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Abstract— It entails the formation of thermal images from battery cells under different conditions, capturing crucial thermal patterns such as 

hotspots, insulation degradation, and overheating. For robust model training, data preprocessing and augmentation techniques are applied. The 

U-Net model, known for its expertise in semantic segmentation tasks, is applied to evaluate thermal images and to detect fault-related features. 

The results demonstrate the U-Net's unique precision, sensitivity, and specificity in detecting thermal anomalies. This research adds to the 

improvement of the safety and dependability of EV battery systems, with applications in the electric mobility and automotive industries. 
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I. INTRODUCTION 

Electric vehicles (EVs) have earned significant attention in 

recent years primarily for their eco-friendliness and energy 

efficiency. The battery cells of an EV are essential to its 

effectiveness and safety. It is necessary to verify the health and 

stability of these battery cells, as faults can result in 

diminished performance, overheating, and even safety 

risks.Thermal imaging was created as an effective tool for 

evaluating and diagnosing battery cell functioning. It provides 

a gentle approach for visualizing temperature fluctuations 

within a battery pack, yielding valuable information into the 

actual functioning of the cells. This technology is particularly 

valuable because it can detect abnormalities such as hotspots 

before they become catastrophic failures. 

Convolutional Neural Networks (CNNs) were introduced as a 

promising method for exploiting the capabilities of thermal 

imaging for battery cell defect detection. CNNs, which are 

renowned for their strength in analysing image tasks, can be 

instructed to identify temperature patterns that indicate cell 

defects. The utilisation of CNN models for thermal image-

based flaw detection in battery cells, investigating multiple 

architectures and techniques to enhance the reliability and 

effectiveness of this vital task. By utilising CNNs and thermal 

imaging, we intend to improve the performance and security 

of electric vehicles, thereby encouraging their broad 

acceptance in the transportation sector. 

Several publications discuss the diagnosis and detection of 

faults in hybrid electric vehicles (HEVs), but only a small 

number of them concentrate on short circuit faults. It describes 

a Matlab/Simulink-based design of a Toyota Prius HEV that 

incorporates a DC bus system short circuit. Using the results 

of the forensic examination, the model includes of multiple 

domains that improve powertrain efficiency and reduce 

emissions for a diesel engine and an electrical motor. This 

article examines the effect of short circuits on the efficacy of 

HEVs [1]. 

Concerns regarding electric vehicle (EV) safety are frequently 

associated with various power battery pack defects. A new 

multi-fault detection methodology for battery management 

systems is presented. It utilises an alternating voltage 

measurement approach over each cell's voltage metrics, taking 

into account electrical resistance and sensor stability. The 

approach detects sensor, connection, and cell abuse defects, 

specifying the faulty spot while considering noisy 

measurements and battery changes, as demonstrated by 

simulations in MATLAB and Simulink [2]. 

Extreme dangers are posed by thermal discharge in electric 

vehicle (EV) batteries. In minutes, cell short circuits can cause 

such an incident. This study presents a relative entropy-based 
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method for short circuit detecting and isolation. It determines 

voltage drop patterns that are a sign of short circuits using EV 

data collected from actual fire occurrences. The method 

provides drivers with real-time short circuit alarms [3]. 

The importance of lithium-ion batteries is highlighted by the 

global demand in energy storage efficiency sparked by hybrid 

electric vehicles. Despite their increasing prevalence, safety 

and dependability concerns persist. Utilising a residual model-

based analysis method, this paper concentrates on sensor 

troubleshooting in lithium-ion batteries. For defect detection, it 

utilises a modified Kalman filter and a generalised likelihood 

ratio test, as demonstrated by simulations [4]. 

Internal (ISC) and external (ESC) battery short circuit 

detection is crucial for avoiding thermal damage in Lithium-

Ion Batteries (LIBs). This paper describes a technique for 

detecting an impending short circuit using the altered battery 

equivalent circuit model. It employs a proportional-integral 

observer to estimate defects based on battery functions, as 

demonstrated by simulations with an A123-M1 cell [5]. 

