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1. INTRODUCTION

In the area of non-Newtonian calculus pioneering work was carried out by Grossman and Katz [12] and is called as
multiplicative calculus. The operations of multiplicative calculus are called as multiplicative derivative and multiplicative integral.
We refer to Grossman and Katz [12], Stanley [17], Bashirov et al. [2, 3], Grossman [11, 13, 14] for different types of Non-
Newtonian calculi and its applications. An extension of multiplicative calculus to functions of complex variables is handled by
Bashirov and Riza [1], Uzer [20], Cakmak and Basar [8], Tekin and Basar [18], Tiirkmen and Basar [19]. Boruah and Hazarika [6,
7] discussed about basic properties of Bigeometric Differential Calculus and Bigeometric Integral Calculus.

Now a day geometric calculus is an alternative to the usual calculus of Newton and Leibniz. It provides differentiation
and integration tools based on multiplication instead of addition. Almost all properties in Newtonian calculus has an analog in
multiplicative calculus. Generally speaking multiplicative calculus is a methodology that allows one to have a different look at
problems which can be investigated via calculus. In some cases, mainly problems of price elasticity, resiliency, multiplicative
growth etc. the use of multiplicative calculus is advocated instead of a traditional Newtonian calculus. To know better about Non-
Newtonian calculus, we must have idea about different types of arithmetic and their generators.

Kizmaz [15] introduced the concept of difference sequence space over usual calculus. Et and Colak [16] studied
generalized difference sequence spaces and discussed about matrix transformation between generalized difference sequence
spaces. Boruah and Hazarika [4] introduced the geometric difference sequence spaces and studied about the geometric
interpolation formulae using the geometric difference operator. In [5] Boruah and Hazarika studied generalized difference
geometric sequence spaces and proved some interesting properties of these spaces.

2. a —GENERATOR AND GEOMETRIC REAL FIELD
A generator is a one-to-one function whose domain is R(the set of real numbers) and range is a set B c R. Each
generator generates exactly one arithmetic and each arithmetic is generated by exactly one generator. For example, the identity
function generates classical arithmetic, and exponential function generates geometric arithmetic. As a generator, we choose the
function a such that whose basic algebraic operations are defined as follows:

a — addition xty =alal(x)+a ()]
a — subtraction xty  =ala l(x) —al(y)]
a — multiplication x Xy = a[a™!(x) X a ()]
a — division x/y =afa l(x)/a )]
a — order x<y eal@x)<aly)

for x,y € A, where A is a domain of the function a.
If we choose exp as a a — generator defined by a(z) = e? for z € R then a~!(2) = Inz and @ — arithmetic turns out
to geometric arithmetic.
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Geometric addition x@®y =alal(x)+al(y)] =el¥ ) =yxy

Geometric subtraction x Oy =afa”'(x) —a l(y)] =l =x+y

Geometric multiplication x Qy = a[a !(x) X a~i(y)] =eW¥xny) =y
1

Geometric division xQy =ala(x)/at(y)] =eWxTy) = yiny

Itis to be noted that if x © y existsif y # 0 and x @ y exists if y # 1. Also, it is obvious that In(x) < In(y) ifx < y
for x,y € R*. Thatis, x <y © a~1(x) < a~1(y). So, without loss of generality, we use x < y instead of the geometric order
x < y.
Tirkmen and Bagar [19] defined the sets of geometric integers, geometric real numbers and geometric complex numbers
7(6),R(G) and C(G), respectively, as follows:
72(G) ={e*:x€Z}
R(G) ={e*:x € R} =R\ {0}
C(G) ={e*:zeC} =C\{0}.
Further e™ =© e* holds for all x € Z*. Thus the set of all geometric integers turns out to the following:
Z(G)=1{..,e 3, e % el el el e?e3...1={...0e30e%0e¢,1,¢e,e%e3...}.
If we take extended real number line, then R(G) = [0, «].
Remark2.0.1: (R(G), @, ©) is a field with geometric zero 1 and geometric identity e, since
(1) (R(G), ) is a geometric additive Abelian group with geometric zero 1,

(2) (R(G)\1, ©) isageometric multiplicative Abelian group with identity e,
(3) (@ isdistributive over .

