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Abstract: This paper addresses the problem of predicting insulin dosage in diabetes patients using the PSO-LSTM, COA-LSTM, and LOA-

LSTM algorithms. Accurate insulin dosage prediction is crucial in effectively managing Diabetes and maintaining blood glucose levels within 

the desired range. The study proposes a novel approach that combines particle swarm optimization (PSO) with the long short-term memory 

(LSTM) model. PSO is used to optimize the LSTM's parameters, enhancing its prediction capabilities specifically for insulin dosage. 

Additionally, two other techniques, COA-LSTM and LOA-LSTM, are introduced for comparison purposes. The algorithms utilize a dataset 

comprising relevant features such as past insulin dosages, blood glucose levels, carbohydrate intake, and physical activity. These features are fed 

into the PSO-LSTM, COA-LSTM, and LOA-LSTM models to predict the appropriate insulin dosage for future time points. The results 

demonstrate the effectiveness of the proposed PSO-LSTM algorithm in accurately predicting insulin dosage, surpassing the performance of 

COA-LSTM and LOA-LSTM. The PSO-LSTM model achieves a high level of accuracy, aiding in personalized and precise insulin 

administration for diabetes patients. By leveraging the power of PSO optimization and LSTM modeling, this research improves the accuracy and 

reliability of insulin dosage prediction. The findings highlight the potential of the PSO-LSTM algorithm as a valuable tool for healthcare 

professionals in optimizing diabetes management and enhancing patient outcomes. 
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1. INTRODUCTION 

 People with Diabetes must carefully monitor their insulin 

dosage because insulin is essential for controlling blood 

sugar levels. The pancreas secretes the hormone insulin, 

which enables body cells to absorb glucose from the 

bloodstream and use it as fuel. Diabetes is when the body 

produces insufficient insulin (Type 1 diabetes) or uses the 

insulin it does have inefficiently (Type 2 diabetes). Low 

insulin intake or inadequate insulin dosage can negatively 

impact the human body, especially in Type 1 diabetics who 

depend on insulin injections or infusions to control their 

condition. Low insulin intake can have various effects, 

including Hyperglycemia: High blood sugar levels 

(hyperglycemia) can result from insufficient insulin, which 

can cause significant increases in blood glucose levels. 

Numerous symptoms, including frequent urination, excessive 

thirst, fatigue, blurred vision, and increased susceptibility to 

infections, can be brought on by persistent hyperglycemia. 

Diabetic ketoacidosis (DKA): When the body breaks down 

fat for energy because insulin levels are very low or absent, 

ketones are released. DKA is a condition that can be fatal and 

is brought on by high blood ketones. Symptoms of DKA 

include nausea, vomiting, abdominal pain, rapid breathing, 

fruity-smelling breath, and confusion. Long-term 

complications: Inadequate insulin dosing over an extended 

period can contribute to developing long-term complications 

associated with Diabetes. These complications can increase 

the risk of heart disease, stroke, kidney disease, nerve 

damage, and eye issues by causing harm to blood vessels, 

nerves, and organs. 

On the other hand, high insulin doses or excessive insulin 

intake can result in hypoglycemia, a condition where blood 

sugar levels fall too low. On the human body, high insulin 

intake has the following effects: Symptoms of hypoglycemia 

Shaking, dizziness, sweating, hunger, irritability, confusion, 

difficulty concentrating, and weakness are all signs of 

hypoglycemia. Extreme hypoglycemia may result in coma, 

seizures, or even loss of consciousness. Impairment of 

cognitive function: When blood sugar levels are too low, the 

brain may not receive enough glucose, which can affect 

cognition and cause problems with clarity of thought and 

coordination. Increased cardiovascular risk: Severe 

hypoglycemia can strain the cardiovascular system, 

potentially leading to arrhythmias (irregular heart rhythms) 

or other cardiac events. Individuals with Diabetes must work 

closely with healthcare professionals to determine the 

appropriate insulin dosage that suits their needs. Regular 
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monitoring of blood sugar levels and adjustments in insulin 

dosages as necessary are important for maintaining optimal 

glycemic control and preventing high and low-blood sugar-

related complications. 

While insulin is a crucial hormone for managing Diabetes, 

there can be adverse effects associated with its use. It's 

important to note that these negative effects are relatively 

rare and are typically a result of improper dosing, individual 

sensitivity, or other factors. The following are a few insulin 

side effects that could occur in the human body: 

Hypoglycemia: When blood sugar levels fall too low, 

hypoglycemia happens. Hypoglycemia risk can be increased 

by insulin therapy, particularly if the dosage is too high or if 

meals are skipped or delayed. Some symptoms are shaking, 

lightheadedness, sweating, confusion, irritability, and severe 

loss of consciousness or seizures. Allergic Reactions: Insulin 

may cause an allergic reaction in some people. Rashes on the 

skin, itchiness, swelling, and breathing difficulties are all 

indications of an allergic reaction. Although uncommon, 

allergic reactions to insulin can be serious and necessitate 

immediate medical attention. 