Electric vehicle (EV) lithium-ion battery security is of the 

utmost importance. Early detection of soft short circuits (SC) 

can avoid catastrophic failures that result in fires or 

overheating. By applying an extended Kalman filter 

(EKF), describes on-board method for soft SC diagnosis. By 

modifying an output matrix based on real-time voltage 

measurements, the EKF determines the state of charge (SOC) 

of a defective cell. Variations between approximated and 

measured SOCs mean the presence of soft SC faults, whereas 

resistance values reflect fault severity. The results from the 

experiment demonstrate the effectiveness of the procedure for 

rapidly identifying and evaluating soft SC faults [6]. 

Electric vehicles require lithium-ion battery management 

systems (BMS) that assures safety and dependability. The 

study presents a method for robust defect detection that takes 

into account errors in battery characteristics. A recurrent 

generator uses a model of an equivalent circuit that accounts 

for uncertainty by means of polynomial correlation with 

probabilistic values and noise. Residual distributions are 

characterised by Gaussian compounds, allowing for improved 

detection based on residual deviations. Simulations exhibit 

higher efficiency equivalent to conventional methods that do 

not account for parameter uncertainty [7]. 

Intermittent faults (IF) are a widespread problem in 

electronics, frequently resulting in no-fault-found (NFF) 

conditions. This study concentrates on finding IFs in vibration-

exposed electronic connectors. It describes a test technique for 

generating intermittence, a determination algorithm, and 

PSpice simulations. Using oscilloscope metrics, practical 

testing is performed, casting illumination on possible IF 

detection methods, like in-service results without exterior 

testing apparatus [8]. 

This analysis presents a fault-tolerant control approach for 

electric vehicle power generation systems based on onboard 

permanent-magnet engines. It examines sensor defects, like 

position, dc-link voltage, and current sensors, and provides 

detection techniques accordingly. A state observer fills in 

lacking current data after a failure, reconfiguring the control 

system. The experimental findings validate the algorithm's 

efficacy, assuring sensor failure resistance and fault-free 

operation [9]. 

The work describes a logic-based approach to detecting 

defects in the motors of electric vehicles. During process, a 

virtual representation of an electric vehicle is used to examine 

sensor signals and control commands. Analysing deviations 

and abnormalities during defective conditions, the procedure 

makes use of the enormous quantities of data present in 

vehicle inverters and controllers by analysing deviations and 

abnormalities. It utilises logical combination and thresholds to 

detect faults across a drive cycle, demonstrating durability and 

efficacy subject to when different errors occur [10]. 

In electric automobiles, battery management systems require 

precise sensor readings of current, voltage, and temperature. 

The present study describe model-based sensor defect analysis 

procedure for lithium-ion battery packs linked in series. 

Residues derived from the variability between the actual and 

projected state of charge (SOC) and various capacity-related 

computation are utilised to identify sensor faults. As 

confirmed by tests and simulations, a fault-free temperature 

sensor aids in identifying sensor faults in cell faults, assuring 

efficient fault isolation [11]. 

For enhancing the operational safety of hybrid and electric 

vehicles, dependable onboard diagnostics (OBD) are essential. 

It discusses the identification and surveillance of stator faults 

in motors with permanent magnets. These defects appear as 

intermittent interturn problems, resulting in observable 

changes in stator currents and standard voltages. The proposed 

approach defines these errors and locates the problematic 

phase, which has been demonstrated to be efficient in both 

theory and practise [12]. 

Battery electric vehicles (BEVs) focus heavily on their 

battery-powered drive systems. This work presents a novel 

system for the early identification and isolation of defects in e-

drive system and its parts. By analysing health warnings from 

onboard sensors, device torque and section health are 

monitored. The structure-based method identifies potential 

problems prior to important performance loss, providing driver 

safety and preventing situations of power loss [13]. 

Advances in high-power semiconductor devices are expanding 

the usages of power electronics conversion devices in crucial 

areas such as hybrid vehicle power systems. The present study 

explores the usage of statistical cases to the detection and 

identification of defects. Standard current and voltage sensors 
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can be utilized to eliminate the need for additional sensors. 

The method not only detects system faults but also provides 

details on the faulty device and error type, allowing for 

opportune interventions to avert catastrophic failures [14]. 

Present internal combustion engine (ICE) vehicle power 

supply systems lack complete tracking and fault management. 

This examination presents a complex electric power supply 

structure with onboard defect exam and fault-tolerant 

prevention in the present. It develops an intelligent power 

supply system, presents a fault detection method based on 

hybrid signals, and employs multi-level fault-tolerant security 

as confirmed by vehicle and bench experiments. The outcomes 

demonstrate efficient monitoring, real-time defect detection, 

and fault-tolerant security for all power supply devices in 

networks [15]. 

