
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 26 August 2023 Revised: 08 October 2023 Accepted: 20 October 2023

 1542
IJRITCC | October 2023, Available @ http://www.ijritcc.org

 Improving Cache Hits On Replacment Blocks

Using Weighted LRU-LFU Combinations

Marvin Chandra Wijaya

Departement of Computer Engineering

Maranatha Christian University

Bandung, Indonesia

marvin.cw@eng.maranatha.edu

Abstract— Block replacement refers to the process of selecting a block of data or a cache line to be evicted or replaced when a new block

needs to be brought into a cache or a memory hierarchy. In computer systems, block replacement policies are used in caching mechanisms,

such as in CPU caches or disk caches, to determine which blocks are evicted when the cache is full and new data needs to be fetched. The

combination of LRU (Least Recently Used) and LFU (Least Frequently Used) in a weighted manner is known as the "LFU2" algorithm. LFU2

is an enhanced caching algorithm that aims to leverage the benefits of both LRU and LFU by considering both recency and frequency of item

access. In LFU2, each item in the cache is associated with two counters: the usage counter and the recency counter. The usage counter tracks

the frequency of item access, while the recency counter tracks the recency of item access. These counters are used to calculate a combined

weight for each item in the cache. Based on the experimental results, the LRU-LFU combination method succeeded in increasing cache hits

from 94.8% on LFU and 95.5% on LFU to 96.6%.

Keywords-Block Replacment; LRU; LFU; LFU2

I. INTRODUCTION

Cache memory is a small, high-speed memory component

used in computer systems to improve overall system

performance. It acts as a buffer between the CPU (central

processing unit) and the main memory (RAM), storing

frequently accessed data and instructions to reduce the time it

takes for the CPU to retrieve information [1]. The primary

purpose of cache memory is to bridge the speed gap between the

fast CPU and the relatively slower main memory. CPUs can

access cache memory much faster than accessing data from

RAM, which helps to alleviate the performance bottleneck

caused by the speed disparity.

Cache memory operates based on the principle of locality of

reference, which states that programs tend to access a relatively

small portion of data and instructions repeatedly in a short period

of time [2]. The cache exploits this principle by storing copies of

frequently accessed data from the main memory. When the CPU

needs to read or write data, it first checks the cache [3]. If the

data is present in the cache (a cache hit), the CPU retrieves it

directly from there, resulting in faster access time. If the data is

not in the cache (a cache miss), the CPU has to fetch it from the

main memory, and a copy of the data may be stored in the cache

for future use [4].

Cache memory is organized into different levels, typically

referred to as L1, L2, and L3 caches. L1 cache is the closest and

fastest cache to the CPU, followed by L2 and L3 caches, which

are larger but slower. The different cache levels are designed to

store progressively larger amounts of data but with increasing

access latency. The size of cache memory is relatively small

compared to main memory, as larger caches would be more

expensive to implement. Cache effectiveness depends on factors

like cache size, cache replacement policies, and the access

patterns of the running programs. By utilizing cache memory,

the overall performance of a computer system can be

significantly improved by reducing the average time it takes for

the CPU to access data.

Block replacement, also known as cache replacement policy,

is a mechanism used in cache memory to determine which data

should be evicted from the cache when a new data block needs

to be loaded [5]. When the cache is full and a cache miss occurs

(the data being accessed is not present in the cache), a block

replacement policy decides which cache block to replace with

the new block [6]. Block replacement is important in cache

memory because it directly affects the cache's effectiveness in

improving system performance [7].

The primary goal of cache memory is to increase the speed

at which the CPU can access frequently used data and

instructions. When a cache hit occurs (the requested data is

found in the cache), the CPU can retrieve the data much faster

compared to accessing it from the main memory. By choosing

an effective block replacement policy, the cache can maximize

the probability of cache hits, thus increasing overall system

performance.