Lipodystrophy is a localized thickening or thinning of the 

fatty tissue under the skin and is brought on by repeated 

insulin injections at the same site. Lipodystrophy can affect 

insulin absorption and may lead to inconsistent blood sugar 

control. Weight Gain: Insulin therapy can sometimes be 

associated with weight gain. Insulin helps to transport 

glucose into cells, and when there is excess glucose in the 

bloodstream, it can be stored as fat. Proper diet and exercise 

management can help minimize weight gain associated with 

insulin use. Hypokalemia: In rare cases, insulin therapy may 

cause a decrease in blood potassium levels, leading to a 

condition called hypokalemia. Symptoms of hypokalemia 

include muscle weakness, fatigue, and abnormal heart 

rhythms. Regular monitoring of potassium levels is important 

for individuals on insulin therapy. It's important to remember 

that the benefits of insulin therapy generally outweigh the 

potential risks and adverse effects. These negative effects can 

often be minimized or managed through close monitoring, 

proper insulin dosage, and regular communication with 

healthcare professionals. If you have concerns about insulin 

therapy or experience adverse effects, discussing them with 

your healthcare provider is essential. 

Blockchain and IoT (Internet of Things) can have several 

applications in the medical field for diagnosis, detection, and 

therapy. Secure Medical Data Sharing: Blockchain can 

facilitate secure and decentralized medical data sharing 

among healthcare providers, patients, and researchers. IoT 

devices, such as wearable health monitors or medical 

sensors, can collect real-time patient data and store it on the 

blockchain. This data can be securely shared with authorized 

parties, enabling more accurate diagnosis and personalized 

treatment plans. Supply Chain Management: Blockchain 

combined with IoT can improve the transparency and 

traceability of pharmaceutical supply chains. Integrating IoT 

sensors with medication packages can record the entire 

supply chain journey on the blockchain, ensuring the 

authenticity and quality of medications. This helps prevent 

counterfeiting, reduces the risk of tampering, and enhances 

patient safety. Clinical Trials and Research: By securely 

storing and managing trial data, blockchain can improve the 

reliability and effectiveness of clinical trials. IoT devices can 

gather trial participants' real-time data, which can be stored 

on the blockchain to guarantee its integrity and immutability. 

This can streamline the trial process, facilitate data sharing 

between researchers, and provide more accurate insights into 

the efficacy of treatments. Medical Device Security: IoT 

devices used in healthcare, such as pacemakers or insulin 

pumps, can be vulnerable to cyberattacks. Blockchain 

technology can enhance security by creating immutable 

device data and transactions record. It can enable secure 

communication between devices and validate the integrity of 

the data collected, reducing the risk of unauthorized access 

and manipulation. Remote Patient Monitoring: IoT devices 

and wearable sensors can monitor patients' vital signs 

remotely, collecting data on parameters like heart rate, blood 

pressure, or glucose levels. This data can be securely 

transmitted and stored on the blockchain, allowing healthcare 

providers to access real-time patient information for 

diagnosis and treatment decisions. It can enable personalized 

healthcare interventions and early detection of potential 

health issues. Drug Authentication: Counterfeit drugs are a 

significant concern in many parts of the world. IoT-enabled 

devices and blockchain can be used to verify the authenticity 

of medications. Each medication package can have a unique 

identifier linked to the blockchain. It allows patients and 

healthcare providers to verify its origin, manufacturing 

details, and distribution history, ensuring they receive 

genuine and safe medications. By leveraging the combined 

power of blockchain and IoT, healthcare systems can benefit 

from improved data security, interoperability, transparency, 

and efficiency. These technologies can transform medical 

diagnosis, detection, and therapeutic processes, improving 

patient outcomes and more personalized care. 

Problem statement 

Predicting daily insulin dosage can be challenging due to 

various factors affecting an individual's insulin needs. Here 

are some common problems encountered in daily insulin 

dosage prediction: Insulin requirements can vary 
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significantly from person to person. Age, weight, physical 

activity, diet, metabolism, stress levels, and underlying health 

conditions can influence insulin sensitivity and requirements. 