But, (C(G), @, ©) is not a field, however, geometric binary operation @ is not associative in C(G). For, we take x = e!/*,y =
e*and z = e(1*"/2) = je. Then
xOQyYOz=e@Qz=z=le
but xOWO2)=xQe*=ec.
Let us define geometric positive real numbers and geometric negative real numbers as follows:
RT(G) ={x€eR(G):x>1}
R7(G) ={x €R(G):x <1}
Then for all x,y € R(G)
e x@y=uxy
e xOy=x/y

° xOy=xlny=ylnx

1

. x@yor§G=xW,y=#1

e X1 Dx;D..0x, =¢ X1 X = X1.%5... %,
e xXN=xQ@x=x¥
InP~1x

. xP6 =x

1
2

. \/}G — (nx)

1
° x_lG = elogx

. x@Qe=xandxP1=x

. e"Ox=x"=x@ x P ...(.nnumber of x)
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X, if$x > 1$
1x|6 = 11 if$x = 1%
—, if$0<x<1$
X
Thus |x|¢ > 1.
. szG = |x|¢

e xOYI =IxI°OIyl¢
e @yl <IxI°®Iyl°
e IxQyl°=1xI°QIyl°

e xOyl°z2IxI°Olyl°

0,01, 0O(xOy)=yOx,ieinshort S (xOy) =y OSx.

Definition 2.0.1. Let X be a non-empty setand d%: X x X — R(G) be a function such that for all x, y, z € X, the following
axioms hold:

(NM1) d%(x,y) = 1land d®(x,y) = 1iffx = y,

(NM2) d€ (x,y) = d° (¥, %),

(NM3) d¢(x,y) = d%(x,z) ® d(z,y).
Then the pair (X, d%) is called geometric metric space, d° is called the geometric metric on X.

3. GEOMETRIC INFINITE MATRICES

A geometric infinite matrix A = (a;;) of geometric real numbers is a sequence of real numbers defined by a function A
from the set N x N into the geometric real field R(G), where N denotes the set of natural numbers. The geometric real number a;;
denotes the value of the function at (i, j) € N x N and is called the entry of the matrix in the i row and j* column.

Let A= (a;) = (e*),and B = (b;) = (e‘sif) be two infinite geometric matrices where ¢;;, §;; € R. We define the
addition @ and scalar multiplication © of the infinite matrices as

ADB =(a; ®by) = (e @e’)=(eu+%)
and1 O A4 = (/1 ©) al-j) = (e* ©ef) = (e"%)

where 4 = e is a geometric scalar in R(G). The product A © B of the infinite matrices A = (a;;) and B = (by;) is defined by

(AOB); = ( G Zw: ayg © bkj) = ( G Zw: e O e%‘) = (e(Zf=1 5ik5kj)) (3.1)

k=1 k=1
provided that the series on the right hand side of (3.1) converges for all i, j € N, where (4 O B);; denotes the entry of the matrix

A © B inthe i™" row and j™ column. For simplicity in notation, summation without limit will represent the summation with limit
from 1 to co. On the right hand side of (3.1) converges if and only if ¥, &, &y; is convergent for all i, j, k € N. However the
series in (3.1) may not converge for some i, j, k; the product A © B may not exist.
Definition 3.0.1. Consider the following system of an infinite number of equations in infinitely many unknowns x,, x, x,, ... by
¢ 2k @ © x; = y;, forall i € N. If we construct a geometric infinite matrix A = (a;; ) with the coefficients a;; of the
unknowns x;, and denote the geometric-vector of unknowns by X and geometric-vector of constants by Y, then above sum can be
expressed in matrix formas AQ X =Y. Also I © A=A Q I¢ = A, where I¢ = (8;) is called geometric-unit matrix and is
defined by
e, ifi=j