Programs tend to exhibit locality of reference, meaning they

access a relatively small portion of data and instructions

repeatedly in a short period of time. The block replacement

policy should take advantage of this behavior by keeping the

most frequently accessed data in the cache. By doing so, the

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 26 August 2023 Revised: 08 October 2023 Accepted: 20 October 2023

 1543
IJRITCC | October 2023, Available @ http://www.ijritcc.org

cache can satisfy a larger portion of the CPU's data requests and

reduce the need to fetch data from slower main memory. Cache

memory is typically limited in size due to cost and

implementation constraints. As a result, cache space needs to be

utilized efficiently. The block replacement policy determines

which data blocks should be evicted when new blocks need to

be loaded. An effective policy ensures that the cache stores the

most useful and frequently accessed data, avoiding unnecessary

evictions of data that may be needed in the near future.

Workloads executed by a computer system can vary over time,

with different programs and data patterns causing fluctuations in

data access patterns.

A good block replacement policy can adapt to these changing

workloads by dynamically evicting less useful or less frequently

accessed data and replacing it with more relevant data. This

adaptability helps maintain a high cache hit (lower cache miss)

rate and improves performance under varying conditions [8].

II. LITERATURE REVIEWS

Block replacement is important in cache memory because it

directly influences cache hit rate [9], helps exploit locality of

reference, optimizes cache space usage, and enables adaptability

to dynamic workloads. By making informed decisions about

which data to keep in the cache, the system can maximize the

benefits of cache memory and enhance overall performance.

There are several block replacement policies commonly used

in cache systems.

• Random Replacement: This policy selects a random cache

block to be replaced. It does not consider any information

about the accessed data or the cache contents. While

simple to implement, it may not always make optimal

decisions in terms of cache hit rate.

• Least Recently Used (LRU) Replacement: LRU

replacement policy evicts the cache block that has been

least recently used. It maintains a timestamp or a reference

bit for each cache block and updates it whenever a block is

accessed. When a replacement is needed, the block with

the oldest timestamp or the least recently accessed block is

chosen for eviction [10], [11].

• First-In, First-Out (FIFO) Replacement: In the FIFO

replacement policy, the cache block that was first loaded

into the cache is replaced. It uses a queue structure to track

the order in which blocks were loaded, and the block at the

front of the queue is evicted when necessary [12].

• Least Frequently Used (LFU) Replacement: LFU

replacement policy tracks the frequency of cache block

accesses. Each block has a counter associated with it,

which is incremented each time the block is accessed. The

block with the lowest access frequency is replaced when

replacement is required. This policy aims to keep

frequently accessed blocks in the cache.

• Most Recently Used (MRU) Replacement: MRU

replacement policy evicts the most recently used cache

block. It assumes that the block that was accessed most

recently will likely be accessed again soon. This policy is

useful in certain scenarios where temporal locality is high

enough.

Jaafar Alghazo in 2004 made a study entitled “SF-LRU

Cache Replacment Algorithm” which is a modification of the

Least Recently Used and Least Frequently Used methods [13].

The approach is put up against the LRU and LFU algorithms in

a thorough comparison. The SF-LRU greatly lowers the number

of cache misses when compared to the other two algorithms,

according to experimental results. According to the findings of

the simulation, our technique can, at most, improve the miss ratio

in the data cache by 6.3% and the instruction cache by 9.3%

when compared to the LRU algorithm. Figure 1 is the SF_LRU

operating system designed by Jaafar.

