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Abstract - In today's era of widespread cloud computing and data sharing, the demand for secure and privacy-preserving techniques to facilitate 

multi-user data sharing is rapidly increasing. However, traditional approaches struggle to effectively address the twin objectives of ensuring 

privacy protection while preserving the utility of shared data. This predicament holds immense significance due to the pivotal role data sharing 

plays in diverse domains and applications. However, it also brings about significant privacy vulnerabilities. Consequently, innovative 

approaches are imperative to achieve a harmonious equilibrium between the utility of shared data and the protection of privacy in scenarios 

involving multiple users. This paper presents KBD-Share, an innovative framework that addresses the intricacies of ensuring data security and 

privacy in the context of sharing data among multiple users in cloud computing environments. By seamlessly integrating key aggregation, 

blockchain technology, and differential privacy techniques, KBD-Share offers an efficient and robust solution to protect sensitive data while 

facilitating seamless sharing and utilization. Extensive experimental evaluations convincingly establish the superiority of KBD-Share in aspects 

of data privacy preservation and utility, outperforming existing approaches. This approach achieves the highest R2 value of 0.9969 exhibiting 

best data utility, essential for multi-user data sharing in diverse cloud computing applications. 
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1. INTRODUCTION 

The advancements in today's digital landscape have brought 

about a critical concern regarding the secure sharing of data 

among multi-user cloud computing [1]. As organizations and 

individuals increasingly rely on cloud services for storing and 

processing their data, ensuring the confidentiality, integrity, 

and privacy of shared information has become paramount [2]. 

Privacy breaches and data leakage pose significant risks, 

including identity theft, financial losses, and reputational 

damage. Confidential business data, personal information, 

and intellectual property are valuable assets that need to be 

safeguarded from unauthorized disclosure [3-4]. Moreover, 

adhering to data protection regulations [5-7].Encryption is 

vital for safeguarding confidential information from 

unauthorized access [8]. It ensures that only individuals with 

the proper encryption key can decrypt and access the data, 

maintaining its confidentiality. As an effective information 

protection control, encryption is crucial for handling 

confidential data.Key Aggregation is a crucial technique that 

tackles the challenge of efficiently managing and distributing 

encryption keys among multiple users [9]. It simplifies the 

complex process of key management, resulting in reduced 

computational overhead and enhanced scalability.Blockchain 

[10,36] technology provides a decentralized and tamper-

proof ledger for recording and verifying transactions or data 

exchanges among multiple users. In multi-user cloud 

computing environments, blockchain ensures data integrity, 

immutability, and transparency. It enables secure and 

auditable data sharing, removing the dependency on central 

authorities and thereby mitigating the risks associated with 

data manipulation and unauthorized access.Differential 

Privacy [11] aims to protect individuals' sensitive information 

while allowing data analysis and sharing. It introduces 

randomness to the data to prevent the identification of 

individuals. In multi-user cloud computing environment, 

differential privacy techniques enable the aggregation and 

analysis of data from multiple users while preserving 

individual privacy. It provides a privacy-preserving 

mechanism that ensures the confidentiality of user-specific 

information [12]. Several researches have been carried out to 

combine the above approaches to build powerful frameworks 

for enhancing multi-user cloud computing [13, 14, 15]. 

Inspired by these collaborative networks, this research 

proposes an integral approach for secured data sharing among 

multiple users combining key aggregation, block chaining 

and differential privacy called KBD-Share. At the same time, 

real time security is likely to safeguard the system without 

causing damage [37]. 
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The proposed model is scalable and This paper is structured 

as follows: Section 2 provides a comprehensive review of 

related literature, while Section 3 describes the datasets 

employed in this research. Section 4 presents the proposed 

KBD-Share approach, and Section 5 presents a detailed 

analysis of the experimental results. Section 6 concludes the 

paper with suggestions for future research directions 

 

2. RELATED RESEARCH 

A comprehensive analysis of the current research endeavors 

concerning secure data sharing in multi-user cloud computing 

is presented in this section. It delves into the specific domains 

of key aggregation, blockchain, and differential privacy, 

highlighting their significance in relation to the proposed 

KBD-Share mechanism. In the realm of cryptography, 

various mechanisms facilitate key aggregation, each serving 

distinct purposes and offering unique advantages. Plutus [16] 

introduced two decades ago is a highly scalable key 

management approach, empowering users to maintain direct 

control over file access through clientbased key distribution 

and customizable security policies. The aggregate key 

concept enables the consolidation of multiple secret keys into 

a single potent key, facilitating data sharing and access 

control [17]. Multi-key homomorphic encryption [18] 

empowers individual clients to utilize their own encryption 

keys, enabling the server to perform homomorphic operations 

on encrypted data. Secure aggregation, grounded in 

cryptographic schemes encompassing masking, additive 

homomorphic encryption, and secret sharing, ensures that the 

aggregated result remains confidential, safeguarding the 

privacy of participants [19]. Abbas et al. [20] introduced a 

Blockchain-assisted Secure Data Management Framework 

(BSDMF) designed for secure sharing of health information 

within the Internet of Medical Things (IoMT) network. This 

framework utilizes blockchain technology to ensure data 

transmission security and effective data management among 

interconnected nodes, including personal servers, 

implantable medical devices, and cloud servers. 

Experimental results on this framework demonstrated the 

superior performance of the BSDMF, achieving a high 

accuracy of 97.2% in data sharing compared to other popular 

approaches.Lucas et al [21] explored the application of 

blockchain technology that utilizes smart contracts for 

automating the tracking and verification of energy demand 

response services, enabling secure and transparent data 

sharing among stakeholders.  

