

Shared Cache Memory" which combines information and 

partitions cache time [14]. Marginal gain counters, a partitioning 

mechanism, and an OS controller make up the partitioning 

system. In order to calculate the marginal benefits of running 

processes, the system uses a set of counters in the beginning. A 

method in the cache that can truly control the allocation to each 

process is secondly required by the system. Finally, the operating 

system establishes the cache allocation and chooses the optimum 

partition based on data from counters. A CMP simulator based 

on the SimpleScalar tool set has the partitioning technique 

implemented in the shared L2 cache. The simulation findings 

demonstrate that, over a range of cache sizes for specific 
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processes, partitioning can significantly outperform the 

traditional LRU replacement policy in terms of cache 

performance. Additionally, for a variety of cache sizes, the 

partitioning approach can resolve the issue of process 

interference in caches. However, if the caches are too small for 

the workloads, partitioning alone won't help with performance. 

Therefore, it is important to choose concurrent processes wisely, 

taking into account their memory reference behavior. Figure 2 is 

the implementation of block replacement (modified LRU) 

designed by G. E. Suh. 

 

 

Figure 2.  Implementation of block replacement by G.E. Suh [14] 

In 2019, Davood Akbari Bengar studied entitled "A page 

replacement algorithm based on a fuzzy approach to improve 

cache memory performance," which aims to improve cache 

memory performance. This research proposes a page 

replacement algorithm that is simple to implement. The 

algorithm, which uses three parameters to cluster cache pages, is 

called the fuzzy page replacement algorithm, as shown in Figure 

3. Whenever a miss occurs, it selects a page of the cluster with 

the lowest priority which has the smallest Euclidean distance 

with its center and then exits the cache. The most significant 

advantage of the algorithm is using the FCM (fuzzy c-means) 

algorithm to cluster pages, resulting in better replacement and 

hence higher memory performance.  

 

 

Figure 3.  Page Replacement implementation by Davood Akbari Bengar [15] 

In 2011, Abu Asaduzzaman studied entitled "An efficient 

memory block selection strategy to improve the performance of 

cache memory subsystem" which aims to improve the 

performance of the cache memory subsystem. This study 

suggests a simple but effective memory block selection 

technique to improve cache locking and cache replacement 

execution, as well as the overall performance of the cache 

memory subsystem. The suggested technique identifies the 

blocks that, if unlocked, result in the most cache misses and 

stores the block address and miss information (BAMI) at the 

cache level. Memory blocks with larger cache misses should be 

locked using the cache locking technique, while blocks with 

lesser cache misses should be chosen as victims by the cache 

replacement strategy. To assess the suggested block selection 

strategy, we simulate single-core and multi-core systems with 

two-level cache memory subsystems. According to experimental 

findings, using the memory block selection scheme can increase 

the hit ratio by up to 11% while reducing overall power usage by 

up to 20% [16]. 
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Figure 4.  Workflow diagram of proposed block selection strategy by Abu 

Asaduzzaman [16] 

In 2016, Somayeh Sardashti studied “Yet Another 

Compressed Cache: A Low-Cost Yet Effective Compressed 

Cache” to increase cache memory’s adequate capacity. The Yet 

Another Compressed Cache (YACC), a brand-new compressed 

cache design that aims to increase useful cache capacity with a 

straightforward design, is what the authors propose. While 

packing variable-size compressed blocks to reduce internal 

fragmentation, YACC uses super-blocks to lower tag overheads. 

Decoupled Compressed Cache (DCC) and Skewed Compressed 

Cache (SCC), two cutting-edge compressed caches, are utilized 

by YACC to achieve its goals. The structure of the YACC cache 

is comparable to that of traditional caches, with a virtually 

unaltered tag array and unaltered data array. In contrast to DCC 

and SCC, YACC does not require the substantial additional 

metadata that DCC needs to track blocks or the complexity and 

costs of skewed associativity that SCC does. In addition, YACC 

supports contemporary replacement techniques like RRIP, 

which gives it an edge over earlier research. According to 

experiment, YACC enhances performance by an average of 8% 

and as much as 26% when compared to a traditional 

uncompressed 8MB LLC and decreases overall energy by an 

average of 6% and as much as 20%. With only 1.6% more area 

than an 8MB conventional cache, an 8MB YACC offers roughly 

the same performance and energy improvements as a 16MB 

conventional cache in a substantially smaller silicon footprint. 