Figure 1. SF-LRU operation by Jaafar Alghazo [13]

In 2004, G.E. Suh studied entitled "Dynamic Partitioning of

Shared Cache Memory" which combines information and

partitions cache time [14]. Marginal gain counters, a partitioning

mechanism, and an OS controller make up the partitioning

system. In order to calculate the marginal benefits of running

processes, the system uses a set of counters in the beginning. A

method in the cache that can truly control the allocation to each

process is secondly required by the system. Finally, the operating

system establishes the cache allocation and chooses the optimum

partition based on data from counters. A CMP simulator based

on the SimpleScalar tool set has the partitioning technique

implemented in the shared L2 cache. The simulation findings

demonstrate that, over a range of cache sizes for specific

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 26 August 2023 Revised: 08 October 2023 Accepted: 20 October 2023

 1544
IJRITCC | October 2023, Available @ http://www.ijritcc.org

processes, partitioning can significantly outperform the

traditional LRU replacement policy in terms of cache

performance. Additionally, for a variety of cache sizes, the

partitioning approach can resolve the issue of process

interference in caches. However, if the caches are too small for

the workloads, partitioning alone won't help with performance.

Therefore, it is important to choose concurrent processes wisely,

taking into account their memory reference behavior. Figure 2 is

the implementation of block replacement (modified LRU)

designed by G. E. Suh.

Figure 2. Implementation of block replacement by G.E. Suh [14]

In 2019, Davood Akbari Bengar studied entitled "A page

replacement algorithm based on a fuzzy approach to improve

cache memory performance," which aims to improve cache

memory performance. This research proposes a page

replacement algorithm that is simple to implement. The

algorithm, which uses three parameters to cluster cache pages, is

called the fuzzy page replacement algorithm, as shown in Figure

3. Whenever a miss occurs, it selects a page of the cluster with

the lowest priority which has the smallest Euclidean distance

with its center and then exits the cache. The most significant

advantage of the algorithm is using the FCM (fuzzy c-means)

algorithm to cluster pages, resulting in better replacement and

hence higher memory performance.

Figure 3. Page Replacement implementation by Davood Akbari Bengar [15]

In 2011, Abu Asaduzzaman studied entitled "An efficient

memory block selection strategy to improve the performance of

cache memory subsystem" which aims to improve the

performance of the cache memory subsystem. This study

suggests a simple but effective memory block selection

technique to improve cache locking and cache replacement

execution, as well as the overall performance of the cache

memory subsystem. The suggested technique identifies the

blocks that, if unlocked, result in the most cache misses and

stores the block address and miss information (BAMI) at the

cache level. Memory blocks with larger cache misses should be

locked using the cache locking technique, while blocks with

lesser cache misses should be chosen as victims by the cache

replacement strategy. To assess the suggested block selection

strategy, we simulate single-core and multi-core systems with

two-level cache memory subsystems. According to experimental

findings, using the memory block selection scheme can increase

the hit ratio by up to 11% while reducing overall power usage by

up to 20% [16].

Computing Methodologies

Artificial Intelligence

Knowlegde Representation
and Reasoning

Probabilitic Reasoning

Software and Its
Engineering

Software Organization and
Properties

Contextual Software
Domains

Operating Systems

Memory Management

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 26 August 2023 Revised: 08 October 2023 Accepted: 20 October 2023

 1545
IJRITCC | October 2023, Available @ http://www.ijritcc.org

Figure 4. Workflow diagram of proposed block selection strategy by Abu

Asaduzzaman [16]

In 2016, Somayeh Sardashti studied “Yet Another

Compressed Cache: A Low-Cost Yet Effective Compressed

Cache” to increase cache memory’s adequate capacity. The Yet

Another Compressed Cache (YACC), a brand-new compressed

cache design that aims to increase useful cache capacity with a

straightforward design, is what the authors propose. While

packing variable-size compressed blocks to reduce internal

fragmentation, YACC uses super-blocks to lower tag overheads.

Decoupled Compressed Cache (DCC) and Skewed Compressed

Cache (SCC), two cutting-edge compressed caches, are utilized

by YACC to achieve its goals. The structure of the YACC cache

is comparable to that of traditional caches, with a virtually

unaltered tag array and unaltered data array. In contrast to DCC

and SCC, YACC does not require the substantial additional

metadata that DCC needs to track blocks or the complexity and

costs of skewed associativity that SCC does. In addition, YACC

supports contemporary replacement techniques like RRIP,

which gives it an edge over earlier research. According to

experiment, YACC enhances performance by an average of 8%

and as much as 26% when compared to a traditional

uncompressed 8MB LLC and decreases overall energy by an

average of 6% and as much as 20%. With only 1.6% more area

than an 8MB conventional cache, an 8MB YACC offers roughly

the same performance and energy improvements as a 16MB

conventional cache in a substantially smaller silicon footprint.

