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Abstract - Presently, the fuzzy set theory has been also developed in a large extent and different variations and simplification. This paper
focuses on alpha cuts in intuitionistic hexagonal fuzzy numbers by assuming different alpha values without affecting its originality. We have
proposed a new arithmetic operation on alpha - cuts of hexagonal intuitionistic fuzzy numbers. Numerical examples are done to show the
efficiency of the study.

Keywords - Fuzzy Numbers, Fuzzy Arithmetic, Hexagonal Fuzzy Numbers , Intuitionistic Hexagonal Fuzzy Numbers, « cuts.

*kkkk

l. INTRODUCTION

The notion of fuzzy sets was introduced by Zadeh[16]. Fuzzy set theory allows the ongoing assessment of the membership of
elements in a set which is described in the interval [0, 1][19]. It can be used in a wide range of domains where information is
partial and vague. This fuzzy programming technique is more flexible and allows to find the solutions which are more adequate
to the real problem. Fuzzy optimization models reflect real life ambiguity. Some new operators on o cuts of Hexagonal fuzzy
numbers (HFNSs) are introduced followed by the properties of their arithmetic operations [2, 3, 7,8, 11, 12]. Stephen Dinagar
and Rajesh Kannan [13] introduced the “modified definition” of the Hexagonal Fuzzy number by including conditions for the
convexity of the number. Interval arithmetic was optional by means of Zadeh’s extension principle [17, 18]. A fuzzy number is a
quantity whose values are inexact, rather than exact as is the case with single-valued numbers. The usual Arithmetic operations on
real numbers can be unlimited to the ones defined on Fuzzy numbers. In cases of problem having six different parameters the
Triangular or Trapezoidal Fuzzy Numbers are not appropriate to solve them, hence we make use of the HFNs and their
operations to solve such problems. Arithmetic operations on hexagonal fuzzy numbers using o cuts were solved by Stephen
Dinagar, Hari Narayanan and Kankeyanathan Kannan [14]. Atanassov [1] introduced the concept of Intuitionistic Fuzzy Sets
(IFS), which is a overview of the concept of fuzzy set. An IFS has received more interest due to its appearance, because
the idea about attribute value is timid. IFS has the benefit of expressing lack of information in the human reasoning and
decision process. The concept of an IFS can be viewed as an alternative approach to define a fuzzy set in case where available
information is not sufficient for the definition of an vague concept by means of a conventional fuzzy sets. In general, the theory of
IFS is the generalization of fuzzy sets. Therefore, it is expected that, IFS could be used to simulate human decision-making
process and any activities requiring human proficiency and knowledge which are predictably vague or not totally consistent. To
Solve Intuitionistic Fuzzy Linear Programming Problem Using Single Step Algorithm was discussed by Nagoorgani A and
Ponnalagu K [10]. An application of fuzzy optimization techniques to linear programming problems with multiple
objectives has been presented by Zimmermann[20]. Numerous ranking methods have been proposed in literature to rank
Intuitionistic Fuzzy numbers [4, 5, 6, 9].

1. PRELIMINARIES

A. Intuitionistic Fuzzy Set[15]

Let X be a nonempty set. An intuitionistic fuzzy set A'of X is defined as A' ={<X,,uz\, ,)/;.)/Xe X} where
Hz (X) and yz (X)are membership and non membership functions such that 4 (X), 7z (X): X —[0]1] and
0< 4t (X) + 7z (X) <1 forallxe X
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B. Intuitionistic Fuzzy Number[15]

An intuitionistic fuzzy number A' is
i) an intuitionistic fuzzy subset of the real line,

i) normal, that is, there is some X, € R such that ,u;' (%) =1, 7//3' (X,)=0

iii)convex for the membership function g7, (X), that is, ,u/;' (AX +A-A)x,) = min(,ug' (Xl),,u;\I (X,)), for every x;,x,
eR,1€[0,1],

iv) concave for the membership function ygl (A +@Q—-A)x,) = min(y;' (%), 7/;\| (X,)), for every x;,x, €R, A€ [0,1],