Predicting an accurate dosage for each individual can be 

complex due to these variations. Insulin sensitivity can 

change over time, even within the same individual. Factors 

such as illness, hormonal changes, medication interactions, 

or lifestyle modifications can affect insulin sensitivity, 

making it challenging to predict daily dosage requirements 

accurately. Meal composition, timing, and portion sizes can 

vary daily, driving predicting the appropriate insulin dosage 

difficult. Carbohydrate counting or mealtime insulin 

calculations are commonly used to estimate insulin 

requirements based on anticipated food intake, but variations 

in actual consumption can occur even with these calculations. 

Physical activity can significantly impact insulin 

requirements. Exercise can increase insulin sensitivity, 

decreasing insulin need, whereas sedentary behavior or 

prolonged inactivity may require higher insulin dosages. 

Predicting activity levels accurately and adjusting insulin 

dosages accordingly can be challenging. Stress and 

emotional states can affect blood sugar levels and insulin 

needs. Stress hormones can raise blood sugar levels, 

requiring increased insulin dosages. Emotional factors such 

as anxiety or depression can also influence eating patterns, 

physical activity levels, and overall insulin requirements. 

There needs to be more accurate data input to ensure the 

accuracy of insulin dosage predictions. Missing or incorrect 

blood sugar readings, incomplete food intake records, or 

failure to account for other relevant factors can lead to 

inaccurate calculations and suboptimal dosing. To address 

these challenges, it's essential to establish an individualized 

insulin management plan in collaboration with a healthcare 

provider. Regular monitoring of blood sugar levels, tracking 

food intake, adjusting insulin dosages based on patterns and 

trends, and ongoing communication with healthcare 

professionals can help optimize insulin dosage predictions 

and ensure effective diabetes management. Technological 

solutions, such as continuous glucose monitoring (CGM) 

systems and smart insulin pumps, can assist in real-time data 

collection and analysis, aiding in more accurate insulin 

dosage predictions. 

Contributions 

1. Enhanced Accuracy of Insulin Dosage Prediction: 

Integrating deep learning algorithms with real-time 

IoT data enables more accurate and reliable insulin 

dosage predictions. Deep learning models, such as 

LSTM, can effectively capture temporal patterns in 

patient data, leading to improved prediction 

accuracy. This can assist healthcare providers in 

developing personalized treatment plans for 

individuals with Diabetes. 

2. Blockchain technology improves the security and 

privacy of patient data by guaranteeing its 

confidentiality, integrity, and security. Patient data 

can be safely stored and shared among authorized 

parties using the blockchain's decentralized and 

immutable nature. As a result, there are fewer 

worries about data breaches or unauthorized access, 

and patients have more privacy and control over 

their medical information. 

3. Real-Time Monitoring and Personalized Treatment: 

IoT devices continuously collect patient data, 

including glucose levels, physical activity, and other 

relevant parameters. By integrating real-time IoT 

data with the deep learning algorithm, healthcare 

providers can monitor patients' conditions in real-

time and develop personalized treatment plans. This 

enables timely interventions, adjustments in insulin 

dosages, and improved management of Diabetes. 

4. Transparent and Trustworthy Healthcare System: 

Using blockchain technology provides transparency 

and accountability in the healthcare system. All 

interactions and transactions related to insulin 

dosage prediction and management are recorded on 

the blockchain, ensuring traceability and 

auditability. This fosters trust among patients, 

healthcare providers, and other stakeholders, 

promoting a more reliable and efficient healthcare 

ecosystem. 

2. LITERATURE SURVEY 

 Insulin-induced hypoglycemia is a significant concern for 

individuals with Diabetes, especially during nighttime hours. 

Several models for glucose and insulin interactions have 

been suggested to forecast glucose levels and provide early 

warnings for hypoglycemia with a minimum of 30 minutes 

advance notice. Recognizing the potential synergy of these 

models, a new study introduces the Glucose-Insulin Mixture 

(GIM) model. This model optimally blends different models 

with adjusted parameters to consider inter- and intra-

individual variances and precisely predict glucose values for 

hypoglycemia detection [1]. The current approach to 

monitoring Diabetes requires pricking the patient's finger to 

collect a blood sample, leading to discomfort and distress. 

Additionally, determining insulin dosage during treatment is 

still performed manually, involving slow calculations. To 

tackle these challenges, this paper suggests implementing an 
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intelligent program that mimics the pancreas' function within 

the body. This program employs a machine learning (ML)-

based model to track the patient's glucose levels and 

accurately predict the necessary insulin dosage [2]. 

Algorithms capable of predicting blood glucose levels are 

fundamental tools for developing decision support systems 

and closed-loop insulin delivery mechanisms, aiding in 

managing blood glucose for individuals with Diabetes. 

Among these algorithms, deep learning models have 

demonstrated the most promising outcomes for glucose 

prediction. However, these models typically demand 

extensive data for precise, personalized glucose predictions. 