Similar to DCC and SCC in performance, YACC is significantly

easier to deploy [17].

Figure 5. Skewed Compressed Cache by Somayeh Sardashti [17]

Srikanthaiah Hiremath and Mahmoud A Manzoul studied "

An Improved Fuzzy Replacment Algorithm For Cche Memories

"to improve cache memory replacement performance. This

study suggested a modified fuzzy replacement technique

(MFRA), which significantly outperforms the FRA in terms of

cache memory performance. The FRA has undergone the

following significant modifications: the number of inputs has

decreased from three to two; the number of fuzzy linguistic

variables and the dimensions of the universes of discourse have

increased; and a larger knowledge base that employs 34 new

rules is used. Under actual workload situations, the performance

of the MFRA is comparable to that of conventional replacement

algorithms like least recently used (LRU) and first in first out

(FIFO), as seen in the results [18].

In 2006, Sedigheh Khajoueinejad studied "A Fuzzy Cache

Replacement Policy and Its Experimental Performance

Assessment" to improve access performance between

computing units and memory. One of the best ways to increase

the speed of 10 accesses between computational units and

memories is to use caching. Which objects are removed from the

cache to create way for new objects is determined by the cache

Generate Heptane Tree Graphusing application
code

Collect Instruction Block (IB) Miss Info from Tree
Graph

Create IB- address miss block list

Sort IB - address miss block list

List the candidate memory blocks with miss
number base on cache size, line size, and locking

capacity

Block address and miss information (BAMI) are
available for cache locking and cache

replacment

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 26 August 2023 Revised: 08 October 2023 Accepted: 20 October 2023

 1546
IJRITCC | October 2023, Available @ http://www.ijritcc.org

replacement policy. In this study, we provide a novel fuzzy

technique termed fuzzy page replacement (FPR). Through

simulation, this algorithm's performance is evaluated in

comparison to well-known cache replacement algorithms. The

simulation findings demonstrate that the fuzzy technique

outperforms the other algorithms and may be considered in

subsequent studies [19].

In 2019, Bhukya Krishna Priya studied "Cache lifetime

enhancement technique using hybrid cache-replacement-policy"

to reduce the error rate when cache replacement occurs. By

lessening the influence of the replacement algorithm, the

proposed Hybrid-Cache-Replacement (HCR) strategy enhances

write endurance while lowering mistake rates. The incoming

data is properly inserted into the already-existing block, which

has a low error rate and fewest writes. It has been put into

practice by comparing the incoming bits to the bits that are

already present in a cache set. According to the simulation

results, as compared to the current approaches, the STT-RAM

caches' lifespan increases by 135%, 165%, and 27%, with a 2%,

2%, and 1% performance overhead [20].

In 2022, Swapnita Srivastava studied entitled "Proof of

Optimality based on Greedy Algorithm for Offline Cache

Replacement Algorithm" which aims to optimize cache

replacement. An easier proof based on the greedy algorithm is

presented in this article. In order to show that the greedy solution

is delivering optimality, the study shows that any ideal solution

can be repeatedly turned into the solution offered by the greedy

algorithm without increasing the miss of the optimal solution.

The Greedy Weight-based Cache Replacement Algorithm

(GWCRA), which is based on the Greedy algorithm and also

adds the weighted access-based parameters of recency and

frequency, is another replacement algorithm that is presented in

this work. When compared to LRU and SRRIP, which have

average speedups of 55.58% and 55.65%, respectively, the

GWCRA obtains a speedup of 57.29% [21].