8y = {1, if i qt]j

Example 3.0.1. Define the matrix Cf = (¢, ) by
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1
C, = en, if 1<k <n 3.2
e {1, if k>n (32)

That is
e 1
Ve Ve 1 .
= () = 3\/5 3\/5 % 1

The geometric-zero matrix 8¢ is the matrix whose all entries are equal to 1. Thus from (3.2), it is obvious that 4 © 8¢ =
0% = 6% O A. Similar to the classical matrix multiplication A © B = 8¢ does not imply that A = 8¢ or B = ¢,

4. GEOMETRIC MATRIX TRANSFORMATIONS
Let uy, u; © w(G) be sequence spaces and A = (a;) = (e“) be an infinite geometric-matrix. Then, we say that A
defines a matrix mapping from g, into u, and denote it by writing A: y; — u,, if for every sequence z = (z,) = (e*) € p, the
sequence A © z = (Az),,, the A —transformation of z, exists and is in u,, where

/all aqp e Qg \ /Zl\
Az, Ay e Qo Zy

Az =| S O]
\anl a,» e Apg / \Zk/
egll e£12 - eslk enl
ef2l  ef22 | ef2k | e
etnl  efn2 | efnk | ek

G Z e‘glk Q enk
k

G Z e€2k Q enk

k

G z eénk @ ek

k

e Zk €1k 71k
Z

k €2k nk

e
Zk Enk nk

(Az)l
(A?)z

(42),

Thus, we transform the sequence z = (z;,) = (e"*) into the sequence (Az),, by

Uy =| ) aw Oz |=(Bmm) @

k
forn € Nand ;,7n; € R. Thus A € (uy: ) if and only if the series ;¥ a, © 2 of the right hand side of (4.1) geometrically
converges Vn € N and Vz € u,;, and we have A © z = {(4z),,} € u, for all z € u;. On the other hand, we say A € (u;: u,) if and
only if the series ), &, -1, converges classically for all k,n € N. A sequence z is said to be A —summabletoy if A © z
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geometrically converges to y € R(G), which we call A—;lim of z. We denote n'" row of matrix A = (a,,;,) by 4, forall n € N.
Following Kadak and Efe [21], let A = (a,, ) be an infinite matrix of geometric real numbers, then

(a) Ordinary Summability: A sequence z = (z;) € w(G) is said to be summable A to y € R(G) ifthe A—;lim of z is
y=etforallueRr,ie. ;Y, d°((4z),,v) = 1 which implies that ¥, &, .1, — w in classically for each k,n € N. The
matrix A defines a summability method A, or a matrix transformation by (4.1).

(b) Absolute Summability: A sequence z = (z;,) € w(G) is said to be absolutely summable with index m to a number
{ € R(G) ifthe series ;Y aue O 2, in (4.1) geometrically converges for each n € N and

6 )0 (42,007 = {.(1 <m <)
n=1

The Cesaro transform of a sequence z = (z;,) € w(G) is given by Cf © z = {(C{ 2),, },en]- Now, we may state the Cesaro
summability with respect to the geometric-calculus, which is analogous to the classical Cesaro summability.
Example 4.0.1 [19] Let z = (z;) be an infinite sequence of geometric numbers defined by

2 = { i,l i.fk i.s even,

e, ifkisodd.
It is obvious that z = (z;,) € 1% \ ¢S. Then, since 1 < [|(CS2),,1I° < e% for all
n € N,lim,_,..(C{z),, = 6°. It means that the geometric divergent sequence (z;) is C¢ —summable to 6.
Tiirkmen and Basar [19] have introduced the sets w®, 19, ¢, cg and lg for all, bounded, convergent, null and absolutely

p —summable sequences over the geometric field C(G) as mentioned above. Then 1%, c¢, c§ and L are subspaces of w®.
Theorem 4.0.1 The following statements hold:
(a) 1%, ¢, c§ and L are sequence spaces.
(b) If A denotes any of the spaces 1,,(G), c(G), ¢o(G) and IS and z = (z;),t = (t;) € A, then define d% on A by df =
supgenlzi © t;1%. Then (1, dS) is a complete metric space.
(c) The spaces [..(G), c(G), ¢y (G) and lg are Banach spaces with the norm [Iz[| defined by