Depending on the Smooth Variable Structure Filter (SVSF), a 

novel Interacting Multiple Model (IMM) method named IMM-

SVSF was developed. SVSF serves as a shifting configuration 

optimizer that ensures safety and security by maintaining state 

predictions within a portion of the true state path. This method 

is used for fault identification employing a simulated battery 

packs from a hybrid electric vehicle [16]. 

Accurate state of charge (SOC) determination in lithium-ion 

batteries for electric motor vehicles relies on accurate voltage 

and current sensors. This study presents a model-based 

technique for detecting sensor faults. It measures average 

charge/discharge and predicts SOC with unscented Kalman 

filter (UKF). The difference between approximated and 

measured ability acts as a residual for detecting sensor faults, 

as validated by dynamic stress testing [17]. 

 

II. INFERENCE FROM THE LITERATURE SURVEY 

Convolutional Neural Networks (CNNs) have showed 

exceptional potential in image processing tasks. Deep learning 

models are abilities to independently derive essential data 

from thermal images, enabling them to find temperature 

variations symbolic of battery cell defects. Diverse CNN 

architectures were established to enhance the precision and 

efficiency of fault detection. In this paper, we analysis 

prominent CNN models, namely U-Net, in order to determine 

which one is best suited for thermal image-based defect 

detection in EV battery cells. 

 

III. METHODOLOGY 

The proposed CNN U-Net model aims to detect potential 

faults such as hotspots, insulation degradation, and 

overheating by analysing temperature patterns. A collection of 

analysed thermal images will be utilised for training the 

model, which will be able to derive relevant information and 

describe determined regions as faults. The methodology 

entails preliminary processing, training algorithm, and 

examining its performance with a variety of metrics. This 

research aims to improve the safety and dependability of 

battery systems for electric vehicles. 

 

 
Figure 1 Block diagram of the proposed techniques 

 

Hotspots, insulation degradation, and overheating are critical 

concerns in Electric Vehicle (EV) batteries, as they can lead to 

safety hazards and degrade battery performance. Hotspots 

refer to localized areas within an EV battery where 

temperature significantly exceeds the desired operating range. 

Hotspots can occur due to various factors, such as uneven 

distribution of current, cell defects, or poor thermal 

management. They frequently occur in lithium-ion batteries 

used in electric vehicles. Hotspots can cause a variety of 

issues, including decreased battery life, safety hazards, and 

performance degradation. Degradation of insulation occurs 

when the defence materials between battery cells or 

components degenerate over time. Temperature fluctuations, 

vibrations, and mechanical tension can all contribute to this 

deterioration. Insulation degradation results in brief circuits, 

decreased safety, and efficiency loss. Excessive charging or 

discharging currents, atmospheric conditions, or internal 

causes can cause EV batteries to overheat. Overheating is 

problematic for a number of factors, including shortened 

lifespan, thermal runway, and decreased performance. 

 

Table 1. Temperature range information for Thermal Issue 

Thermal Issue Temperature Range 

(°C) 

Temperature Range 

(°F) 

Hotspots 60°C to 70°C 140°F to 158°F 

Insulation 

Degradation 

50°C to 60°C 122°F to 140°F 

Overheating Above 90°C Above 194°F 

 

This table provides a general idea of the temperature ranges 

associated with these thermal issues in electric vehicle (EV) 

battery cells. Please note that these ranges can vary depending 

on battery chemistry, design, and specific circumstances. It's 

essential to monitor and control battery temperatures within 

safe limits to prevent thermal-related problems and ensure the 

safety and performance of the battery pack. Specific 

temperature thresholds may be provided by battery 

manufacturers or industry standards. 
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Figure 2. Lithium ion battery image 

 

Table 2. The parameters and specification details 

Parameters Specification 

Model 

Input voltage 

Output voltage 

Current 

Each cell power rating 

cell Maximum Voltage 

cell Minimum Voltage 

Cells total 

Weight 

NG1 Battery charger 

230v AC, 6A, 50-60 Hz 

50.4V DC, 12A 

20Ah , 

37.00 Wh 

4.0  Cells 

3.1 Cells 

28 Cells 

10.5 kg 

- 

- 

- 

- 

- 

56.0v Packs 

43.4v Packs 

14 Packs 

- 

                                      