III. METHOD

The method proposed in this study is a combination of

weighted LRU and LFU. The LRU algorithm works on the

principle that items that have been accessed most recently are

likely to be accessed again in the near future, while items that

have not been accessed for a long time are less likely to be

accessed again soon. In the context of caching, the LRU

algorithm keeps track of the order in which items are accessed.

When the cache reaches its maximum capacity and a new item

needs to be added, the algorithm removes the least recently used

item from the cache to make space for the new item. On

subsequent accesses, if an item is already present in the cache, it

is marked as the most recently used item, moving it to the front

of the cache. The LRU algorithm helps optimize cache

performance by maximizing the utilization of cache space for

frequently accessed items and minimizing cache misses for less

frequently accessed items. LRU maximizes the utilization of

cache space by evicting the least recently used items. This

ensures that the most frequently accessed items are kept in the

cache, reducing cache misses and improving overall system

performance. LRU takes advantage of the principle of temporal

locality, which states that recently accessed items are likely to be

accessed again in the near future. By keeping the most recently

used items in the cache, LRU improves the hit rate and reduces

the time taken to retrieve data from the cache. The LRU

algorithm is relatively simple to implement compared to other

caching algorithms. It requires tracking the order of item access

and updating it accordingly. The straightforward nature of LRU

makes it a popular choice for cache management. LRU assumes

that future access patterns will be similar to past access patterns.

However, in some cases, access patterns may change over time,

and LRU may not be able to adapt quickly. For example, if there

is a sudden shift in the popularity of certain items, LRU may

continue to keep less popular items in the cache while evicting

more popular items. LRU does not perform well in the presence

of skewed or uneven access patterns. If a few items are accessed

very frequently while the rest of the items are rarely accessed,

LRU may repeatedly evict and re-fetch the less frequently

accessed items, leading to a high cache miss rate and decreased

performance. While LRU is relatively simple to implement for

small cache sizes, it becomes more complex and

computationally expensive as the cache size increases.

Maintaining the order of accessed items and updating it in a large

cache can require additional memory and overhead, impacting

the overall efficiency of the algorithm.

In contrast to the LRU algorithm, which focuses on the

recency of item access, LFU prioritizes items that have been

accessed the least number of times. In the LFU algorithm, each

item in the cache is associated with a usage counter that keeps

track of the number of times the item has been accessed. When

the cache reaches its maximum capacity and a new item needs

to be added, the algorithm selects the item with the lowest usage

counter for eviction. LFU identifies items that are accessed

infrequently and removes them from the cache. This approach

aims to optimize cache performance by keeping frequently

accessed items in the cache and reducing cache pollution caused

by rarely used items. LFU requires tracking the usage counters

for each item in the cache. When an item is accessed, its counter

is incremented. This process ensures that the algorithm

accurately reflects the frequency of item usage. LFU is capable

of adapting to changes in access patterns. If an item that was

previously accessed infrequently suddenly becomes popular, its

usage counter will increase, making it less likely to be evicted.

This adaptiveness can be beneficial in scenarios where access

patterns vary over time. LFU heavily relies on accurate tracking

of item usage. If an item is accessed frequently initially and then

becomes less popular, it may remain in the cache longer than

desired. Similarly, an item that starts with a low usage count but

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 26 August 2023 Revised: 08 October 2023 Accepted: 20 October 2023

 1547
IJRITCC | October 2023, Available @ http://www.ijritcc.org

suddenly becomes popular may face eviction before its

popularity is recognized. Maintaining usage counters for each

item in the cache requires additional memory and computational

resources. As the cache size or the number of items increases,

the overhead associated with tracking and updating the counters

can become significant. LFU performs well when access

patterns are consistent or slowly changing. However, if there are

sudden bursts of activity or intermittent access to certain items,

LFU may not effectively adapt to these patterns, potentially

leading to suboptimal cache performance.