C. Hexagonal Intuitionistic Fuzzy Number[15]

A Hexagonal intuitionistic fuzzy number is specified by ;‘\H' =(a,,a,,a;,8,,a5,84),(a;,8;,85,8,,8,,a5) where
a,,a,,a,,a,,as,8,,a,,a,,a,,aare real numbers such that a; <a, <a, <a, <a,<a, <a;<a, <a;<a and its
membership and non membership are given by

1( x—a X—a

o —=| fora, <x<a, 1—371, for a; < x <a,

2\a, -a, 2\a;, -a,

1 1( x-a a; — X

4z 2| fora,<x<a, 13 : for a; <x<a,

2 2\a,-a, 2\ a,—a,

1 fora, <x<a 0, fora, <x<a

pz ()= ? ) 7z (%)= : )

1 X—a4 1 X_a-A ’

1-= , fora, <x<a = , for a, <x<a;
2\a; -a, 2\a; -a,

1[ 3 —X 1 1 x-a

- [ ,  fora, <x<a, 4o ——=|  fora;<x<a;

2\ a; —a, 2 2\ag-a;

0, otherwise 1 otherwise

D. Hexagonal Intuitionistic Fuzzy Number

A Hexagonal intuitionistic fuzzy number can be defined as ,&H' =(D,(u),S,(v),S,(v), D, (u)),(D;(v), S (u),S; (u), Dy (v)) for
uel0,05] and ve[0.51] , where

I. D, (u),S;(u) isabounded left continuous non decreasing function over [0,0.5]
ii. s (v),D;(v) is a bounded left continuous non decreasing function over [0.5,1]
iii. s,(v),D,(v) isabounded continuous non increasing function over [1,0.5]

iV. D,(u),S,(u) is a bounded left continuous non increasing function over [0.5,0]
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Figure 1: Graph of a Hexagonal Intuitionistic Fuzzy Number

E. Arithmetic Operations On Hexagonal Intuitionistic Fuzzy Numbers[15]
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Let ,&H' =(a,,a,,a,,8,,85,3;),(a,a,,a,,8,,a;,a5) and I§H' =(b,,b,,b,,b,,b,,b;), (b],b;,b,,b,,b.,b;)be two
HIFNs. Then

A,' +B,' = (a, +b,a, +b,,a, +b,,a, +b,,a, +b;,a, +b;),
! ! ! ! ! ! ! !
(a; +b/,a, +b;,a, +b;,a, +b,,a; +b,a; +bg)

HI _gHI = (al_belaz _b5'a3_b4’a4_b31a5_b21a6 _bl)'
(a; by, a; —b,a, —b,,a, —by,a; —bj,a; —bj)

1

111. ALPHA CUT IN HEXAGONAL INTUITIONISTIC FUzzY NUMBER

A. a-Cut of Hexagonal Intuitionistic Fuzzy Number

The crisp set A, called alpha cut is defined as A = {x e X |p; (075 (0> a}

[D,(u), D, (u)] for o €[0,0.5)
" {[Sl(V), S, (V)] for o €[0.5]
[S;(u), S (u)] for o €[0,0.5)
{[DI(V), D; (V)] for o €[0.5,]

B. « - Cut Operations
The interval A, for ¢ [0,1]is obtained as follows:

Consider for membership function

i

Then, D,(x) =2a(a, —a,)+a,

Similarly, D, (x) =a, —2a(a; —a;)

This implies [D,(x), D, (X)] =[2a(a, —a,) +a,, a8, —2a(a, —a;)]

Sl(X)=;+1[ X~8 J

2\ a;—a,

Then, S, (X) =2(a —%)(a3 -a,)+a,
Similarly, S,(x)=21-a)(a; —a,)+a,
This implies [S,(x),S,(X)]= Z[a - %}(a3 -a,)+a,, 2(l-a)(a, —a,) +a,