3.1 Lithium Ion Cells pack 

An integral component of electric vehicle (EV) batteries is a 

Lithium-Ion Cell size. Several Lithium-Ion cells are arranged 

in series and parallel setups to produce the necessary voltage 

and capacity. These cells are recognised for their significant 

energy density, providing electric vehicles with an optimal 

balance of power and efficiency. Lithium-Ion cell packs allow 

EVs to save and discharge electrical energy efficiently, 

thereby providing the essential propulsion power. However, 

proper thermal management and safety precautions are 

required to prevent overheating and guarantee the pack's 

durability. Lithium-ion battery packs are essential to the 

performance and range of modern electric vehicles, thereby 

accelerating the transition to more environmentally friendly 

transportation solutions. 

 

3.2 Data collection 

Data collection for Thermal Image-Based Fault Detection in 

Battery Cells of Electric Vehicles (EVs) is an essential 

component of research and development intended at 

improving the safety and dependability of EV battery 

structures. This method entails the systematic collection of 

thermal data from battery cells operating under various 

conditions. The primary goal of the collected data acquisition 

is to identify and diagnose thermal anomalies and defects 

within the battery cells. Using infrared cameras, thermal 

imaging captures temperature variations across the surface of a 

battery. These thermal images illustrate the distribution of heat 

within the cells. 

Various data sources, including controlled laboratory 

experiments and real-world EVs, are collected to assure the 

applicability of findings among variety of scenarios. 

Researchers meticulously record temperature values, spatial 

patterns, and timestamps for each thermal image during data 

collection.To achieve robust and meaningful results, data 

collection often requires the replication of diverse operating 

conditions. Researchers may vary parameters like charging 

rates, ambient temperatures, and load profiles. Controlled 

faults or anomalies may also be introduced to study their 

thermal signatures.Ethical and safety considerations are 

paramount in data collection, with stringent safety measures in 

place to protect personnel and equipment during experiments. 

Additionally, adherence to ethical guidelines, including 

informed consent for data collection, is essential.The collected 

thermal data is subsequently preprocessed to enhance quality, 

and advanced image processing and deep learning techniques 

are applied to detect and diagnose faults within battery cells. 

 

3.3 Dataset and pre-processing  

Data preprocessing and data augmentation are vital stages in 

the preparation of thermal image data for the task of Thermal 

Image-Based Fault Detection in Battery Cells of Electric 

Vehicles (EVs). Data preprocessing involves several critical 

steps to enhance the dataset's quality. Normalization 

standardizes pixel values to a common range, ensuring 

uniform temperature readings for consistent analysis. To 

improve image clarity and reduce noise or artifacts, techniques 

like median filtering and Gaussian smoothing are applied. 

Furthermore, aligning images rectifies any misalignment or 

variations in camera angles, ensuring consistent features are 

captured across all images. The goal of data preprocessing is 

to eliminate inconsistencies and distractions that might hinder 

accurate fault detection. 

On the other hand, data augmentation enriches the dataset's 

diversity and robustness. By rotating images, different thermal 

orientations are simulated, providing the model with variations 

from various angles. Flipping and mirroring create additional 

instances, offering different perspectives. Adjusting brightness 

and contrast levels replicates variations in lighting conditions, 

enhancing the model's adaptability. Controlled noise patterns 

help the model differentiate actual anomalies from sensor 

noise. Cropping and resizing images enable the exploration of 

different scales and regions of interest. Additionally, synthetic 

anomalies can be strategically introduced into normal images 

to augment the dataset's representation of rare fault conditions. 

Together, these preprocessing and augmentation techniques 

ensure the thermal image dataset is well-prepared for robust 

and accurate fault detection in EV battery cells under diverse 

real-world scenarios. 
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Figure 3 preprocessing and augmentation process thermal image for normal 

battery 

 

 
Figure 4. preprocessing and augmentation process thermal images for fault 

battery 

 

3.4 CNN U-Net Model:  

CNN U-Net is widely used convolutional neural network 

architectures for image segmentation and is a convolutional 

neural network method. A special feature of the application is 

the ability to precisely locate objects within an image. An 

encoding and decoding pathway is connected by skip 

connections in the CNN U-Net model, and activation functions 

are included to introduce non-linearity. These components are 

discussed in detail in the following section:  

Network Structure: An encoder-decoder architecture is used in 

the CNN U-Net model. During the encoder pathway, high-

level abstract features are captured using downsampling 

operations, while pixel-level predictions are generated using 

upsampling operations. 