The combination of weighted LRU and LFU can optimize

the benefits of each block replacement method and reduce the

disadvantages of each block replacement method. This study

proposes a method of combining weighted LRU and LFU as

shown in Figure 6. Main memory is the main memory storage

area that will replace a block of cache memory according to the

combined weight of LRU and LFU.

Figure 6. Combination of Weighted LRU and LFU

To retrieve data or instructions from a program, the locality

of reference idea is used. The CPU only ever uses a small amount

of the address space at once. Performance of the cache memory

is calculated using the page fault rate, miss penalty, and average

access time. The percentage of memory accesses that are Page

Fault Rate are those that are not cached, while The hit rate or hit

ratio of the cache refers to the proportion of accesses that return

a cache hit. Miss Penalty is the sum of the Cycles (time) to

replace a block in the higher level cache and the Cycles (time) to

deliver the block to the processor. It is the total number of cycles

the CPU is stopped for a memory access. The equation (1), (2),

and (3) are used to calculate average access time and CPU

execution time.

AAT = (HT  HR) + (MP  MR) (1)

CET = (CCC + MSC)  CCT (2)

MSC = NM  MP (3)

 = IC  (M / I)  MP

 = IC  ((MA / I)  MR  MP

Where :

AAT =Average Access Time

HT = Hit Time

HR = Hit Rate

MP = Miss Penalty

MR = Miss Rate

CET = CPU Execution Time

CCC = CPU Clock Cycle

MSC = Memory Stall Cycles

CCT = Clock Cycle Time

NM = Number of Misses

IC = Instruction Cyle

M = Missed

I = Instruction

MA = Memory Access

Memory read and write cycle counts may differ in a similar

manner. Reading penalties may differ from writing penalties as

(4).

MSCC = MRSC + MWSC (4)

Where:

MSCC = Memory Stall Clock Cycle

MRSC = Memory Read Stall Cycles

MWSC = Memory Write Stall Cycles

IV. RESULTS

Experiments were carried out to test the cache hit rate of the

proposed method using simulation [22]. This simulation

program will simulate various states of a set of instructions and

data. Testing experiments by executing vector calculations with

vector -vector in a pseudocode as follows.

main

{

 read(n)

 for(i=1,i<=n,i++)

 {

 read(x[n])

 read(y[n])

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 26 August 2023 Revised: 08 October 2023 Accepted: 20 October 2023

 1548
IJRITCC | October 2023, Available @ http://www.ijritcc.org

 }

 for(i=1,i<=n,i++)

 {

 Z[n] = x[n] + y[n]

 }

 for(i=1,i<=n,i++)

 {

 write(z[n])

 }

}

Data collection was carried out with different amounts of n.

Data collection was simulated in three different methods (LRU,

LFU and combination LRU - LFU weighted). Table 1 is the

result of data collection when using the LRU method. From

Figure 7 it can be seen that the cache hits will decrease if the

amount of data (n) increases.

TABLE I. LRU EXPERIMENT

No. n Cache hit (%)

1 1000 98

2 2000 98

3 3000 97

4 4000 97

5 5000 96

6 6000 95

7 7000 94

8 8000 93

9 9000 91

10 10000 89

Figure 7. Cache hit using LRU method

Table 2 is the result of data collection when using the LFU

method. From Figure 8 it can be seen that the cache hits will

decrease if the amount of data (n) increases.

TABLE II. LFU EXPERIMENT

No. n Cache hit (%)

1 1000 98

2 2000 98

3 3000 97

4 4000 97

5 5000 96

6 6000 96

7 7000 95

8 8000 94

9 9000 93

10 10000 91

Figure 8. Cache hit using LFU method

Table 3 is the result of data collection when using the LFU

method. From Figure 9 it can be seen that the cache hits will

decrease if the amount of data (n) increases.