G
IzI¢ = iuglzkl 3Z2=1(21,22,..-,Z,...) E L.
en

(d) The space lfj is a Banach space with respect to the norm ||z||g defined by
e

o0
p
G\PG
||z||6=[ 6 ) (1| 2= Grzaeze ) €L
k=1

e 1
Note: It is to be noted that x?¢ = x!""~'* and x»° = \/IEG = )" js the geometric p™ root of x.
Theorem 4.0.2. The spaces I (A; ), c%(Ag) and c§ (A ) are Banach spaces with respect to the norm
IxlG, = 1x;1° @ N4gxIIE.
Theorem 4.0.3. Let u denotes one of the spaces 1% (Ag ), ¢ (Ag) or ¢§ (Ag) and z = (z;) = (e*),t = (t;) = (e") € u.Define
d$ on the space u by
dS:puxu - R(G)

(z0) adg(z,t)=sup[d6( Gzzk,GZtk>}
neN =) =i

Where d¢ is the metric defined in Definition 2.0.1. Then (i, d%) is a complete metric space.
Proof: Proof is obvious.
Now we give some characterization of some matrix classes and state the necessary and sufficient conditions on geometric
matrix transformations using the results of Kéthe-Toeplitz duals .
Theorem 4.0.4. The following statements hold: (i) A = (a,;) € (1$: 1%) if and only if

nenN

M=sup ZlankIG < (4.2)
k

http://www.ijritcc.org




(i) A = (ay) € (c“:19) if and only if (4.2) holds.
(iii) A = (ap) € (c§:1%) if and only if (4.2) holds.
(iv) A = (a) € (15:1%) ifand only if
C=sup ¢ Z[Iank IG]pG < © (4.3)
nenN T
Proof: (i) Suppose that the condition (4.2) holds and x = (x;) € IS. Since (A, )ken € {15} = 1§ for every fixed n € N, the
geometric A —transformation of x exits. Then

supd® ((Ax),,6%) = supd®|( g Z A O %, 0% | < UXNE O 6 Zlank 1 < oo,
nenN nenN T T
This implies that A © x € IS.

Conversely, let A = (ay,) € (c%:1%). Put A © x = {(Ax), }nen and observe that ((4x),,) is a sequence of bounded
linear operators on I{ such that sup,, d% ((4x),, %) < c. Hence the results are obtained similarly from an application of Banach-
Steinhaus theorem in classical.

Similarly, we can prove (ii), (iii) and (iv).
Example.4.0.2 Let (x;) = (e®) € I¢ and matrix A = (a,;,) is defined as
. = {xk, ifk =n,
nk 1, ifk# n,
for all k,n € N. Then |a,, |° = e |¢ = el*nl and |a,; | = 1 for k # n. If we consider (x;) € IS, we obtain
sup ¢ ZIank I = sup{e's1l, ele2l ele3l, . elenl, |} < o0
nenN A nenN
for all e, € R. Then from Theorem Theorem4.0.4(i), A = (a,) € (14:1%).
In (4.1), the matrix transformation

(Az), = G Z au Oz, | = (e(zk Snk-nk))
k

suggests two problems:

(i) to determine the family K of matrices (which are called Kojima-matrices) such that convergence is not destroyed by
the corresponding transformations;

(ii) to determine that subclass T (which are called Toeplitz-matrices) of K for which the value of the limit of any
convergent sequence is invariant.
The first problems was solved by Kojima and Schur and the second problem was solved by Silverman and T oeplitz in terms of
classical sequence space. We state and prove the Kojima-Schur theorem (Theorem 4.0.5) and Silverman-Toeplitz theorem
(Corollary 4.0.8) with respect to the geometric calculus which gives the necessary and sufficient conditions for an infinite matrix
that maps c¢ into itself. A matrix satisfying the the conditions of Kojima-Schur is called a conservative matrix or convergence
preserving matrix.
Theorem 4.0.5 (Kojima-Schur) A = (a,;) € (c%: c%)if and only if
(DM =sup,en ¢ 2klanl® < )
and there exitsa,, L € R(G) such that