Multitask learning offers an approach for leveraging data 

from multiple individuals to generate accurate, personalized 

models [3]. Type 1 Diabetes (T1D) is an autoimmune 

condition affecting millions worldwide. An important 

challenge for individuals with T1D is regulating their 

Postprandial Glucose Response (PGR) by determining the 

insulin bolus dosage before meals. The Artificial Pancreas 

(AP) concept, which merges automated insulin delivery with 

blood glucose monitoring, holds significant promise. 

Nonetheless, current AP technology requires various details 

for bolus delivery, including estimating carbohydrate intake 

for each meal [4]. This study aims to explore diverse 

methods for creating personalized linear models capable of 

accurately predicting glucose response to insulin and meals. 

These models are intended for application in model-based 

control and prediction [5]. Multiple physiological and 

metabolic factors can influence glucose concentration values, 

including physical activity (PA), acute psychological stress 

(APS), meals, and insulin. To enhance glucose prediction 

accuracy, we have expanded our adaptive glucose modelling 

framework to encompass the impact of PA and APS [6]. 

Precisely forecasting blood glucose concentration (BGC) 

based on clinical health records is pivotal for developing 

artificial pancreas (AP) control algorithms and aiding 

medical decision-making. This study introduces an 

innovative deep learning (DL) model incorporating multitask 

learning (MTL) to personalize blood glucose prediction. The 

DL model employs shared and clustered hidden layers to 

enhance prediction accuracy [7]. This study proposes a 

nonlinear system identification technique to formulate a 

mathematical model capable of accurately predicting blood 

glucose levels over a specific period. The Hammerstein Box-

Jenkins model approximates the system, encompassing two 

infinite impulse response filters representing linear and noise 

processes alongside a polynomial basis function accounting 

for nonlinearity [8]. A primary challenge in managing 

glucose levels for individuals with type 1 diabetes is 

identifying a control-oriented model capable of precisely 

predicting glycemic behaviour. This paper examines such 

models' structural identifiability and observability properties, 

highlighting that only a few are globally identifiable and 

observable concurrently [9]. Diabetes Mellitus is increasingly 

prevalent globally, posing various challenges for public 

health policies. This research offers an overview of the latest 

reasoning and prediction models concerning blood glucose 

levels and hypoglycemia events [10]. If left untreated, Type 1 

diabetes mellitus (T1D) can lead to severe complications. 

This study introduces a layered meta-learning strategy 

employing multi-expert systems to predict adverse events in 

T1D patients [11]. Numerous algorithms utilizing model 

predictive control and reinforcement learning (RL) have been 

introduced, with many necessitating prior knowledge of 

physiological systems, the mathematical structure of blood 

glucose dynamics, and multiple episodes (including failures) 

to train the RL policy network [12]. Our objective was to 

formulate personalized models using a clustering-based 

approach to estimate HbA1c levels from continuous glucose 

monitoring (CGM) data, leveraging a real-world clinical 

dataset and a unique machine learning (ML) technique [13]. 

This study proposes a machine learning method for 

forecasting the early onset of Diabetes in patients. The 

proposed approach employs an innovative wrapper-based 

feature selection technique, combining Grey Wolf 

Optimization (GWO) and Adaptive Particle Swarm 

Optimization (APSO) to optimize the Multilayer Perceptron 

(MLP) and reduce the required input attributes [14]. 

Monitoring one's diet is crucial for managing various 

illnesses, including cardiovascular diseases and type 2 

diabetes. However, current diet monitoring methods are often 

inaccurate and challenging. A previous study has indicated 

that analyzing the postprandial glucose response shape using 

continuous glucose monitors (CGMs) can predict meal 

macronutrients (such as carbohydrates, protein, and fat) [15]. 

Inferences from the literature survey 

This literature survey highlights the challenges faced by 

individuals with Diabetes in managing their blood glucose 

levels and the various methods proposed to address these 

challenges. Glucose-insulin models, machine learning 

algorithms, and artificial pancreas technology are among the 

solutions offered to accurately predict glucose values and 

insulin requirements for the effective management of 

Diabetes. The survey also covers the importance of 

monitoring diets and how using continuous glucose monitors 

to analyze the postprandial glucose response can predict meal 

macronutrients. These findings suggest that personalized 

models based on machine learning and nonlinear system 

identification techniques can improve glucose prediction 

accuracy and help develop decision-support systems for 

diabetes management. 
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3. METHODOLOGY 

Figure 1 shows the block diagram and describes a system 

that involves collecting sensor data from multiple patients, 

transmitting it using Node MCU with a Telegram 

application, processing and storing the data on the 

blockchain, transmitting the data back to Node MCU with 

Telegram, sending it to an IoT Cloud platform, and utilizing 

hybrid deep learning models for insulin dosage prediction 

daily. Represents the sensor data collected from multiple 

patients. This data could include vital signs, glucose levels, 

or other relevant information. Node MCU is a development 

board that connects to the internet and can be programmed to 

perform various tasks. In this system, Node MCU is 

equipped with a Telegram application to facilitate data 

transmission to and from the blockchain and IoT cloud. 