In their research, Huang et al. [22] put forth a blockchain-

based framework for vehicular data sharing. This framework 

utilizes Zero-Knowledge Proof (ZKP) to safeguard the 

privacy of vehicle identities and ensures data auditability for 

Trusted Authorities (TAs). In a recent study, Xie et al. [23] 

introduced the Trusted Execution Environment and 

Blockchain supported IoT Data sharing System (TEBDS). 

This innovative system combines on-chain and off-chain 

methods to meet the rigorous security demands of IoT data 

sharing networks. Isaja et al. [24] introduced a blockchain-

driven Trusted Framework (TF) for secure and efficient 

sharing of quality-related information in the supply chain 

business ecosystem. The TF facilitates the adoption of zero-

waste value chain strategies by incorporating a well-defined 

data model called the Process/Product/Data (PPD) Quality 

Hallmark, an integrated OpenAPI interface, and anidentity 

management layer. It enables reliable and trusted sharing of 

quality data among stakeholders within the production 

chain.Hassan et al. [25] conducted a comprehensive 

investigation into integrating differential privacy at multiple 

layers of the blockchain architecture and applying it in 

specific blockchain scenarios. In a recent case study, Dyda et 

al. [26] examined the potential of differential privacy in 

public health surveillance data, aiming to improve 

information sharing while safeguarding the confidentiality of 

this data.In their study, Javed et al [27] proposed ShareChain, 

an architecture designed to securely share medical data while 

preserving privacy. In their efforts to address privacy 

protection in distributed data publishing, Gu et al. [28] 

devised the LDA-DP algorithm for centralized scenarios. 

This algorithm perturbs within-class mean vectors and scatter 

matrices with Gaussian noise.  

The problem of releasing private data while preserving 

privacy was addressed by Jälkö et al [29] through the 

utilization of Probabilistic Modeling (PM). By redefining 

synthetic data design as model selection, their approach 

allows for the incorporation of historic information to 

improve the generated synthetic data. Empirical evidence 

from an epidemiological study convincingly demonstrates the 

reliability of reproducing statistical discoveries using the 

synthetic data. The Conditional Tabular Generative 

Adversarial Network (CTGAN) [30] has shown promising 

results in generating synthetic data that effectively addresses 

the issue of data imbalance during the training of deep 

learning models. To mitigate privacy risks, it is essential to 

apply differential privacy approaches in conjunction with 

CTGAN for quantifying and controlling the privacy 

guarantees of the generated synthetic data. Qu  et al [31] 

introduced the Generative Adversarial Net enhanced  

Differential Privacy (GAN-DP) to address the challenge of 

preserving individual privacy in IoT networks. This approach 

is tailored to each party's specific requirements. It strikes a 

balance between data degradation and privacy leakage, 

improving data privacy in IoT networks.In a related work 

[32], a hybrid approach employing differential privacy in a 

GAN model is proposed to protect critical data in Industrial 

Internet of Things (IIoT) operations [35].  
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3. DATASETS 

The evaluation of the proposed KBD-Share framework 

utilizes two datasets: the IIoT Wind Turbine (IWT) [33] 

dataset and the Energy Efficiency (EE) [34] dataset. The IWT 

dataset is obtained from the Microsoft Azure Predictive 

Maintenance Template and consists of Supervisory Control 

and Data Acquisition (SCADA) data from wind turbines, 

comprising 70 attributes and 49,027 observations. The EE 

dataset contains data from energy analysis of 768 building 

shapes simulated in Ecotect, with variations in glazing area, 

orientation and other attributes. The dataset includes 8 

features and 768 samples, aiming to predict two real-valued 

responses. The evaluation of KBD-Share employs a Linear 

Regression (LR) model, with the LR model trained on 

specific independent variables. Table 1 provides the details of 

these variables, which are selected based on empirical 

evaluation of KBD-Share with different subsets. 

 

Table 1. Description of Datasets 

Dataset Independent Variables Dependent 

Variables 

IIoT 

Wind 

Turbine 

WEC average wind speed (X1), 

WEC average rotation (X2), WEC 

average Power (X3), WEC average 

reactive power (X4), WEC 

averageavailable power from wind 

(X5), WEC operating hours (X6)  

WEC 

production 

(Y) 

Energy 

Efficiency 

Relative compactness (X1), Surface 

Area (X2), Wall Area (X3), Roof 

area (X4), Overall height (X5), 

Orientation (X6), Glazing area 

(X7), Glazing area distribution (X8)  

Heating 

load (Y) 

 

 

4. PROPOSED KBD-SHARE APPROACH 

The architecture of the proposed KBD-Share is designed to 

ensure secure data sharing while leveraging key aggregation, 

blockchain technology, and differential privacy. This section 

provides a high-level description of the KBD-Share 

architecture with interactions among its components and the 

key stakeholders involved.  

This section provides a high-level description of the KBD-

Share architecture with interactions among its components 

and the key stakeholders involved. KBD-Share architecture 

and the key components and their interactions are described 

as below and illustrated with Figure 1. 

 
Figure 1. KPD-Share High level Architecture 

 

a. Data Providers:These are entities or users who share their 

data on the cloud platform. They provide the raw data that 

needs to be securely shared while preserving privacy. 

b. Key Aggregation Component: This component is 

responsible for aggregating keys from multiple data providers 

to generate a consolidated encryption key. It collects and 

combines the individual keys securely, ensuring that no single 

entity has access to the complete key. 

c. Encryption Component:The Encryption Component 

utilizes the aggregated key generated by the Key Aggregation 

Component to encrypt the shared data, employing robust 

encryption algorithms to guarantee data confidentiality and 

integrity. 

d. Blockchain Component: The Blockchain Component acts 

as a decentralized and tamper-proof ledger, recording access 

control policies, permissions, and audit logs. It establishes 

fine-grained access control through the utilization of smart 

contracts for defining and executing access rules. 

e. Differential Privacy Component: This component 

leverages differential privacy techniques to anonymize the 

shared data while preserving useful statistical properties. It 

applies privacy-preserving mechanisms to the data to protect 

individuals' sensitive information. 

f. Data Consumers: These are authorized users or 

applications that request access to the shared data. They can 

query and retrieve the data based on the access control 

policies defined in the blockchain. 

g. Auditing Component: The Auditing Component ensures 

transparency and accountability in the system. It monitors and 

records data access events, modifications, and data 

anonymization processes, providing an audit trail for 

compliance and security purposes 
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4.1 Key Stakeholders 

 

The key stakeholders and their roles in the KBD-Share 

architecture are given as below and illustrated with Figure 2. 