TABLE III. COMBINATION LRU - LFU WEIGHTED EXPERIMENT

No. n Cache hit (%)

1 1000 99

2 2000 99

3 3000 98

4 4000 98

5 5000 97

6 6000 97

7 7000 96

8 8000 95

9 9000 94

10 10000 93

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 26 August 2023 Revised: 08 October 2023 Accepted: 20 October 2023

 1549
IJRITCC | October 2023, Available @ http://www.ijritcc.org

Figure 9. Cache hit using combination LRU - LFU weighted method

Based on the experimental results, the average cache hit

using the LRU method is 94.8%, the LFU method is 95.5% and

the weighted LRU-LFU combination method is 96.6%.

V. CONCLUSIONS

When the cache reaches its maximum capacity and an

eviction is necessary, LFU2 selects the item with the lowest

combined weight for eviction. The combined weight is typically

calculated as a weighted sum of the usage and recency counters,

with different weights assigned to each counter based on their

relative importance. By combining the recency and frequency

aspects of LRU and LFU, LFU2 aims to strike a balance between

favoring recently accessed items and favoring frequently

accessed items. This approach allows LFU2 to adapt to changing

access patterns, giving more weight to recently accessed items

that may become popular while still considering the overall

frequency of item access. The specific weightings assigned to

the recency and usage counters can vary based on the specific

implementation and tuning requirements. Different weighting

schemes can be used to give more emphasis to recency,

frequency, or a combination of both, depending on the

characteristics of the workload and the desired caching behavior.

Based on the experimental results, the LRU-LFU combination

method succeeded in increasing cache hits from 94.8% on LFU

and 95.5% on LFU to 96.6%.

ACKNOWLEDGMENT

The preferred spelling of the word “acknowledgment” in

America is without an “e” after the “g”. Avoid the stilted

expression, “One of us (R.B.G.) thanks . . .” Instead, try

“R.B.G. thanks”. Put applicable sponsor acknowledgments here;

DO NOT place them on the first page of your paper or as a

footnote.

REFERENCES

[1] M. Kowarschik and C. Weiß, “An Overview of Cache

Optimization Techniques and Cache-Aware Numerical

Algorithms BT - Algorithms for Memory Hierarchies:

Advanced Lectures,” in Algorithm for Memory Hierarchies,

U. Meyer, P. Sanders, and J. Sibeyn, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2003, pp. 213–232.

[2] M. C. Wijaya, “Distributed proxy cache replacement

algorithm to improve web server performance,” Jurnal

Teknologi dan Sistem Komputer, vol. 8, no. 1, pp. 1–5, 2020.

[3] S. M. Khan, D. A. Jiménez, D. Burger, and B. Falsafi, “Using

Dead Blocks as a Virtual Victim Cache,” in Proceedings of

the 19th International Conference on Parallel Architectures

and Compilation Techniques, 2010, pp. 489–500.

[4] M. W. Ahmed and M. A. Shah, “Cache Memory: An Analysis

on Optimization Techniques,” International Journal of

Computer and Information Technology, vol. 4, no. 2, pp. 414–

418, 2015.

[5] H. B. Jang, A. Kashif, M.-S. Park, and S. W. Chung, “Reliable

Cache Memory Design for Sensor Networks,” in 2008 Third

International Conference on Convergence and Hybrid

Information Technology, 2008, vol. 1, pp. 651–656.

[6] A.-C. Lai, C. Fide, and B. Falsafi, “Dead-Block Prediction

& Dead-Block Correlating Prefetchers,” in Proceedings

of the 28th Annual International Symposium on Computer

Architecture, 2001, pp. 144–154.

[7] P. Panda, G. Patil, and B. Raveendran, “A survey on

replacement strategies in cache memory for embedded

systems,” in 2016 IEEE Distributed Computing, VLSI,

Electrical Circuits and Robotics (DISCOVER), 2016, pp. 12–

17.

[8] S. Kumar and P. K. Singh, “An overview of modern cache

memory and performance analysis of replacement policies,”

in 2016 IEEE International Conference on Engineering and

Technology (ICETECH), 2016, pp. 210–214.