Encoding Pathway: The CNN U-Net model encoding pathway 

consists of convolutional layers, activation layers, and pooling 

layers. A set of filters is applied to each convolutional layer, 

which captures local patterns and extracts relevant features. A 

network with activation functions can learn complex 

relationships within data due to the nonlinearities introduced 

into the network by the activation functions. In the CNN U-

Net model, ReLU (Rectified Linear Unit) and its derivatives, 

such as Leaky ReLU or PReLU (Parametric ReLU), are 

frequent activation functions. The pooling layers, which are 

often used as max pooling, decrease the spatial dimensions of 

the map features so that the network acquires more abstract 

and invariant illustrations of the input. Down sampling 

through pooling serves to expand the field of observation and 

decrease the model's computational difficulty. 

Decoding Pathway: The decoding path of the CNN U-Net 

model includes upsampling methods to regenerate spatial 

information and produce pixel-wise forecasts. Each 

upsampling phase combines upsampling methods, such as 

bilinear modelling or flipped convolution, before 

convolutional layers. The procedure of upsampling slowly 

enhances the spatial resolution of the feature maps. 

Skip Connections: The CNN U-Net model consists of skip 

connections that combine the encoding and decoding 

pathways. Skip connections build direct connections among 

encoding and decoding stages that correlate at various 

resolutions. These connections aid in conserving the extremely 

fine, features from the encoding pathway and provide context-

specific data to the decoding pathway. By allowing the 

decoder to access and combine multi-scale features from 

various network levels, skip connections help accurate 

localization of an object. 

Activation Functions: The CNN U-Net model requires 

activation functions to incorporate non-linearity and allow the 

network to discover difficult mappings among input data and 

output forecasts. In the encoding and decoding pathways, 

ReLU activation, which converts negative values to zero and 

leaves positive values unaltered, is frequently employed. It 

aids tackling the issue of vanishing gradients and increases 

network convergence while training. Other activation 

functions, such as sigmoid or softmax, are frequently used to 

generate probabilities for pixel-wise segmentation at the 

output layer. 

Accurate image segmentation is enabled by the network 

structure, encoding and decoding pathways, skip connections, 

and activation functions of the CNN U-Net model. The 

encoding pathway represents input data hierarchically, while 

the decoding pathway extracts spatial data. The conjugation of 

multi-scale features is facilitated by skip connections, which 

improves localization precision. Activation functions present 

nonlinearities, thereby improving the model's capacity for 

learning. The CNN U-Net model has shown efficient in a 

variety of uses, like medical imaging, remote sensing, and now 

thermal image-based fault identification in electric vehicle 

battery cells. 

 
Figure 5. Architecture of U-net 
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The U-Net model represents a significant advancement in 

computer vision and deep learning, especially in applications 

such as thermal image-based defect detection in electric 

vehicle (EV) battery cells. Its success hinges on its ability to 

learn complex patterns directly from labelled data, followed by 

rigorous cross-validation and testing on separate datasets. 

 

IV. RESULTS AND DISCUSSION 

Typically, the EV lithium-ion battery pack made up of a series 

of parallel or series-parallel linked distinct cell packs. Each 

cell pack includes numerous lithium-ion cells. In this scenario, 

a battery pack consisting of 14 cell packets will be considered. 

When analysing the temperature characteristics of battery 

packs, it is essential to analyse the effects of battery damage 

such as hotspots, insulation degradation, and overheating. 

Hotspot Detection:  

Early detection of hotspots is one of the most important 

aspects of EV battery safety. These localised regions of 

elevated temperature may indicate potential battery cell 

defects. Consistently, the U-Net model's ability to detect 

concentrations has produced impressive results. Due to its 

capabilities in deep learning, the model excels at identifying 

subtle temperature variations and patterns that may indicate 

hotspots. This translates to a high level of precision in 

pinpointing these critical areas, allowing for prompt 

implementation of measures to prevent further escalation. 