 
Figure 2. KPD-Share Key Stakeholders 

a. Data Providers: They contribute their data to be securely 

shared. They play a crucial role in providing access 

permissions and defining privacy preferences for their data. 

b. Data Consumers: Authorized users or applications that 

request access to the shared data. They interact with the 

blockchain component to validate their access rights and 

retrieve the encrypted data for further analysis or processing. 

c. Key Aggregation Service Provider: The entity responsible 

for securely aggregating the encryption keys from multiple 

data providers. They ensure the confidentiality of the 

individual keys and generate the consolidated key for data 

encryption. 

d. Blockchain Network Participants: Nodes or entities 

participating in the blockchain network, responsible for 

maintaining the decentralized ledger. They validate 

transactions, enforce access control policies, and contribute 

to the consensus mechanism. 

e. Differential Privacy Engineer: Experts in differential 

privacy who design and implement the anonymization 

techniques used in KBD-Share. They ensure that data sharing 

adheres to privacy-preserving practices while maintaining 

data utility. 

f.Auditors and Compliance Officers: These stakeholders 

review the auditing logs and ensure that the data sharing 

process aligns with regulatory and compliance requirements. 

They verify that access control policies and privacy measures 

are properly enforced. 

 

4.2 Key Aggregation and Encryption for Secure Data 

Sharing 

This section describes the key aggregation, key generation 

and distribution, blockchain based access control and the 

differential privacy-based encryption process used in data 

sharing. 

4.3 key aggregation 

The key aggregation technique used in KBD-Share utilizes a 

secure key aggregation technique to combine individual keys 

from multiple data providers into a consolidated encryption 

key.  

A set of public keys, denoted as 𝐿 = {𝑝𝑘1, 𝑝𝑘2, … , 𝑝𝑘𝑛} , 

where each public key 𝑝𝑘𝑖 corresponds to a data provider 𝑖 is 

given as input to the aggregation process. Each public key 

𝑝𝑘𝑖  is represented as a tuple (𝑦𝑖 , 𝑧𝑖), where 𝑦𝑖and 𝑧𝑖belong 

to a cyclic group 𝐺. Specifically, 𝑦𝑖  is the result of raising the 

generator𝑔 of 𝐺  to the power of the private key 𝑥𝑖  of data 

provider 𝑖, and 𝑧𝑖 is the result of raising the element ℎ to the 

power of 𝑥𝑖. The algorithm outputs the aggregated public key, 

the consolidated encryption key obtained by aggregating the 

public keys of all data providers denoted as 𝑎𝑝𝑘 = (𝑦, 𝑧), 

where 𝑦 and 𝑧 are elements in the cyclic group 𝐺. The key 

aggregation algorithm is given as below 

 

Algorithm: Key Aggregation 

Input: 

• 𝐿 = {𝑝𝑘1, 𝑝𝑘2, … , 𝑝𝑘𝑛} -set of public keys of the data 

providers. For each data provider 𝑖 where 𝑝𝑘𝑖 =

(𝑦𝑖 , 𝑧𝑖) = (𝑔𝑥𝑖 , ℎ𝑥𝑖) 

Output: 

• Aggregated Public Key𝐾𝑎𝑔𝑔 = (𝑦, 𝑧) 

Procedure: 

1. Initialization 

o Set 𝑦 to the identity element 𝑒 in the 

cyclic group 𝐺 

o Set 𝑧 to the identity element 𝑒 in the cyclic 

group 𝐺 

2. Key Aggregation 

o For each public key 𝑝𝑘𝑖 = (𝑦𝑖 , 𝑧𝑖) in 𝐿, do 

the following: 

▪ Multiply 𝑦 by 𝑦𝑖  using the group 

multiplication operation in 𝐺 

𝑦 ← 𝑦 ⋅ 𝑦𝑖  

▪ Multiply 𝑧 by 𝑧𝑖 using the group 

multiplication operation in 𝐺 

𝑧 ← 𝑧 ⋅ 𝑧𝑖 

3. Output 

o Return the aggregated public key 𝐾𝑎𝑔𝑔 =

(𝑦, 𝑧) 

4.3.1 Blockchain-based Access Control and Auditing 

The utilization of blockchain technology in KBD-Share 

provides a decentralized and immutable framework for access 

control. Blockchain serves as a tamper-proof ledger that 

records access control policies, permissions, and audit logs 

the data sharing process as below 
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4.3.2 Key Generation and Management  

The key management and distribution mechanism in 

KBD-Share ensures the secure generation, distribution, and 

management of encryption keys for data sharing, maintaining 

a high level of security throughout the process. It ensures that 

the keys are generated securely and distributed only to 

authorized entities while maintaining their confidentiality and 

integrity. The key management and distribution mechanism 

encompasses the following steps. 

A. Key Generation: 

The necessary cryptographic keys, including public 

and private keys for each data provider, are generated by a 

trusted authority, often referred to as the Key Management 

Center (KMC). 