Consider for non membership function

S{(x)=1( ag‘x,j
2\ a; —a,
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Then, S/(x) =a, —2a(a, —a;)
Similarly, S;(x)=2«(a, —a,)+a,

This implies [S](x),S,(X)]=[a; —2a(a, —a),2a(a; —a,) +3a,]

D{(x):l—l(x_a{J

2\ a,—a

Then, D](x) =2(1-a)(a) —a]) +a,

Similarly, py(x) = Z(a - ;J(ag —ag)+ag

This implies [D;(x), D, (X)] = 2(1— )(a, —a!) + a., 2(05 —%J(aé —ag)+ag
Hence,

20{(3.2 _a1)+a1'a6 —2a(a5 —a;)

For membership function: 1
Z(a —ZJ(a3 ~a,)+a,, 2(-a)(a, —a,)+a,

a, —2a(a; —a,), 2a(a; —a,) +a,

For non membership function: 1
2(1-a)(a), —a;) +a,, Z(a —E)(ag —ay)+a;

C. Property 1

for a €[0,0.5)

for a €[0.5,1]

for & €[0,0.5)

for a €[0.5,]

If A' =(a,.a,,a5,8,,85,85)(a).a5,85,8,,a5,a5), B' =(b,,b,,bs,b,,bs,bs)(0],b5,0,,b,,bi, bi) are two hexagonal
Intuitionistic fuzzy numbers then by using their o cut membership and non membership functions we can obtain the addition of a

cut IHFN as

2a(a, —a, +b, —b))+a, +b,,a, +b; —2a(a; —a; +b; —b;)

1
| u 2(0{—2)(a3—a2+b3—b2)+a2+b2,2(1—a)(a5—a4+b5—b4)+a4+b4

a; taz =

a, +b, —2a(a, —a, +b, —b;),2a(a; —a, +b, —b,)+a, +b,

2(1-a)(a;-a;+b;—b;)+a;+b;,2(a—;](ag-a;+bg-b;)+a;+bg
Proof:

For every a €[0,1],

(24

for a €[0,0.5)
for a €[0.5,]]
for a €[0,0.5)

for o €[0.5]]

,KI :(Za(az _al) +a, 2(0! _%)(as _az) +a,, 2(1—a)(&5 _a4) +84, 8, _Za(ae _aS)]

(2(1—a)(a; —aj)+a;,a, —2a(a, —a,), 2a(a; —a,) +a,, 2(05 —%)(ag —ag)+ agj

where
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ﬂ,}l (x) :(Za(az _a1)+a1’ 2(0‘_%)(3-3 _a2)+ a,, 21-a)(a; —a,) +a,, a, —2a(a, _a5)j
72 (%) =(2(1—a>(a; ~a))+a),a, - 2a(a, ~}), 2a(a; ~2,) + a,, 2(a —%j(ag ~ap)+ a;j

o' :(Za(bz b)) +b, 2((1 —%](bs “b,)+b,, 2(L—a)(b, —b,) +b,, b, — 2a(b, —bs)]
(2(1— a)(b, —b, ) +b, b, — 2a(b, —b, ), 2a(b, —b,) +b,, 2(05 —%j(ba' b )+ bs']

where

g () {m(bz “b)+b, Z[a —%)(bs ~b,)+b,, 20— @)(b, ~b,)+b,,b, — 2a(b, —bs)j

75 (%) :[2(1—05)@2 b )+b, b, —2a(b, —b, ), 2a(b, —b,)+b,, 2(04 —%](bﬁ' b)) +b5’]