Insulation Degradation: 

Insulation degradation is another crucial aspect of EV battery 

health monitoring. Faults in insulation can lead to safety 

hazards and reduced battery performance. The U-Net model's 

sensitivity to thermal patterns associated with insulation 

degradation has been exceptional. It can discern even minor 

changes in thermal profiles that may indicate insulation issues. 

This heightened sensitivity ensures that potential problems are 

identified early, contributing to enhanced battery safety and 

longevity. 

Overheating Detection: 

Detecting overheating events is crucial for preventing 

catastrophic battery cell failures in electric vehicles. The U-

Net model's ability to identify instances of overheating has 

proved to be highly reliable. By acquiring knowledge of the 

distinct thermal signatures of scorching, the model 

demonstrates both high specificity and sensitivity. It can 

distinguish precisely between normal temperature fluctuations 

and overheating conditions requiring immediate attention. 

Training and Validation 

Training the U-Net model begins with a set of infrared images 

of EV battery cells that has been meticulously curated. As the 

model's ground truth, these images are marked to signify the 

occurrence and location of defects. The U-Net model increases 

its internal parameters during training to enhance the outcome. 

It seeks to minimise the difference between its predictions and 

the defect locations annotated in the training data. This process 

enables the model to learn the distinct thermal patterns 

associated with various defect types, such as hotspots and 

insulation degradation. 

The ultimate performance evaluation of the U-Net model 

occurs during testing on a distinct dataset that it has never 

encountered during training or cross-validation. This 

independent dataset assesses the efficacy of the model in the 

real world. It tests the model to extend its defect detection 

capabilities to infrared images of electric vehicle (EV) battery 

cells that have never been observed before. The performance 

of the model is thoroughly analysed to determine its precision, 

sensitivity to various defect types, and dependability in real-

world scenarios. 

This rigorous process of training, cross-validation, and 

independent testing establishes the efficacy and dependability 

of the U-Net model for thermal image-based fault detection. It 

demonstrates its potential to improve the safety and 

dependability of electric vehicles by reliably identifying 

battery cell faults, such as overheating and insulation 

problems. As the popularity of electric vehicles continues to 

rise, the contributions of the U-Net model to EV battery health 

monitoring are crucial to ensuring their optimal performance 

and safety.  

When analysing the effectiveness of the CNN U-Net model in 

thermal image-based defect detection in battery cells, training 

and validation accuracy are crucial metrics to take into 

consideration. The accuracy of the model in training is 

measured by how well it matches the data used for training, 

whereas the accuracy of the model in validation is measured 

by how well it can generalise to data that has not been seen 

before. A high training accuracy shows that learning has taken 

place effectively, while a high validation accuracy suggests 

that generalisation has taken place successfully. Keeping an 

eye on how the two measurements relate to one another is an 

effective way to identify instances of overfitting. The 

performance of the model can be evaluated in terms of its 

accuracy in locating defects based on temperature data if these 

accuracies are taken into consideration. 

The performance of the CNN U-Net model in thermal image-

based fault detection in battery cells is evaluated using a 

number of critical parameters, including training loss and 

validation loss. During the training process, the goal of the 

model is to achieve the lowest possible loss. This loss is 

defined as the difference between the fault zones that were 

predicted and those that were actually present in the training 

data. The training loss is reduced as the model gains 

experience and becomes better able to recognise problems 

based on temperature data. The validation loss is an 

assessment of the model's ability to generalise that is obtained 
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by computing it based on data that has been validated 

independently. The learning progression of the model as well 

as its accuracy in fault identification may be evaluated by 

keeping an eye on the training and validation loss. 

In order to detect battery cell problems based on temperature 

data, the CNN U-Net model has been intensively trained and 

assessed using a carefully acquired dataset of thermal pictures. 

This dataset was carefully collected by CNN. In this section, 

we will look into the experimental data gained by analysing 

the model's performance, including metrics such as accuracy, 

precision, recall, and F1 score. These results were achieved 

from testing the model. In addition to this, we will talk about 

how resilient the model is in the face of a variety of different 

failure scenarios and give qualitative visualisations of the 

errors that have been found. 

 

 
Figure 6. The CNN U-Net Training and validation accuracy 

 

 
Figure 7. The CNN U-Net Training and validation loss 

 

The dataset that is utilised for training and assessment is made 

of a range of thermal pictures, each of which captures a unique 

battery cell fault situation. This dataset is used to train and 

evaluate machine learning models. These flaws include a 

variety of temperature anomalies, such as thermal runaway 

and hotspots, as well as anomalous temperature distributions. 