B.Key Distribution: 

The public keys are securely distributed to the 

corresponding data providers using secure channels such as 

encryption, digital signatures, or secure key exchange 

protocols. The private keys, which are kept confidential, are 

securely stored by the respective data providers. 

C. Key Updates: 

The key management mechanism supports key 

updates, such as periodic key rotation, revocation of 

compromised keys, or addition/removal of data providers. 

Secure procedures and protocols are followed to ensure the 

secure and efficient update of encryption keys. 

D. Key Protection: 

The private keys of data providers are protected 

through measures such as encryption, access controls, and 

secure storage, safeguarding them against unauthorized 

access. 

E. Key Escrow: 

In certain scenarios, key escrow mechanisms may be 

employed to securely store copies of the private keys. This 

allows for key recovery or backup options in case of key loss 

or unavailability of a data provider. 

F. Key Revocation: 

When a security breach occurs or a data provider's 

access privileges are revoked, the key management 

mechanism facilitates the revocation of the corresponding 

keys to prevent unauthorized access to the shared data. 

 

4.3.3 Blockchain-based Access Control and Auditing 

The utilization of blockchain technology in 

KBD-Share provides a decentralized and immutable 

framework for access control. Blockchain serves as a 

tamper-proof ledger that records access control policies, 

permissions, and audit logs. The access control 

mechanism in KBD-Share harnesses blockchain 

technology to assure the integrity and transparency of 

the data sharing process as below. 

Algorithm: Blockchain based Access Control in KBD-Share 

Input: 

• Blockchain parameters: 𝐵 = {𝐵1, 𝐵2, … , 𝐵𝑛 } 

(Blockchain blocks), 𝑆𝐶 = {𝑆𝐶1, 𝑆𝐶2, … , 𝑆𝐶𝑚} 

(Smart contracts) 

• Data consumer request: Data consumer 𝑖 

Output: 

• Access control decision: 𝐴𝐶𝐷(𝑖) 

Procedure: 

1. Validate Blockchain: 

o Perform validation of the blockchain using 

the validation function 𝑉(𝐵). If 

𝑉(𝐵)returns false, terminate the 

algorithm. 

2. Verify Permissions: 

o Retrieve the permissions for data 

consumer 𝑖, denoted as 𝑝𝑒𝑟𝑚𝑖. 

3. Access Control Enforcement: 

o For each smart contract 𝑆𝐶𝑗 ∈ 𝑆𝐶: 

Execute the access control enforcement function 𝐸(𝑆𝐶𝑗), 

which validates and enforces the access control policies 

defined in 𝑆𝐶𝑗.  

If 𝐸(𝑆𝐶𝑗)returns false, terminate the algorithm and set 

𝐴𝐶𝐷(𝑖) as "Access denied." 

𝐴𝐶𝐷(𝑖) ←"Access denied." 

4. Access Control Decision: 

o If data consumer 𝑖 satisfies all the access 

control policies and permissions 

𝐴𝐶𝐷(𝑖) ←"Access Granted." 

else 

𝐴𝐶𝐷(𝑖) ←"Access Granted." 

5. Return 𝐴𝐶𝐷(𝑖) as the access control decision for 

data consumer 𝑖. 

 

Smart contracts play a vital role in KBD-Share by 

enforcing access policies. These self-executing 

contracts have predefined terms written into their code, 

enabling them to define and enforce the access policies 

governing the conditions and permissions for accessing 

shared data as described below. 

1. Access Policy Definition: 

Each smart contract 𝑆𝐶𝑗  defines an access policy using 

mathematical notations. It specifies the conditions and 

requirements for granting access to the shared data. The 

access policy can be represented as 𝑃𝑗, where 𝑃𝑗 is a logical 

expression involving variables and operations. 

2. Execution of Smart Contract: 

When a data consumer requests access to the shared data, the 

corresponding smart contract 𝑆𝐶𝑗  is executed. The smart 
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contract evaluates the access policy 𝑃𝑗  based on the input 

parameters and current system state. 

 

3. Access Control Enforcement: 

The smart contract enforces the access policy 𝑃𝑗  by 

evaluating whether the conditions specified in 𝑃𝑗  are 

satisfied. This evaluation involves mathematical operations 

and logical comparisons. Access to the shared data is either 

granted or completely denied based on whether the access 

policy is satisfied. 

4. Smart Contract Execution Result: 

The execution of the smart contract results in a Boolean 

value, denoted as 𝑅𝑗, which represents the outcome of the 

access control enforcement. If 𝑅𝑗 is true, it indicates that the 

access policy is satisfied, and access is granted. If 𝑅𝑗 is 

false, it signifies that the access policy is not satisfied, and 

access is denied. 

Auditability and transparency are important aspects 

enabled by blockchain technology in KBD-Share. The 

immutability and decentralized nature of the blockchain 

provide a transparent and tamper-proof record of all 

access control events and activities. In this research, 

enforcement of auditability and transparency in KBD-

Share is realized as below.  

1. Transaction Recording: 

Each access control event, modification, and data 

anonymization process is recorded as a transaction on the 

blockchain. Let 𝑇𝑖  represent the 𝑖-th transaction recorded on 

the blockchain. 

2. Access Control Logs: 

Access control logs capture details of data consumer requests, 

permissions, and access control decisions. The access control 

log can be represented as 𝐿𝑜𝑔𝑖 , which contains the relevant 

information for the 𝑖-th access control event. 

3. Blockchain Validation: 

The blockchain can be validated using mathematical 

functions and algorithms. Let 𝑉(𝐵)  denote the validation 

function that verifies the integrity and consistency of the 

blockchain 𝐵 . If 𝑉(𝐵)  returns true, it indicates that the 

blockchain is valid; otherwise, it is considered invalid or 

inconsistent. 