(i) GZank =aqy for fixed k € N,

k
({i) ¢Xnow 2k Qu =L
G
Proof. Suppose that the conditions (i), (ii) and (iii) hold and x = (x;) € ¢ with x, > s € R(G)as k — oo. Then since (@ e €
{c%}F = 1§ for each n € N the geometric A —transform of x exits. In this situation, the equality

Gzank Ox = GzankO(xkes) D{sO Gzank (4.5)

k k k

holds for each n € N. In (4.5), since the terms of the right hand side tendsto  ; Xx a. O (x;, © s) by condition (ii) and second
term on the right hand side tends to [ © s by (iii) as n — o, in the sense of geometric limit, we have
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GZ GZ A O xp = GZ“k@(xkes) DLOs

n-ow k k

Hence, Ax € Y. That is, the conditions are sufficient. Conversely, suppose that A = (a,;) € (c®:c%). Then A © x exists for
every x € c%. Lete® = (e, e,e,...... yand ef = (e”) where
o — {e, if k=mn,

k 1, if k#n
The necessary conditions (ii) and (iii) is immediate by taking x = ef and x = e¢, respectively. Since c¢ c ¢, the necessity of
condition (i) is obtained from the first condition of the Theorem 4.0.4.
Theorem 4.0.6.4 = (a,;) € (c§:c%) if and only if

DM =sup ¢ ) la | <,
k

nenN

(i) ) d° (@ @) = 1for(a) € 0(6)

n—o0

for eachk € N.IfA = (a,) € (c§:c%)then(ay) € I[fand

GZ zank Oz = ¢Xap Oz

n-w G k

Proof. Suppose (i) and (ii) hold. Then there exists n, € N for t € N and € > 1 such that

t
¢ > di(ay,a) <e forall n> n,.
k=1
Since

t t t
6 Y 4 (@ 1) S Y d° (@ @) © ) d (g, )< e®M
k=1 k=1 ¢ =

for n > n, by (ii) it can be shown that (a;) € If and  ; X¥%_; d% (ay, 1) < M,. Let z = (z;,) € c§. Then, we can choose k, € N

G G
for &; > 1 such that d%(z,, 1) < &; for each fixed k > k,. Also, since a,, — a, asn — o by (ii), we have a,;;, © z, = a; O z
asn — oo for each fixed k € N. Thatistosay that Y, d(au O 2z, ar © z,) = 1. Hence there existsan N = N (k,) €
Nsuchthat Z’,j":l d’ (ay Oz, a, © z,) < & foralln > N. Thus, since

d¢ GZ A O 2z, GZ ay O z
%

K

< 0 dan Oz, Oz)

k

ko 0
= ) @ Onn0m)® ¢ )  d(aw Ona O%)
k=1 k=ko+1
<6® ¢ ) [d%aw 0% 1) ®d (@ Oz, 1)
k=ko+1
=5® ¢ ) C@wDOd@ DO ¢ ) d%@,)0d @D
k=kg+1 k=ko+1
~5@®{a 0| ¢ ) d@uD® ¢ Y d@D
k=ko+1 k=ko+1
= 6 ® (6 O (M & M)

foralln = N, the series  ; Xx au O z, are geometrically convergent for each n € N and $_G\sum_k a_{nk}\odot z_k
\xrightarrow{G} _G\sum_k \alpha_k\odot z_k,$ as n — . This implies that A © z € cC.
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Conversely, let A = (a,;) € (c§:c®) and z = (z;,) € ¢§. Then, since A © z € cY exists and the inclusion (c§:c%) c
(c§:19) holds, the necessity of (i) is trivial by (iii) of Theorem [thm1]. Now, if we take the sequence eS = {e™*} € c{ then
AQ el ={ay}Y:_, € c’ holds for each fixed k € N, i.e. the condition (ii) is also necessary. Thus, the proof is complete.
As a consequence of Theorem 4.0.6, we have
Corollary 4.0.7.4 = (a,;) € (c§: c§)if and only if

nenN

(OM =sup ¢ Zlanklc < oo,
k

(ii)g Z d® (g, ap) = 1witha, = 1 forallk €N

n—-ow

Example 4.0.3. Let k,n,r € N and r > 0. The Cesaro means of order r is defined by the matrix C¢ = (cfl;)) where