Similar to DCC and SCC in performance, YACC is significantly 

easier to deploy [17]. 

 

 

Figure 5.  Skewed Compressed Cache by Somayeh Sardashti [17] 

Srikanthaiah Hiremath and Mahmoud A Manzoul studied " 

An Improved Fuzzy Replacment Algorithm For Cche Memories 

"to improve cache memory replacement performance. This 

study suggested a modified fuzzy replacement technique 

(MFRA), which significantly outperforms the FRA in terms of 

cache memory performance. The FRA has undergone the 

following significant modifications: the number of inputs has 

decreased from three to two; the number of fuzzy linguistic 

variables and the dimensions of the universes of discourse have 

increased; and a larger knowledge base that employs 34 new 

rules is used. Under actual workload situations, the performance 

of the MFRA is comparable to that of conventional replacement 

algorithms like least recently used (LRU) and first in first out 

(FIFO), as seen in the results [18]. 

In 2006, Sedigheh Khajoueinejad studied "A Fuzzy Cache 

Replacement Policy and Its Experimental Performance 

Assessment" to improve access performance between 

computing units and memory. One of the best ways to increase 

the speed of 10 accesses between computational units and 

memories is to use caching. Which objects are removed from the 

cache to create way for new objects is determined by the cache 

Generate Heptane Tree Graphusing application 
code

Collect Instruction Block (IB) Miss Info from Tree 
Graph

Create IB- address miss block list

Sort IB - address miss block list

List the candidate memory blocks with miss 
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replacement policy. In this study, we provide a novel fuzzy 

technique termed fuzzy page replacement (FPR). Through 

simulation, this algorithm's performance is evaluated in 

comparison to well-known cache replacement algorithms. The 

simulation findings demonstrate that the fuzzy technique 

outperforms the other algorithms and may be considered in 

subsequent studies [19].  

In 2019, Bhukya Krishna Priya studied "Cache lifetime 

enhancement technique using hybrid cache-replacement-policy" 

to reduce the error rate when cache replacement occurs. By 

lessening the influence of the replacement algorithm, the 

proposed Hybrid-Cache-Replacement (HCR) strategy enhances 

write endurance while lowering mistake rates. The incoming 

data is properly inserted into the already-existing block, which 

has a low error rate and fewest writes. It has been put into 

practice by comparing the incoming bits to the bits that are 

already present in a cache set. According to the simulation 

results, as compared to the current approaches, the STT-RAM 

caches' lifespan increases by 135%, 165%, and 27%, with a 2%, 

2%, and 1% performance overhead [20]. 

In 2022, Swapnita Srivastava studied entitled "Proof of 

Optimality based on Greedy Algorithm for Offline Cache 

Replacement Algorithm" which aims to optimize cache 

replacement. An easier proof based on the greedy algorithm is 

presented in this article. In order to show that the greedy solution 

is delivering optimality, the study shows that any ideal solution 

can be repeatedly turned into the solution offered by the greedy 

algorithm without increasing the miss of the optimal solution. 

The Greedy Weight-based Cache Replacement Algorithm 

(GWCRA), which is based on the Greedy algorithm and also 

adds the weighted access-based parameters of recency and 

frequency, is another replacement algorithm that is presented in 

this work. When compared to LRU and SRRIP, which have 

average speedups of 55.58% and 55.65%, respectively, the 

GWCRA obtains a speedup of 57.29% [21]. 

III. METHOD 

The method proposed in this study is a combination of 

weighted LRU and LFU. The LRU algorithm works on the 

principle that items that have been accessed most recently are 

likely to be accessed again in the near future, while items that 

have not been accessed for a long time are less likely to be 

accessed again soon. In the context of caching, the LRU 

algorithm keeps track of the order in which items are accessed. 