4. Transparency: 

The transparency of the blockchain is achieved through its 

decentralized nature, allowing all participants to have access 

to the same set of transaction records. Let 𝑇𝑅 represent the 

set of all transactions recorded on the blockchain. 

5. Audit Trail: 

The blockchain serves as an audit trail, providing a 

chronological and immutable record of access control events 

and activities. The audit trail can be represented as 𝐴𝑇, 

which contains a sequence of transactions 𝑇𝑖 . 

The above process enable the stakeholders to 

review and verify the access control events and 

activities recorded on the blockchain, ensuring 

transparency and accountability in the system. 

 

4.3.4 Leveraging differential privacy for data 

anonymization 

Differential privacy is seamlessly incorporated into KBD-

Share to ensure privacy protection during data sharing, 

anonymizing the shared data and safeguarding individuals' 

sensitive information. The privacy parameter 𝜖quantifies the 

level of privacy protection provided to individuals in the 

shared data. A lower ϵ value indicates a higher level of 

privacy assurance.  

To achieve differential privacy, noise is added to the query 

results or data during the sharing process. Let 𝑄(𝐷) represent 

a query performed on the dataset 𝐷 . The noise addition 

process can be defined as in (1), where 𝒩(Δ𝑄, 𝜖) denotes the 

noise added to the query result, Δ𝑄  represents the 

querysensitivity, and 𝜖 is the privacy attribute. 

𝑄(𝐷) +𝒩(Δ𝑄, 𝜖)   (1) 

The integration of differential privacy in KBD-Share involves 

privacy and utility trade-offs. As the parameter 𝜖 decreases to 

provide stronger privacy guarantees, the utility or accuracy of 

the shared data may be compromised. Achieving a balance 

between privacy and utility is a critical consideration in the 

anonymization process. By integrating differential privacy 

techniques into KBD-Share, sensitive information in the 

shared data is protected, and privacy guarantees are provided. 

When it comes to secure data sharing, the utilization of ε-

differential privacy for data anonymization through 

generalization is instrumental in safeguarding the privacy of 

the shared data.  This approach involves replacing specific 

values in the dataset with more generalized or coarse-grained 

representations to mitigate the risk of re-identification. 

Through the incorporation of ε-differential privacy, a formal 

guarantee is established to protect the privacy of the shared 

data, regardless of the inclusion or exclusion of any 

individual's data, thereby preserving the overall data privacy. 

The privacy budget ε determines the maximum allowable 

privacy loss for the shared data. Sensitive attributes, denoted 

as 𝐴, are identified in the dataset, and each attribute 𝑎 ∈ 𝐴 

has a generalization hierarchy, 𝐻(𝑎), specifying the levels of 

generalization. The original dataset, 𝐷 , undergoes the 

generalization process, where specific attribute values 𝑑(𝑎) 

are replaced with their corresponding generalized values 

𝑔(𝑎), as defined by the hierarchy 𝐻(𝑎). In order to attain ε-

differential privacy and bolster the security of the shared data, 

random noise 𝑁(𝑎)  is introduced to the generalized values, 
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as outlined in (1). The incorporation of noise adds an 

additional layer of protection, preventing potential 

adversaries from inferring sensitive information even when 

they have partial knowledge of the original data. The 

anonymized dataset, denoted as 𝐷′, is then securely shared 

with authorized users or stored in a trusted environment. 

During query processing or data analysis, the noise added 

during anonymization is taken into account to ensure accurate 

results without compromising individual privacy. Queries on 

the anonymized dataset are performed using 𝑄(𝐷) , 

considering the perturbed data and preserving the privacy 

guarantees provided by ε-differential privacy. The privacy 

guarantees can be analyzed as follows: 

a. Privacy Budget: The privacy budget, represented by ε, is 

the maximum allowable privacy loss that quantifies the 

information an adversary can learn about an individual by 

observing the shared data. 

b.Neighboring Datasets:Two datasets, D and D', are 

regarded as neighbors if they vary by the inclusion or 

exclusion of an individual's data. The analysis considers the 

datasets 𝐷𝑖  and 𝐷
𝑖
′, which are neighboring datasets differing 

only in the data of individual 𝑖. 

c. Privacy Loss: The privacy loss, denoted as 𝐿𝑖, measures 

the extent to which an adversary can learn about an 

individual by observing the output of the data sharing 

process. 

d. Differential Privacy Property: The ε-differential privacy 

property ensures that the probability of observing a specific 

output from the shared data remains nearly the same, 

regardless of the presence or absence of an individual's data. 

This property is expressed as in (2) where, 𝑀represents the 

data sharing process, 𝐷  is the original dataset, 𝐷𝑖  is a 

neighboring dataset, and 𝑂 is a specific output of the sharing 

process. This inequality guarantees that the probability of 

observing a specific output is minimally affected by the 

presence or absence of an individual's data, thus preserving 

privacy. 

𝑃𝑟[𝑀(𝐷) = 𝑂] ≤ exp(𝜖) ⋅ 𝑃𝑟[𝑀(𝐷𝑖) = 𝑂]  

 (2) 

e. Privacy Risk: The privacy risk, denoted as δ, quantifies 

the probability of exceeding the budget ε and serves as an 

indicator of the likelihood of privacy breaches. A smaller 

value of δ signifies a lower risk of privacy violations. 

 

f Privacy Loss Bounds: The objective is to ensure that the 

privacy loss for any individual is bounded by the privacy 

budget ε. This is expressed as in (3) , indicating that the 

probability of the privacy loss for individual 𝑖 exceeding ε is 

no more than δ. 

𝑃𝑟[𝐿𝑖 > 𝜖] ≤ 𝛿    (3) 

The approach ensures robust privacy protection for shared 

data by carefully selecting generalization hierarchies, 

incorporating noise mechanisms, and adhering to ε-

differential privacy guarantees.  