Therefore,
1 1
2a(a, —a,) + 8 +2a(b, ~b,) +by, 2@ ~ 2)(@, —a,) + &, +2(@ — )b ~b,) + by,
a; +ag' = |20-a)a, —a,)+a, + 20— a)(b, —by) +b,, a, — 2a(a, —a;) + b, — 2a(b, —b,)
2l-a)(@, —a])+a] +2(L—a)(b, —b]) + b/, a, —2a(a, —a,) +b, — 2a(b, — b)),
2a(a; —a,)+a, +2a(b; —b,) +b,, 2(a — %)(ag —al)+bl +2(x —%)(bg —bl)+ b
2a(a, —a, +b, —b))+a, +b,,a, +b; —2a(a; —a; +b; —b;) for a €[0,0.5)
| | 261—;}%—ag+Q—bg+az+m2@—ax%—a4+m—b0+a4+m for o €[0.5,1]
a -~ +0(§ =
a, +b, —2a(a, —a, +b, —b;),2a(a; —a, +b, —b,)+a, +b, for « €[0,0.5)
2(1-a)(@, —a] +b, —b)) +a +b1',2(a —;](ag —al +b, —bl)+al +b; for a €[0.51]

Equate the membership function to x,

Xx=2a(a, —a, +b, —b))+a, +b, xzz(a—%}(%—az +b, —b,)+a, +b,,

x=201-a)a, —a, +b, —b,)+a, +b, and x=a, +b, —2a(a, —a, +b, —hb;)

We get, o = X—(a, +b) e x—(a, +b,) +1,
2(a, +b, —(a, +b,)) 2(a; +by;—(a, +by)) 2

(ae +be)_x

(a, +b,) —x _
- Z(ae +b6 _(as +b5))

o=
2(35 + bs - (a4 + b4))

+1 and
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X=(2,+h) a,+b <x<a,+b,
2(a2 +b2 _(a1+b1))

x=(@ +b) 1 a,+h, <x<a,+b,
2(a; +b;—(a,+b,)) 2

Thus, (0 = 1 a,+b,<x<a,+h,
A'+B' - _

(8, +b,) —X a,+b, <x<a; +hy
2(a5 + bs - (a4 + b4))

(3 +b;) ~ a, +b, <x<a, +b,
2(ag +b, — (a5 + b))
0 otherwise

Similarly for the non membership function

x=21-a)a, —a, +b, —b))+a, +b], x=a, +b, —2a(a, —a} +b, —b}),

x=2a(a; —a, +b; —b,)+a, +b,and x=2[a—%j(ag —a; +b; —b.)+a; +b;

Weget,a:1+ ’(all',"b{)_'x , Q= (as"'bs)l_x ,
2(a; +b; —(a; +b;)) 2(ay +b; —(a; +b3))

x—(a, +b,) and X—(a; +by) L1

o= ! 4 a= ' ’ ’ '
2(ag +bs - (a, +b,)) 2(ag +bs —(a; +bg)) 2

(B rb)=x a/+b/ <x<aj+b
2(a; +b; —(a; +hb)))
(8, +hy) =X a,+b, <x<a,+b,
2(a; +b; —(a; +b3))
Thus, 0 0 a,+b,<x<a, +b,
7/~|+‘| =
B X_(a4+b4)

— a,+b, <x<a; +b;
2(a5 +b5 _(a4 +b4))

x—(ag+b) 1
2(ag +by — (a5 +bg)) 2
1 otherwise

a,+b <x<ag+by

~ iy . el e s | l. e e .
so A' +B' represented is a hexagonal Intuitionistic fuzzy numbers. Hence o + & is also a hexagonal Intuitionistic fuzzy
number.

D. Property 2
It A' =(a,.8,,85,3,,85,3)(a].2},85,8,,3%,a5), B' =(by,b,,bs,b,, by, b )(b], b}, by, b, bl by) are two hexagonal

Intuitionistic fuzzy numbers then by using their a cut membership and non membership functions we can obtain the subtraction of
a cut IHFN as
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| |
0(;& —aé— =
(Za(a2 —a, —b; +bs)+a, —bs,a, —b, —2a(as —a; —b, +b,)
2a(a; —a, —b, +b;) +2(a, —bs) - (a3 —b,),—2a(a; —a, —b, +b,) + 2(a; —b,) — (a, —b,)
(a3 -b, —2a(a; —a, —b, +b;),2a(a; —a, —b;, —b;) +a, —b,

~2a(ay —a; —b} +b;) + 2(a; ~b}) — (2] ~b;), 2a(ag - a; ~b +b;) + 2(a; ~b}) — (a by
Proof

The proof is similar to the property 1.