When the cache reaches its maximum capacity and a new item 

needs to be added, the algorithm removes the least recently used 

item from the cache to make space for the new item. On 

subsequent accesses, if an item is already present in the cache, it 

is marked as the most recently used item, moving it to the front 

of the cache. The LRU algorithm helps optimize cache 

performance by maximizing the utilization of cache space for 

frequently accessed items and minimizing cache misses for less 

frequently accessed items. LRU maximizes the utilization of 

cache space by evicting the least recently used items. This 

ensures that the most frequently accessed items are kept in the 

cache, reducing cache misses and improving overall system 

performance. LRU takes advantage of the principle of temporal 

locality, which states that recently accessed items are likely to be 

accessed again in the near future. By keeping the most recently 

used items in the cache, LRU improves the hit rate and reduces 

the time taken to retrieve data from the cache. The LRU 

algorithm is relatively simple to implement compared to other 

caching algorithms. It requires tracking the order of item access 

and updating it accordingly. The straightforward nature of LRU 

makes it a popular choice for cache management. LRU assumes 

that future access patterns will be similar to past access patterns. 

However, in some cases, access patterns may change over time, 

and LRU may not be able to adapt quickly. For example, if there 

is a sudden shift in the popularity of certain items, LRU may 

continue to keep less popular items in the cache while evicting 

more popular items. LRU does not perform well in the presence 

of skewed or uneven access patterns. If a few items are accessed 

very frequently while the rest of the items are rarely accessed, 

LRU may repeatedly evict and re-fetch the less frequently 

accessed items, leading to a high cache miss rate and decreased 

performance. While LRU is relatively simple to implement for 

small cache sizes, it becomes more complex and 

computationally expensive as the cache size increases. 

Maintaining the order of accessed items and updating it in a large 

cache can require additional memory and overhead, impacting 

the overall efficiency of the algorithm. 

In contrast to the LRU algorithm, which focuses on the 

recency of item access, LFU prioritizes items that have been 

accessed the least number of times. In the LFU algorithm, each 

item in the cache is associated with a usage counter that keeps 

track of the number of times the item has been accessed. When 

the cache reaches its maximum capacity and a new item needs 

to be added, the algorithm selects the item with the lowest usage 

counter for eviction. LFU identifies items that are accessed 

infrequently and removes them from the cache. This approach 

aims to optimize cache performance by keeping frequently 

accessed items in the cache and reducing cache pollution caused 

by rarely used items. LFU requires tracking the usage counters 

for each item in the cache. When an item is accessed, its counter 

is incremented. This process ensures that the algorithm 

accurately reflects the frequency of item usage. LFU is capable 

of adapting to changes in access patterns. If an item that was 

previously accessed infrequently suddenly becomes popular, its 

usage counter will increase, making it less likely to be evicted. 

This adaptiveness can be beneficial in scenarios where access 

patterns vary over time. LFU heavily relies on accurate tracking 

of item usage. If an item is accessed frequently initially and then 

becomes less popular, it may remain in the cache longer than 

desired. Similarly, an item that starts with a low usage count but 
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suddenly becomes popular may face eviction before its 

popularity is recognized. Maintaining usage counters for each 

item in the cache requires additional memory and computational 

resources. As the cache size or the number of items increases, 

the overhead associated with tracking and updating the counters 

can become significant. LFU performs well when access 

patterns are consistent or slowly changing. However, if there are 

sudden bursts of activity or intermittent access to certain items, 

LFU may not effectively adapt to these patterns, potentially 

leading to suboptimal cache performance. 

The combination of weighted LRU and LFU can optimize 

the benefits of each block replacement method and reduce the 

disadvantages of each block replacement method. This study 

proposes a method of combining weighted LRU and LFU as 

shown in Figure 6. Main memory is the main memory storage 

area that will replace a block of cache memory according to the 

combined weight of LRU and LFU. 

 

 

Figure 6.  Combination of Weighted LRU and LFU  

To retrieve data or instructions from a program, the locality 

of reference idea is used. The CPU only ever uses a small amount 

of the address space at once. Performance of the cache memory 

is calculated using the page fault rate, miss penalty, and average 

access time. The percentage of memory accesses that are Page 

Fault Rate are those that are not cached, while The hit rate or hit 

ratio of the cache refers to the proportion of accesses that return 

a cache hit. Miss Penalty is the sum of the Cycles (time) to 

replace a block in the higher level cache and the Cycles (time) to 

deliver the block to the processor. It is the total number of cycles 

the CPU is stopped for a memory access. The equation (1), (2), 

and (3) are used to calculate average access time and CPU 

execution time. 