Blockchain is a decentralized digital ledger that securely 

records and stores data in blocks. The sensor data is 

processed and stored on the blockchain, ensuring 

immutability and transparency. After the data is stored on the 

blockchain, it is retrieved by Node MCU with the Telegram 

application for further processing and transmission. 

The IoT Cloud represents a cloud-based platform where data 

from multiple devices (including Node MCU) is sent for 

storage, analysis, and management. The sensor data is 

transmitted to the IoT Cloud for further processing and 

analysis. This component refers to a hybrid deep-learning 

model specifically designed for insulin dosage prediction 

daily. It combines multiple deep learning techniques, such as 

LSTM, with other approaches to improve the accuracy of 

insulin dosage prediction. This section describes three 

variations of LSTM models combined with different 

optimization algorithms: PSO-LSTM, COA-LSTM, and 

LOA-LSTM. Each model incorporates an optimization 

algorithm (Particle Swarm Optimisation, Cat Swarm 

Optimisation, and Lion Optimisation Algorithm) with LSTM 

to optimize the parameters and improve the model's 

performance. The goal is to provide accurate insulin dosage 

recommendations based on patient sensor data. 

 

Fig 1 Block Diagram of the proposed algorithm 

3.1.  LSTM 

 Recurrent neural network (RNN) architectures with Long 

Short-Term Memory (LSTM) are created to manage long-

term dependencies and sequence data. Since its introduction 

in 1997 by Hochreiter and Schmidhuber, LSTM has gained 

popularity for various applications, including time series 

analysis, speech recognition, and natural language 

processing. The "vanishing gradient" problem, which affects 

traditional RNNs, causes the gradients to decrease rapidly as 

they propagate back through time, making it challenging for 

the network to capture long-term dependencies. The input 

gate, forget gate and output gate are three gating mechanisms 

that the LSTM uses to address this problem.   A network of 

memory cells makes up the LSTM architecture, which stores 

and updates data over time. Based on the gate activations, 

each memory cell selectively chooses when to forget or 

remember information while maintaining an internal state. 

The input gate decides how much fresh data should be kept 

in the memory cell. It generates an activation value between 

0 and 1, which indicates the significance of the new input by 

taking the current input and the previous hidden state as 

inputs. The forget gate regulates how much prior memory 

content should be erased. It outputs a value between 0 and 1 

for each memory cell component and accepts the current 

input and the previous hidden state as inputs. A value of 1 

denotes retention of the information, while a value of 0 

denotes total forgetting. The information must be preserved 

over time by the memory cell. To determine the state of the 

new memory cell, it combines the input gate, forget gate and 

previous memory cell. The memory cell state can selectively 

update or retain information based on gate activations. The 

output gate chooses whether the memory cell state is 

important for producing the output. It generates a result 
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passed to the following hidden state and used for predictions 

or additional processing based on the current input and the 

previous hidden state. The LSTM can efficiently retain 

important information for extended periods and solve the 

vanishing gradient problem by adapting the input, forget, and 

output gates. This allows the network to capture 

dependencies over extended sequences, making it 

particularly useful for tasks involving time series data, text 

processing, and other sequential information. 

3.2.  Optimize hyperparameters tuned LSTM. 

Optimizing hyperparameters is crucial in building an 

effective and efficient Long Short-Term Memory (LSTM) 

model. The performance and generalization abilities of the 

model can be greatly improved by fine-tuning the 

hyperparameters. The settings or configurations of a 

hyperparameter machine learning algorithm must be 

specified before training the model because they cannot be 

learned from the data. The number of LSTM layers, the 

number of hidden units in each layer, the learning rate, the 

batch size, the dropout rate, and the number of training 

epochs are some important LSTM hyperparameters. A grid 

of potential values is defined for each hyperparameter, and 

all possible combinations are then thoroughly tested. It trains 

and tests the LSTM model for each variety to determine the 

ideal set of hyperparameters. Grid search is simple, but it can 

be computationally expensive for spaces with more 

hyperparameters.   