 

In the data sharing process of KBD-Share, a data block  𝐵 is 

securely shared among 𝑁 users leveraging key aggregation, 

blockchain, and differential privacy techniques as below 

Figure 3. 

 

 
 

Figure 3. Secured Data Sharing 

 

1. Key Aggregation: 

• 𝑁 data providers contribute their 

individual encryption keys, denoted as 𝑝𝑘
𝑖
∀𝑖 =

1𝑡𝑜𝑁. 

• The key aggregation component combines 

these individual keys to generate a consolidated 

encryption key, denoted as in (4) 

𝐾agg = Aggregation(𝑝𝑘1, 𝑝𝑘2, . . . , 𝑝𝑘𝑁)  (4) 

2.  Encryption: 

• For encryption of the data block 𝐵, the 

key 𝐾agg is usedas in 𝐶 =

Encrypt(𝐵, 𝐾agg), where 𝐶 represents the 

encrypted data block. 

3. Blockchain-based Access Control 

 The access control is enforced with the following 

steps. 

a. Recording in Blockchain: 

The encrypted data block, denoted as 𝐶 , is saved as a 

transaction in the blockchain. 

The blockchain serves as a distributed ledger, storing blocks 

that consist of multiple transactions. 

For a block 𝐵𝑖 , 𝑇𝑖 represents the transaction containing the 

encrypted data block 𝐶𝑖. 
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The process of recording the transaction in the blockchain can 

be represented as in (5) 

RecordInBC(𝐶,AccessControlPolicies,Permissions,AuditLogs) →

𝐵𝑖 = {𝑇1, 𝑇2, . . . , 𝑇𝑖}  (5) 

 

b. Smart Contracts and Access Control Rules: 

Smart contracts are employed to enforce granular access 

control rules and define the privileges of each user. 

Let SC𝑖  represent the smart contract associated with the 𝑖-th 

block in the blockchain. 

Access Control Policies (ACPs), permissions, and Audit 

Logs (ALs) are stored within the smart contract for each 

transaction. 

The access control process can be represented as: 

AccessControl(SC𝑖 ,ACPs,Permissions,ALs) 

 

c. Access Control Enforcement: 

Upon the users ‘request for access to the encrypted data 

block, their access privileges are verified by comparing them 

to the access control policies specified in the associated smart 

contract. 

Let 𝑈𝑠𝑒𝑟𝑖 represent the 𝑖-th user requesting access, and 𝐴user𝑖
 

denote the access privileges of 𝑈𝑠𝑒𝑟𝑖. 

The access control enforcement process can be represented 

as: 

ValidateAccess(SC𝑖 , 𝑈𝑠𝑒𝑟𝑖 , 𝐴user𝑖) 

 

d. Access Grant or Denial: 

Based on the validation result, the user is either granted 

access to the encrypted data block or denied access. 

If access is granted, the user can proceed with retrieving the 

encrypted data block and further decryption. 

If access is denied, the user is restricted from accessing the 

encrypted data block. 

This process can be represented as: 

AccessGranted(𝑈𝑠𝑒𝑟𝑖) 

 

4. Differential Privacy: 

To preserve privacy, differential privacy techniques are 

applied to the encrypted data block, 𝐶. 

During the data sharing process, privacy guarantees are 

ensured by introducing noise to the data or query results. 

The privacy mechanism can be represented as 𝐷𝐶𝑖 ←

𝐴𝑑𝑑𝑁𝑜𝑖𝑠𝑒(𝐶, 𝜖𝑖), where 𝐷𝐶𝑖 represents the distinct copy of 

the differentially private encrypted data block for user 𝑖  and  

𝜖𝑖 is the privacy parameter specific to user 𝑖. 

 

5. Data Distribution: 

The differentially private encrypted data block, 𝐷𝐶𝑖 , is 

distributed among the 𝑁 users through a secure channel or a 

trusted cloud platform. 

Each user receives a copy of the differentially private 

encrypted data block, but they do not have access to the 

original data in its unencrypted form. 

 

5.0. EXPERIMENTAL RESULTS AND DISCUSSIONS 

This section presents the empirical results on the evaluation 

of KBD-Share with objective metrics and a comparative 

analysis of this approach and representative works. 

 

5.1 Experimental Setup  

For the experimental evaluation of KBD-Share, the system is 

configured with an Intel Core i7-8700K CPU, 1 TB SSD and 

16GB RAM. The operating system used is Windows 10 

Professional, and the implementation is done in MATLAB 

R2023a. The privacy parameter 𝜖 is set to 0.1, representing 

the desired level of differential privacy. The key aggregation 

threshold is chosen as 4, indicating that at least four user keys 

are required for key aggregation. Gaussian noise at 0.5 

standard deviation and Laplace noise with a scale parameter 

of 1.0 is added during the data anonymization process. The 

encryption algorithm employed is AES-256 with CBC mode. 

MATLAB, along with its Communications Toolbox and 

Statistics and Machine Learning Toolbox, is used for 

implementing the secure data sharing process, generating 

noise, and performing statistical analysis. By adopting this 

setup, a dependable and consistent platform is established to 

assess the performance of KBD-Share across privacy 

guarantees, data utility, and computational efficiency. 

 

5.2 Performance Metrics 

The proposed KBD-Share is evaluated with six privacy 

metrics and one utility metric to quantitatively assess its 

performance. These metrics provide insights into the 

effectiveness of the privacy-preserving mechanisms 

employed in KBD-Share as well as the utility of the 

differentially private encrypted data for predictive problems. 