 

AAT = ( HT  HR ) + (MP  MR)  (1) 

 

CET = (CCC + MSC)  CCT   (2) 

 

MSC = NM  MP    (3) 

          = IC  (M / I )  MP 

          = IC  ( (MA / I )  MR  MP 

 

Where : 

AAT =Average Access Time 

HT = Hit Time 

HR = Hit Rate 

MP = Miss Penalty 

MR = Miss Rate 

CET = CPU Execution Time 

CCC = CPU Clock Cycle 

MSC = Memory Stall Cycles 

CCT = Clock Cycle Time 

NM = Number of Misses 

IC = Instruction Cyle 

M = Missed 

I = Instruction 

MA = Memory Access 

 

Memory read and write cycle counts may differ in a similar 

manner. Reading penalties may differ from writing penalties as 

(4). 

 

MSCC = MRSC + MWSC   (4) 

 

Where: 

 

MSCC = Memory Stall Clock Cycle 

MRSC = Memory Read Stall Cycles 

MWSC = Memory Write Stall Cycles 

IV. RESULTS 

Experiments were carried out to test the cache hit rate of the 

proposed method using simulation [22]. This simulation 

program will simulate various states of a set of instructions and 

data. Testing experiments by executing vector calculations with 

vector -vector in a pseudocode as follows. 

 

main 

{ 

    read(n) 

    for(i=1,i<=n,i++)  

    { 

         read(x[n]) 

         read(y[n]) 
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     } 

    for(i=1,i<=n,i++)  

    { 

         Z[n]  = x[n] + y[n] 

     } 

    for(i=1,i<=n,i++)  

    { 

         write(z[n]) 

     } 

} 

 

Data collection was carried out with different amounts of n. 

Data collection was simulated in three different methods (LRU, 

LFU and combination LRU - LFU weighted). Table 1 is the 

result of data collection when using the LRU method. From 

Figure 7 it can be seen that the cache hits will decrease if the 

amount of data (n) increases. 

TABLE I.  LRU EXPERIMENT 

No. n Cache hit (%) 

1 1000 98 

2 2000 98 

3 3000 97 

4 4000 97 

5 5000 96 

6 6000 95 

7 7000 94 

8 8000 93 

9 9000 91 

10 10000 89 

 

 

 

Figure 7.  Cache hit using LRU method 

Table 2 is the result of data collection when using the LFU 

method. From Figure 8 it can be seen that the cache hits will 

decrease if the amount of data (n) increases. 

 

TABLE II.  LFU EXPERIMENT 

No. n Cache hit (%) 

1 1000 98 

2 2000 98 

3 3000 97 

4 4000 97 

5 5000 96 

6 6000 96 

7 7000 95 

8 8000 94 

9 9000 93 

10 10000 91 

 

 

 

Figure 8.  Cache hit using LFU method 

Table 3 is the result of data collection when using the LFU 

method. From Figure 9 it can be seen that the cache hits will 

decrease if the amount of data (n) increases. 

TABLE III.  COMBINATION LRU - LFU WEIGHTED EXPERIMENT 

No. n Cache hit (%) 

1 1000 99 

2 2000 99 

3 3000 98 

4 4000 98 

5 5000 97 

6 6000 97 

7 7000 96 

8 8000 95 

9 9000 94 

10 10000 93 
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Figure 9.  Cache hit using combination LRU - LFU weighted method 

Based on the experimental results, the average cache hit 

using the LRU method is 94.8%, the LFU method is 95.5% and 

the weighted LRU-LFU combination method is 96.6%. 

V. CONCLUSIONS 

When the cache reaches its maximum capacity and an 

eviction is necessary, LFU2 selects the item with the lowest 

combined weight for eviction. The combined weight is typically 

calculated as a weighted sum of the usage and recency counters, 

with different weights assigned to each counter based on their 

relative importance. By combining the recency and frequency 

aspects of LRU and LFU, LFU2 aims to strike a balance between 

favoring recently accessed items and favoring frequently 

accessed items. This approach allows LFU2 to adapt to changing 

access patterns, giving more weight to recently accessed items 

that may become popular while still considering the overall 

frequency of item access. The specific weightings assigned to 

the recency and usage counters can vary based on the specific 

implementation and tuning requirements. Different weighting 

schemes can be used to give more emphasis to recency, 

frequency, or a combination of both, depending on the 

characteristics of the workload and the desired caching behavior. 

Based on the experimental results, the LRU-LFU combination 

method succeeded in increasing cache hits from 94.8% on LFU 

and 95.5% on LFU to 96.6%. 
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