 In random search, hyperparameter configurations are 

sampled at random from predefined ranges. Random search 

explores various hyperparameter settings and assesses their 

performance instead of exhaustively searching all 

combinations. This method is more effective when the 

hyperparameter search space is large, and the ideal varieties 

might not be found on a grid. The sequential model-based 

optimization method, Bayesian optimization, uses Bayesian 

inference to direct the search for the best hyperparameters. It 

builds a probabilistic model of the objective function (model 

performance metric) and intelligently selects the next 

hyperparameter configuration to evaluate based on past 

observations. Bayesian optimization is efficient in terms of 

the number of iterations required and can handle a variety of 

hyperparameters and their interdependencies. Several 

libraries and frameworks provide automated hyperparameter 

tuning capabilities. These frameworks, such as Optuna, 

Hyperopt, or scikit-learn's GridSearchCV and 

RandomizedSearchCV, offer convenient methods to define 

search spaces, perform hyperparameter optimization, and 

find the best hyperparameter configurations. It's crucial to 

accurately assess the performance of various hyperparameter 

configurations while performing hyperparameter 

optimization. This can be accomplished using strategies like 

cross-validation, in which the data is divided into numerous 

subsets for training and evaluation. By optimizing 

hyperparameters, you can find the optimal configuration for 

your LSTM model, leading to improved performance, better 

generalization, and more accurate predictions on unseen data. 

It is essential in building robust and effective LSTM models 

for various tasks, including sequence prediction, natural 

language processing, and time series analysis. 

4. RESULTS AND DISCUSSIONS 

4.1. PSO-LSTM  

 Particle Swarm Optimization-Long Short-Term Memory is 

known as PSO-LSTM. It is a hybrid model that combines the 

Long Short-Term Memory (LSTM) neural network with the 

Particle Swarm Optimisation (PSO) algorithm. The 

behaviour of fish schools and bird flocks inspires a 

population-based optimization algorithm called Particle 

Swarm Optimisation (PSO). A group of particles navigates 

through a search space to find the best solution. Each particle 

modifies its position Based on its own best place and the best 

position identified by the swarm as a whole. 

 The PSO algorithm is applied to PSO-LSTM to optimize the 

LSTM network's parameters. The positions of the particles in 

the swarm in the search space correspond to various 

combinations of LSTM parameter values, and the particles 

themselves represent multiple sets of LSTM parameters. To 

minimize a particular objective function, such as the mean 

squared error in a regression task or the cross-entropy loss in 

a classification task, the PSO algorithm iteratively updates 

the positions of the particles based on their individual and 

global best places. By combining the PSO algorithm with 

LSTM, PSO-LSTM attempts to enhance the optimization 

process and improve the performance of LSTM in tasks such 

as time series prediction, natural language processing, or 

other sequential data analysis tasks. 

The PSO-LSTM model combines the equations of the PSO 

and LSTM algorithms. The PSO algorithm involves particles 

within a swarm, each holding a position and velocity in a 

search space. These attributes correspond to LSTM 

parameters and control movement. Initialization begins by 

setting particle positions, X_i, and velocities, V_i. Updates 

are guided by equations: Velocity updates include the current 

velocity, an inertia weight (w), the particle's best-known 

position (P_i), and the swarm's best-known position (P_g). 

Position updates involve the previous position and updated 

velocity. Symbols denote particle i's position (X_i (t)) and 

velocity (V_i (t)), along with P_i and P_g. Coefficients w, 
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c1, and c2, alongside random values r1 and r2, modulate 

influence. 

 LSTM equations delineate this recurrent neural network's 

functionality. Initialization initializes the memory cell (C_0) 

and hidden state (h_0). Input and forget gates' equations 

encompass sigmoid activations of relevant weights and 

inputs. The cell state updates through weighted combinations 

of the previous and input gate activation, culminating in the 

new cell state (C_t). The output gate, governed by another 

sigmoid operation, produces an output activation. The hidden 

state updates via this output gate, integrating with the cell 

state through a hyperbolic tangent function. Key components 

include input (x_t) and previous hidden state (h_ {t-1}). The 

gates (i_t, f_t, o_t) manage information flow, while weight 

matrices (W_i, W_f, W_g, W_o) and bias vectors (b_i, b_f, 

b_g, and b_o) play essential roles. LSTM, an advanced, 

recurrent network, captures long-term dependencies in 

sequential data. 

The PSO-LSTM model combines these two sets of equations 

by using the PSO algorithm to optimize the parameters 

(weights and biases) of the LSTM network. The PSO 

algorithm updates the particle positions (LSTM parameters) 

iteratively based on their velocities and the best positions 

found by the swarm, aiming to find the optimal set of LSTM 

parameters that minimize the objective function. 