Towards fair evaluation and comparison, KBD-Share is 

evaluated with the privacy metrics Mean Square Error 

(MSE), Normalized Variance (VAR), Directed Hausdorff 

(HAUS), Kullback-Leibler divergence (KL), Procrustes 

(PRO), and Pearson's Correlation Coefficient (PCC) used in 

[32], to capture different aspects of the privacy preservation 

capabilities.  

Additionally, the utility metric R-squared score (R2) is used 

to assess the extent to which the differential private encrypted 

data preserves the relationship between the independent and 

dependent variables. By considering these performance 

metrics, the evaluation provides a comprehensive analysis of 

the effectiveness and utility of KBD-Share in terms of privacy 

preservation and predictive modeling. 

In the context of KBD-Share, MSE  is utilized as a privacy 

measure to quantify the difference between the features of the 
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original and test datasets. It is calculated by taking the mean 

of the squared errors between corresponding feature values as 

in (6), where 𝑥𝑖  and 𝑦𝑖 represent the feature value from the 

original and test data sets,X and Yrespectively. Generally, a 

lower MSE indicates a smaller difference between X and Y, 

suggesting better privacy preservation. 

𝑀𝑆𝐸 =
1

𝑛
∑𝑛
𝑖=1 (𝑥𝑖 − 𝑦𝑖)

2   (6) 

VAR is a metric used to compare the dispersion or difference 

in distribution between 𝑋  and 𝑌 as in (7). A higher NV 

indicates a greater difference in distribution between X and Y, 

suggesting a potential loss of privacy. Conversely, a lower 

NV indicates a smaller difference in distribution, indicating 

better privacy preservation. 

𝑉𝐴𝑅 =
1

𝑛
∑𝑛
𝑖=1 (

𝑥𝑖−𝑦𝑖

𝜎𝑥
)2    (7) 

Generally, HAUS is used to measure the dissimilarity or 

difference between two datasets, X and Y. It quantifies the 

maximum distance between a point in one dataset and its 

closest point in the other dataset. In the context of the KBD-

Share approach, the HAUS metric is employed to assess the 

dissimilarity between 𝑋and 𝑌 as in (8). A higher HAUS value 

indicates a greater dissimilarity between the datasets, 

suggesting a stronger level of privacy achieved by the KBD-

Share mechanism. 

HAUS = 𝑚𝑎𝑥
𝑥∈𝑋

𝑚𝑖𝑛
𝑦∈𝑌

∥ 𝑥 − 𝑦 ∥   (8) 

To measure the information gain or loss between the 

probability distributions of 𝑋 and 𝑌, KL divergence is used, 

which quantifies the dissimilarity between these two 

distributions. It provides insights into how much information 

is gained or lost during the transformation from the original 

dataset to the test dataset, thereby reflecting the level of 

privacy protection achieved through the differential privacy 

mechanisms applied in KBD-Share. It is computed as in (9) 

where 𝑃(𝑖)  and 𝑄(𝑖) are the probabilities of observing the 

valuei in the original and decrypted datasets, respectively. A 

larger value of  KL divergence signifies a larger dissimilarity, 

signifying a potential loss of privacy. Conversely, a lower KL 

divergence value indicates a smaller dissimilarity, indicating 

better privacy preservation. 

 

KL(𝑃 ∥ 𝑄) = ∑𝑖 𝑃(𝑖)log (
𝑃(𝑖)

𝑄(𝑖)
)    (9) 

Procrustes (PRO) analysis is a statistical method that 

compares a collection of shapes by transforming them into a 

state of maximal superimposition. It achieves this by 

minimizing the sum of squared distances between 

corresponding points in each shape through affine 

transformation of their coordinate matrices. Given the 

datasets dataset 𝑋 and 𝑌, PRO is computed as in (10), where 

𝑇 is the transformation matrix. The resulting value of 𝑃𝑅𝑂 

indicates the level of similarity between the two sets of 

shapes. A smaller value indicates a higher degree of 

alignment and similarity, while a larger value suggests greater 

dissimilarity. 

𝑃𝑅𝑂(𝑋, 𝑌) = 𝑚𝑖𝑛
𝑇
||𝑋 − 𝑌𝑇||2   

 (10) 

The PCC measures the linear correlation between 𝑋 and 𝑌 as 

in (11) ,where 𝑥𝑖 and 𝑦𝑖  represent the original and decrypted 

values, respectively, and 𝑋  and 𝑌  denote the means of the 

original and decrypted datasets, respectively. It falls in the 

range [-1 1], with -1 indicating a perfect negative linear 

relationship, 0 indicating no linear relationship, and 1 

indicating a perfect positive linear relationship between 𝑋 

and 𝑌. 

𝑃𝐶𝐶(𝑋, 𝑌) =
∑𝑛𝑖=1 (𝑥𝑖−𝑋)(𝑦𝑖−𝑌)

√∑𝑛𝑖=1 (𝑥𝑖−𝑋)
2 ∑𝑛𝑖=1 (𝑦𝑖−𝑌)

2
  

 (11) 

R2 is a utility metric which evaluates how well the model fits 

the observed data and provides an indication of the 

percentage of the variability in the dependent variable that 

can be explained by the independent variables as in (12). In 

this research, it is used to assess the utility of differential 

private encrypted data in preserving the relationship between 

the independent and dependent variables. A higher value of 

R2 indicates a stronger alignment of the model with the data, 

implying that the utility of the data for predictive purposes 

has not been substantially compromised by the differential 

privacy mechanisms implemented in KBD-Share. 