[9] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt, “A

Case for MLP-Aware Cache Replacement,” in Proceedings of

the 33rd Annual International Symposium on Computer

Architecture, 2006, pp. 167–178.

[10] Y. Nagasako and S. Yamaguchi, “A Server Cache Size Aware

Cache Replacement Algorithm for Block Level Network

Storage,” in 2011 Tenth International Symposium on

Autonomous Decentralized Systems, 2011, pp. 573–576.

[11] E. Cheshmikhani, H. Farbeh, S. G. Miremadi, and H. Asadi,

“TA-LRW: A Replacement Policy for Error Rate Reduction

in STT-MRAM Caches,” IEEE Transactions on Computers,

vol. 68, no. 3, pp. 455–470, 2019.

[12] R. Hassan, A. Harris, N. Topham, and A. Efthymiou,

“Synthetic Trace-Driven Simulation of Cache Memory,” in

21st International Conference on Advanced Information

Networking and Applications Workshops (AINAW’07),

2007, vol. 1, pp. 764–771.

[13] J. Alghazo, A. Akaaboune, and N. Botros, “SF-LRU cache

replacement algorithm,” in Records of the 2004 International

Workshop on Memory Technology, Design and Testing,

2004., 2004, pp. 19–24.

[14] G. E. Suh, L. Rudolph, and S. Devadas, “Dynamic

84
86
88
90
92
94
96
98

100

C
ac

h
e

h
it

 (
%

)

n

Cache hit using combination
LRU - LFU weighted method

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 26 August 2023 Revised: 08 October 2023 Accepted: 20 October 2023

 1550
IJRITCC | October 2023, Available @ http://www.ijritcc.org

Partitioning of Shared Cache Memory,” The Journal of

Supercomputing, vol. 28, no. 1, pp. 7–26, 2004.

[15] D. Akbari Bengar, A. Ebrahimnejad, H. Motameni, and M.

Golsorkhtabaramiri, “A page replacement algorithm based on

a fuzzy approach to improve cache memory performance,”

Soft Computing, vol. 24, no. 2, pp. 955–963, 2020.

[16] A. Asaduzzaman, “An efficient memory block selection

strategy to improve the performance of cache memory

subsystem,” in 14th International Conference on Computer

and Information Technology (ICCIT 2011), 2011, pp. 12–17.

[17] S. Sardashti, A. Seznec, and D. A. Wood, “Yet Another

Compressed Cache: A Low-Cost Yet Effective Compressed

Cache,” ACM Trans. Archit. Code Optim., vol. 13, no. 3, pp.

1–25, Sep. 2016.

[18] S. HIREMATH and M. A. MANZOUL, “AN IMPROVED

FUZZY REPLACEMENT ALGORITHM FOR CACHE

MEMORIES,” Cybernetics and Systems, vol. 24, no. 4, pp.

325–339, Jan. 1993.

[19] S. Khajoueinejad, M. Sabeghi, and A. Sadeghzadeh, “A

Fuzzy Cache Replacement Policy and Its Experimental

Performance Assessment,” in 2006 Innovations in

Information Technology, 2006, pp. 1–5.

[20] B. K. Priya, S. Kumar, B. S. Begum, and N.

Ramasubramanian, “Cache lifetime enhancement technique

using hybrid cache-replacement-policy,” Microelectronics

Reliability, vol. 97, pp. 1–15, 2019.

[21] S. Srivastava and P. K. Singh, “Proof of Optimality based on

Greedy Algorithm for Offline Cache Replacement

Algorithm,” International Journal of Next-Generation

Computing, vol. 13, no. 3, 2022.

[22] M. Grigoriadou, M. Toula, and E. Kanidis, “Design and

evaluation of a cache memory simulation program,” in

Proceedings 3rd IEEE International Conference on Advanced

Technologies, 2003, pp. 170–174.

http://www.ijritcc.org/