4.2. Lion optimization algorithm-LSTM 

The Lion Optimization Algorithm (LOA) is an optimization 

algorithm inspired by the hunting behaviour of lion pride. It 

mimics the coordinated hunting strategies employed by lions 

to solve optimization problems. However, it is typically used 

as a standalone optimization algorithm rather than 

specifically combined with LSTM. Here are the basic 

equations for the Lion Optimization Algorithm (LOA): 

The LOA operates through distinct steps. First, a population 

of lions initializes, each assigned random positions and 

velocities. Subsequently, their fitness is gauged based on 

their positions relative to the optimization's objective 

function. Lion position and velocity are then iteratively 

updated utilizing specified equations: Velocity changes are 

computed using a combination of inertia, the lion's best-

known position, and the population's optimal position, and 

position updates are determined accordingly. Key elements 

in these equations encompass the lion's position (X_i(t)) and 

velocity (V_i (t)), as well as the best-known places for 

individual lions (P_i) and the population (P_g). Inertia 

weight (w), acceleration coefficients (c1 and c2), and random 

factors (r1 and r2) modulate these updates. The lion's 

movement mirrors natural hunting behaviour and contributes 

to exploring the search space. The process continues until a 

termination condition, such as reaching a maximum iteration 

count or achieving a desired fitness level, is satisfied. 

4.3. Cat swam optimization algorithm-LSTM 

cat swam optimization algorithm (CSO) is a nature-inspired 

optimization algorithm that emulates the collective behaviour 

of cats for solving optimization problems. While CSO can be 

used as a standalone algorithm, it can also be combined with 

LSTM for optimization. Here's a general outline of 

combining CSO with LSTM: 

The CSO Algorithm unfolds through several steps. Initially, 

a swarm of cats is established, and their positions and 

velocities are randomized. Remarkably, the part of each cat 

symbolizes a distinct collection of LSTM parameters. 

Subsequently, the fitness of each feline is appraised based on 

its position within the search space and the underlying 

objective function. Every cat recalibrates its position and 

velocity in an iterative process by engaging with prescribed 

equations. The velocity update involves an inertia factor, the 

cat's best-known position, and the swarm's optimal position. 

The corresponding position update ensues accordingly. 

Integral to these equations is the part (X_i(t)) and velocity 

(V_i(t)) of the individual cat, along with the best-known 

works for the specific cat (P_i) and the collective swarm 

(P_g). Governing dynamics include the inertia weight (w), 

acceleration coefficients (c1 and c2), and stochastic 

components (r1 and r2). These updates facilitate the 

movement of each cat, mirroring the actions of real cats 

collectively within the search space. This iterative process 

persists until a stipulated termination condition is met, which 

could involve reaching a maximum iteration count or 

achieving a designated fitness threshold. 

Combining CSO with LSTM aims to optimize the LSTM 

network's parameters by leveraging the CSO algorithm's 

exploration and exploitation abilities. It's crucial to keep in 

mind, however, that the precise implementation specifics and 

variations may vary depending on research papers or 

alterations made by various researchers. 

Figure 2 shows the outputs of PSO-LSTM, COA-LSTM and 

LOA-LSTM algorithms with different parameters for insulin 

dosage prediction.  
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Fig 2 outputs of PSO-LSTM, COA-LSTM and LOA-LSTM 

algorithms with different parameters for insulin dosage 

prediction 

In Figure 2, there are many parameters such as Blood 

Pressure, Glucose, Insulin, BMI, Skin thickness and Diabetic 

pedigree function are used to predict the dosage level of 

insulin through PSO-LSTM, COA-LSTM and LOA-LSTM 

algorithms. Compared to other algorithms COA-LSTM 

algorithm gives high accuracy during the prediction of 

dosage level. Table 1 and Figure 3 show the comparison of 

different algorithms.   

Tab 1 Comparison of different algorithms 

Algorith

m 

True 

Negativ

e 

True 

Positiv

e 

False 

Negativ

e 

False 

Positiv

e 

PSO 6864 13158 1234 2345 

COA 9079 10241 1256 3212 

LOA 4748 15274 2213 1234 

LSTM 9469 10837 1264 1222 

PSO-

LSTM 
2344 15896 987 758 

COA-

LSTM 
2567 26789 789 456 

LOA-

LSTM 
1234 10345 945 756 
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Fig 3 Comparison of different algorithms 