NI {e(n"ff’tl)’("f)‘ if 0<k <n
nk

1 ifk > n.
nl(n—k+r-1)ir
= {e @B if 0 <k <n
1 ifk >n.

Taking r = 2 we have
2(n—k+1)
¢ = {e(n+1)<n+2) if 0<k <n
n
1 ifk > n.
Then we obtain an infinite matrix as follows:

e 1 1 1 1 .
e?/3 el/3 1 1 1 \
| e3/6 e?/® el/o 1 1.
cS = . . . .
2 : : : : : )
2 2n 2(n—k+1)
entz e@m+th(n+2) e@+Dm+2) 1 ..

: ; : : :
It can be concluded that sup,e; ¢ %% ¢ < oo for all k € N and (i) holds. Also

(G
GZ |C15k) = Gz

n—oo n-—-oo

So (ii) also holds with a;, = 1 for all k € N. Therefore C§ € (c§:c§).

A Toeplitz matrix that satisfies Silverman-Toeplitz theorem is also called regular matrix. The class of geometric Toeplitz
matrices will be denoted by (c¢: c%; p).
Corollary 4.0.8 (Silverman-Toeplitz). A = (a,;) € (c“: c%; p)if and only if

2(n—k+1) @
e(m+1)(n+2)

=1

(OM =sup ¢ Zlankla < o,
k

nenN

(i) Z A (ay,, @) = 1 for fixedk € N,

(iii) ¢ Z Zank -1

n-w g k
witha;, = 1for allk € Nandl = e,respectively.
Remark: Example 4.0.1 can be considered as an example of Silverman-Toeplitz theorem. Because the conditions (i) and (ii) holds
with a;, = 1. Also, conditon (iii) holds as
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2n—k+1) 0
DI R
2(n k+1)
- Z Z n+1)(n+2)
n-—oo

| 2(n—k+1) |
= ¢ Z Zk |(n+1)(n+2)|

Theorem 4.0.9.4 = (a,;,) € (1¢: c§)if and only if

s ) o) dauD=1 (4.6)
k

n—o0

Proof. Let A = (a,;,) € (1%:c§) and u = (u,,) € IS. Then, the series ;Y a O u, geometrically converges to 1 for each
fixed n € N, since A © u exists. Hence, A, = {a,; }7-, € {1} for all n € N. Define the sequence u = (u;) € IS by u, =

(e,e e e,...... ) for all k € N. Then, A © u € c§ which yields for all n € N that
Z Z e QO uy = Z Z nkOe—Z Z A =1
Also, we have " n_m n_m
D GZ D= ) z @ Z 6 Y lal

Conversely, suppose that (4.6) holds and u = (u) € 1S, Then, since A4, = {a; }r-o € {l 63f = 1§ foreachn € N, A © u exists.
Therefore, using (4.6), it can be observed that

s> 6y, AW, = o) d| ) auOut

n—o k n—-o k

= GZ GZ d®(ap O uy, 1)
%

n-—-o

= 6) ey d@e DO w1
k

n—-oo

< supd® (ay, 1) © s ey A D=1
eN

n-—ow k

This implies that A ©Q u € ¢§.

5. CONCLUSION
Though Tekin, Basar, Ugur developed generalized non-Newtonian complex sequence spaces, it is also essential to develop
geometric sequence spaces separately. Because, in some cases properties considered in generalized complex field may not be true
for special cases. For example, if A and B are two infinite matrices, then the classical sum A + B always exists, but the geometric
sum A @ B may not exist.
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