𝑅2 =
∑𝑛𝑖=1 𝑥𝑖𝑦𝑖−(∑

𝑛
𝑖=1 𝑥𝑖)(∑

𝑛
𝑖=1 𝑦𝑖)

√𝑛(∑𝑛𝑖=1 𝑥𝑖
2−(∑𝑛𝑖=1 𝑥𝑖)

2)√𝑛(∑𝑛𝑖=1 𝑦𝑖
2−(∑𝑛𝑖=1 𝑦𝑖)

2)

 

 (12) 

5.3 Privacy Preservation and Prediction Accuracy 

Evaluation 

The performance of the KBD-Share approach is evaluated 

with the IWT and EE datasets with the above metrics and 

the results are presented in Table2 and Table 3 respectively 

for 𝜖 = 0.1. The two best results are highlighted with bold 

red and blue faces. 

 

Table 2. Performance Metrics – IIoT Wind Turbine Dataset 

        No. of   

                Users 

Metric 

10 20 30 40 50 

MSE↓ 0.0432 0.0439 0.0449 0.0446 0.0492 

VAR↓ 0.0442 0.0443 0.0444 0.0456 0.0481 

HD↓ 0.0608 0.0504 0.0590 0.0364 0.0373 

KL↓ 0.1042 0.1135 0.1612 0.1038 0.1029 

PRO↓ 1.872 1.8612 1.8622 1.847 1.862 

PCC↑ 0.9997 0.9996 0.9995 0.9995 0.9993 

R2↑ 0.9969 0.9951 0.9939 0.9925 0.9901 
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From Table 2, it is observed that the MSE and VAR values 

consistently remain low across different number of users, 

indicating effective privacy preservation. Further, these 

metrics increase with the number of users. While the HD 

values exhibit fluctuations, indicating diverse shape 

similarity between the datasets based on the number of users, 

the KL divergence demonstrates a consistent decrease as the 

number of users increases, reflecting an enhancement in 

distribution. 

Similarly, Table 3 shows that the MSE values for the EE 

dataset also remain small, with a significant increase 

compared to that of the IWT dataset. It is seen that best values 

of the MSE, VAR, HD, PRO, PCC and R2 metrics are 

achieved for 10 users, while degradations are observed with 

increased number of users. The lowest KL divergence is 

achieved for 30 users.  

 

Table 3. Performance Metrics – Energy Efficiency Dataset 

 

This indicates that the KBD-Share approach effectively 

preserves privacy while maintaining a reasonable level of 

utility with both datasets. The results suggest that a smaller 

number of users tends to yield better performance in terms of 

privacy preservation, as indicated by lower MSE, VAR, HD, 

and KL divergence values. Nevertheless, it is crucial to 

acknowledge that the variations in performance observed 

across different metrics and datasets underscore the inherent 

trade-off between privacy and utility. Determining the 

optimal number of users to strike the rightbalancemay rely on 

the specific requirements and priorities of the given 

application. 

 

Table 4. Performance Comparison with State-of-the-Art 

Privacy Data Sharing Approach 

Parameter ϵ KBD-Share Hybrid  

  (Proposed) GAN-DP [32]  

    -2023 

  IWT EE IWT EE 

0.1 0.9969 0.8021 0.9371 0.762 

0.2 0.9958 0.8006 0.9361 0.7605 

0.3 0.9947 0.7991 0.935 0.7591 

0.4 0.9936 0.7975 0.9342 0.7577 

0.5 0.9925 0.796 0.9331 0.7562 

 

 

CTGAN [30] PM [29] GAN-

Enhanced 

-2019 -2021  DP [31] 

(2022) 

EE IWT EE IWT EE 

0.7468 0.8368 0.7019 0.7866 0.6528 

0.7453 0.8359 0.7006 0.7857 0.6516 

0.7439 0.835 0.6993 0.7849 0.6503 

0.7425 0.8274 0.6981 0.774 0.6491 

0.7411 0.8253 0.6966 0.7732 0.6479 

 

 

The R2 values are illustrated with Figure 4 to comprehend the 

performance of the data sharing approaches based on 

differential privacy. 

 
Figure 4. Prediction Accuracy Comparison with the State of 

the Art 

5.4 Discussions 

Based on the experimental findings and comparative analysis, 

it is evident that KBD-Share demonstrates superior 

performance over other data sharing approaches, surpassing 

them by a substantial margin. While PM, CTGAN, GAN-DP, 

and the Hybrid GAN all address the issue of privacy 

preservation to some extent, KBD-Share provides a more 

robust and comprehensive solution. When comparing the 

various approaches for maintaining privacy while releasing 

private data, it becomes apparent that each method brings 

distinct contributions to tackle this challenge effectively.  

 

 

        No. of   

                Users 

Metric 

10 20 30 40 50 

MSE↓ 0.2021 0.2031 0.2034 0.2038 0.2041 

VAR↓ 0.2023 0.2033 0.2027 0.2041 0.2037 

HD↓ 0.1414 0.1435 0.1473 0.1594 0.1605 

KL↓ 0.3120 0.3114 0.3108 0.3124 0.3118 

PRO↓ 0.1979 0.1988 0.1982 0.1996 0.1992 

PCC↑ 0.8956 0.8951 0.8954 0.8947 0.8949 

R2↑ 0.8021 0.8012 0.8018 0.8004 0.8008 
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6. CONCLUSION 

This paper presents KBD-Share, a comprehensive framework 

for secure and privacy-preserving data sharing. By 

incorporating key aggregation, blockchain technology, and 

differential privacy techniques, KBD-Share provides an 

effective solution for addressing privacy concerns in data 

sharing scenarios. The experimental evaluation demonstrated 

the superiority of KBD-Share in terms of privacy 

preservation, and utility compared to existing approaches. 

This approach offers data owners the opportunity to 

confidently share their data, reducing the likelihood of 

privacy breaches and striking a favorable balance between 

privacy and utility. KBD-share can be deployed in various 

domains and applications where privacy and security of data 

are paramount. 
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