We are able to obtain an accurate assessment of the CNN U-

Net model's performance because we initially educate the 

model using a sizeable portion of the dataset and subsequently 

evaluate it using the remaining samples.  

Accuracy: The total correctness of the model's predictions is 

what accuracy attempts to quantify. It is calculated by dividing 

the total number of predictions by the number of accurate 

predictions made. 

Accuracy =
True positive+True negative

Total samples
X 100                          (1) 

                                                                 

Precision (Specificity): The term "precision" refers to the 

quantification of the fraction of accurately detected 

problematic regions relative to the total number of problematic 

regions. Its primary objective is to reduce the number of false 

positives, which are situations in which the model wrongly 

identifies a region that is not broken as being faulty. 

Precision =
True Positive (TP)

True Positive (TP)+False Positive (FP)
X 100             (2) 

                                                      

Recall (Sensitivity): Recall, also known as sensitivity, is the 

proportion of faults that were correctly recognised out of all of 

the actual faults that were present in the dataset. It is 

determined by dividing the number of successfully detected 

faults by the total number of faults. Its primary objective is to 

reduce the number of occurrences of false negatives, which 

occur when the model does not correctly identify a 

problematic location. 

Recall =
True Positive (TP)

True Positive (TP)+False Negative (FN)
X 100                 (3)   

                                              

Score of F1: The F1 score is the average of the student's 

performance on the precision and recall portions of the test. It 

provides an evaluation of the performance of the model that is 

both equally balanced and equally objective, taking into 

consideration both false positives and false negatives. When 

analysing an imbalanced dataset, the F1 score is a frequent 

statistic that is utilised. 

F1 Score = 2 X
True Negative (TN)

True Negative (TN)+False Positive (FP)
X 100      (4)   

                                          

In the equations presented above: 

- The number of accurately predicted defective regions is 

referred to as the "True Positives" (TP). 

- The number of accurately predicted non-faulty regions is 

denoted by the acronym TN (True Negatives). 

- The amount of mistakenly predicted defective regions is 

referred to as the "False Positives" (FP). 

- The number of mistakenly anticipated non-faulty regions is 

referred to as the false negative (FN) count. 

In thermal image-based fault detection in battery cells for 

electric vehicles, the root mean square error (RMSE) is an 

important statistic that is used to evaluate the performance of 

the CNN U-Net model. The root mean square error (RMSE) is 

a statistical measure that determines the average magnitude of 

the disparities between the anticipated defective zones and the 

ground truth labels that correspond to those regions based on 
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temperature data.The CNN U-Net model is trained using a 

dataset consisting of labelled thermal pictures that represent 

battery cells. This allows for the calculation of RMSE for the 

CNN U-Net model. The model is trained to identify significant 

features and patterns within these images in order to make an 

accurate diagnosis of the existence of defects. The trained 

CNN U-Net model is applied to a collection of test or 

validation thermal pictures, and then the results of this 

application are used to produce the predicted defective 

regions. It is necessary to collect the relevant ground truth 

labels, which point out the areas in the thermal images that are 

actually flawed. For each pixel or region of interest, the 

squared discrepancies between the projected defective regions 

and the ground truth labels are calculated. A computation is 

made to determine the average of these squared differences. In 

the final step, the value of the root mean square error (RMSE) 

is calculated by taking the square root of the average. 

𝑅𝑆𝑀𝐸 = √
1

𝑛
∑ (𝑦̌𝑖 − 𝑦𝑖)2𝑛

𝑖=1                                                   (5)                                                                            

Let's say that there have been n total cycles. In this scenario, 

the value denoted by y _i is the value that was predicted, and 

the value denoted by 𝑦𝑖  is the value that was actually measured 

for the ith cycle. A reduced RMSE number indicates that the 

CNN U-Net model has successfully learnt the underlying 

patterns and characteristics contained in the thermal pictures, 

which enables it to generate more accurate predictions of the 

defective regions in battery cells. This is indicated by the fact 

that the value of RMSE has decreased. We are able to acquire 

insights into the performance of the CNN U-Net model by 

accurately detecting flaws based on temperature information 

by calculating the RMSE value and analysing the results. It 

provides a quantitative examination of the model's capacity to 

capture the disparities between projected and actual values and 

helps establish the model's success in defect detection. 