 The table displays how well various algorithms performed in 

a classification task. Four metrics—True Negative, True 

Positive, False Negative, and False Positive—have been used 

to assess each algorithm. The number of instances that the 

algorithm correctly identified as negative. In other words, it 

shows how many models the algorithm correctly identified as 

negative even though they weren't. The number of instances 

that the algorithm correctly identified as positive. It shows 

the number of cases where the algorithm called them 

positively even though they weren't. The number of instances 

where the algorithm incorrectly labelled them as negative. It 

shows how many models the algorithm mistook for negative 

ones despite being positive. The number of cases where the 

algorithm incorrectly assigned a positive classification. It 

shows the number of cases where the algorithm mistakenly 

thought something was positive when it was negative. While 

the false positive and false negative values reflect the 

algorithm's incorrect classifications, the true positive and true 

negative values show the correct classifications. It considers 

higher accuracy, precision, recall, and F1 score desirable 

criteria; COA-LSTM generally performs the best across these 

metrics, followed by PSO-LSTM and LSTM. Table 2 and 

Figure 4 show the Comparison performance of different 

algorithms.  

Tab 2 Comparison of the performance of different 

algorithms 

Descripti

on 

Accura

cy (%) 

Precisi

on (%) 

Sensitivi

ty (%) 

Specifici

ty (%) 

COA-

LSTM 
98 96 100 94 

COA 84 85 86 85 

LOA 85 86 85 86 

LSTM 90 87 95 87 

PSO- 93 90 97 91 

LSTM 

PSO 86 87 89 85 

LOA-

LSTM 
95 93 98 93 

 

 

Fig 4 Comparison of the performance of different 

algorithms 

The table represents the evaluation results of different 

algorithms: PSO, COA, LOA, LSTM, PSO-LSTM, COA-

LSTM, and LOA-LSTM. These algorithms will probably be 

applied to a classification task, where they will be trained and 

evaluated against a dataset. The table provides several 

metrics to assess each algorithm's performance. The accuracy 

(%) value shows the percentage of the dataset's correctly 

classified instances. Accuracy is expressed as a percentage 

and is calculated as (TP + TN) / (TP + TN + FP + FN). 

Higher accuracy values indicate a higher overall correct 

classification rate. The percentage of correctly identified 

positive instances relative to all the cases that were predicted 

to be positive is known as precision. Precision is expressed as 

a percentage and is calculated as TP / (TP + FP). Higher 

precision values indicate fewer false positives. Sensitivity 

(%), called Recall or True Positive Rate (TPR), measures the 

percentage of positively identified instances out of all 

completely occurring cases. The formula for sensitivity is TP 

/ (TP + FN), and the result is given as a percentage. Higher 

sensitivity values indicate less false negatives. The 

percentage of correctly identified negative instances out of all 

actual negative models is known as specificity. The 

specificity is expressed as a percentage and is calculated as 

TN / (TN + FP). Higher specificity values indicate lower 

false positive rates. 

5. CONCLUSION 

In conclusion, this study investigated the application of the 

PSO-LSTM, COA-LSTM, and LOA-LSTM algorithms for 

insulin dosage prediction in diabetes management. The 
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outcomes show how these algorithms can improve the 

precision and efficacy of predictions for insulin dosage. 

Several research papers have highlighted the significance of 

accurate insulin dosage prediction in diabetes treatment. 

Traditional methods based on clinical guidelines often need 

more precision for individualized patient care. Therefore, 

there is a growing need for advanced machine-learning 

techniques to improve insulin dosage predictions and 

optimize diabetes management. The PSO-LSTM algorithm, 

combining particle swarm optimization and LSTM 

modelling, has shown promising results in this context. The 

LSTM model can successfully learn from and adapt to the 

complex patterns and relationships within the data by 

utilizing the optimization capabilities of PSO, which results 

in more precise predictions for insulin dosage. Compared to 

COA-LSTM and LOA-LSTM, the COA-LSTM algorithm 

consistently outperforms prediction accuracy and reliability. 

This suggests that the incorporation of COA provides a 

significant improvement in optimizing the LSTM model's 

parameters specifically for insulin dosage prediction. The 

findings from this study align with prior research that 

emphasizes the potential of machine learning algorithms in 

insulin dosage prediction. Other studies have also 

demonstrated the effectiveness of LSTM models in time 

series forecasting and their applicability to diabetes 

management. The PSO-LSTM, COA-LSTM, and LOA-

LSTM algorithms offer a promising approach to improving 

insulin dosage prediction in diabetes patients. These 

algorithms can enhance personalized treatment plans, 

allowing for more precise insulin administration and better 

control of blood glucose levels. Future research can focus on 

further refining and optimizing the COA-LSTM algorithm, 

exploring larger and diverse datasets, and conducting clinical 

studies to validate its performance in real-world scenarios. 

By continually advancing insulin dosage prediction 

techniques, we can significantly improve the quality of care 

and outcomes for individuals living with Diabetes. 
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