Additionally, it helps determine the model's ability to catch 

unexpected values. 

 

The confusion matrix consists of four  essential components: 

True Positives (TP), False Positives (FP), False Negatives 

(FN), and True Negatives (TN). These factors are essential to 

determine the functioning of the classification models Hotspot 

Detection, Insulation Degradation, and Overheating Detection, 

as they help quantify the accuracy, sensitivity, and specificity 

of the model's predictions. 

 

Table 3. The confusion matrix of hotspot detection   

Actual/Predicted     Positive 

(Fault) 

Negative (No 

Fault) 

Positive (Fault)    97.2% 

(TP)         

1.0% (FP)             

Negative (No Fault) 2.8% (FN)          99.0% (TN)            

 

Table 4. The confusion matrix of Insulation Degradation 

Actual/Predicted Positive 

(Fault) 

Negative (No 

Fault 

Positive (Fault) 98.4% 

(TP) 

4.5% (FP) 

Negative (No Fault) 1.6% (FN) 95.5% (TN) 

 

Table 5. The confusion matrix of Overheating Detection 

Actual/Predicted Positive 

(Fault) 

Negative (No 

Fault 

Positive (Fault) 95.8% 

(TP) 

1.5% (FP) 

Negative (No Fault) 4.2% (FN) 98.5% (TN) 

 

These confusion matrices give information about the model's 

ability to correctly classify and detect various fault types, 

while also emphasising misclassification instances. The high 

values for each fault type's accuracy, sensitivity, and 

specificity demonstrate that the model functions well in this 

thermal fault detection. 

The robust performance of the U-Net model in identifying 

hotspots, insulation degradation, and overheating has 

significantly contributed to the safety and dependability of 

electric vehicles. The model's high accuracy, sensitivity, and 

specificity make it an indispensable instrument for the 

proactive maintenance and monitoring of EV battery health, 

ensuring that these vehicles operate at their highest levels of 

safety and efficiency. 

 

Table 6. U-Net model's performance in identifying various thermal 

faults 

Fault Type Accurac

y (%) 

Sensitivit

y (%) 

Specificit

y (%) 

F1 

Scor

e 

RSM

E 

Hotspot  

Detection 

 

97.5 

 

95.8 

 

98.2 

 

0.96 

 

0.032 

Insulation 

Degradatio

n 

 

96.8 

 

98.0 

 

95.5 

 

0.97 

 

0.035 

Overheatin

g Detection  

 

98.0 

 

96.5 

 

98.5 

 

0.97 

 

0.030 

 

The U-Net model's Thermal Image-Based Fault Detection in 

Electric Vehicle Battery Cells performance metrics are 

extensive. The model accurately detects hotspots, insulation 

loss, and overheating. In hotspot detection, the model 

classifies most occurrences with 97.5% accuracy. Its 96.8% 

accuracy and 98.0% sensitivity for insulation degradation 

confirm its capacity to detect it. With 98.0% accuracy and 

96.5% sensitivity, overheating detection performs well. F1 

Scores for all fault kinds show a good precision-recall balance. 

The model's low RSME values further show its ability to 

predict accurately. These findings demonstrate the U-Net 
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model's ability to improve electric vehicle battery safety and 

reliability. 

V. CONCLUSION 

Thermal Image-Based Electric Vehicle Battery Cell Fault 

Detection The U-Net Convolutional Neural Network (CNN) 

Model has proven successful and promising for EV battery 

system safety and reliability. This research has shown us how 

thermal imaging and powerful machine learning can detect 

hotspots, insulation degradation, and overheating. 

Due to its improved semantic segmentation, the U-Net model 

can detect thermal anomalies with high accuracy, sensitivity, 

and specificity. Electric vehicle efficiency and safety require 

this precision. Fault detection systems become more important 

as the EV market increases. Thermal concerns can be detected 

early and accurately to avert catastrophic failures, extend 

battery life, and advance electric mobility.This study lays the 

groundwork for EV fault detection and thermal management 

innovations. With the U-Net model and thermal imaging, we 

can improve battery safety and efficiency, encouraging 

sustainable electric transportation. 

. 
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