IV. NUMERICAL EXAMPLE

Example 4.1

for o e [0,0.S)J

for o €[0.5,]]

for a €[0,0.5)
for ¢ €[0.51]

Let A=[11,13,14,15,16,18] [10,12,14,15,17,19] and B = [10,12,13,14,15,17] [9,11,13,14,16,18] be two HIFNSs.

By the arithmetic operation over addition we have,

A+ B =[11,13,14,15,16,18] [10,12,14,15,17,19] + [10,12,13,14,15,17] [9,11,13,14,16,18]
= [21,25,27,29,31,35] [19,23,27,29,33,37]

By the new arithmetic operation we have,
2a(a, —a, +b, —b,)+a, +b;,a, +b; —2a(a; —a; +b; —by)

2((1—;)@3 _a,+b,~b,)+a,+b, 21-a)a, —a, +b, —b,) +a, +b,

a;+b;, —2a(a; —a, +b, —b;),2a(a; —a, +b, —b,)+a, +b,

21-a)(a,—a; +b; —b))+a; +bl',2(a—;j(ag —a;+b;—b.)+a; +b;

8a +21,35-8cx for a €[0,0.5)

4(05 - ;J +2541-a)+29 for a €[0.5,1]
27 —8a,8a + 29 for a €[0,0.5)

for a €[0.5]]

8(1— o) + 19,8(0: - ;j +33

(21, 35
When a =0, OZAI +a§' = 21,35
27,29
27,29

for a €[0,0.5)
for « €[0.5]] J
for a €[0,0.5)
for a €[0.51] J
for a €[0,0.5)
for a €[0.5,1] j
for « €[0,0.5)
for a €[0.5]] J

25,31

_ I I _ (25, 31
a=0.5, az +a§ =

23,33

23,33
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(29, 27 for a e [0,0.5)J
19,37 for  €[0,0.5)
19,37 for « €[0.51]

since for & €[0,0.5) and o €[0.5,1] arithmetic intervals are equal.

Therefore, o5 +a;' = [21,25,27,29,31,35] [19,23,27,29,33,37]
Hence all the points coincides with the sum of two HIFNSs.

Example 4.2

Let A= [11,13,14,15,16,18] [10,12,14,15,17,19] and B= [10,12,13,14,15,17] [9,11,13,14,16,18] be two HIFNSs.
By the arithmetic operation over difference we have,

A-B =[11,13,14,15,16,18] [10,12,14,15,17,19] - [10,12,13,14,15,17] [9,11,13,14,16,18]
= [-6,-2,0,2,4,8] [-8,-4,0,2,6,10]

By the new arithmetic operation we have,
I I

06'& — ag
2c(a, —a, —by +by)+a, —by,a, —b, —2a(ag —a; —b, +b,) for a €[0,0.5)
2c(a;—a, —b, +by)+2(a, —by) - (a, —b,),—2a(a; —a, —b, +b,) +2(a; —b,) —(a, —b;) for a €[0.5,1]
a,—b, -2a(a,-a, b, +b.),2a(a; —a, —b, —b,)+a, —b, for a €[0,0.5)
—2a(a, —a; —b. +b)+2(a;, —b)—(a; —bi).2a(a; —a; —b/ +b;) +2(a; —b,) —(ag —b/) for a €[0.5,]]
[— 6,8 for a e [0,0.5))
When o = 0, Ol’&l —ag' = -6,8 for a €[0.5,1]
0,2 for « €[0,0.5)
0,2 for a €[0.5,1]
(— 2,4 for a e [0,0.5))
0=0.5, aﬂ' _a§| _\-24 for a €[0.51]
-4.6 for a €[0,0.5)
-4,6 for o €[0.5]
0,2 for « €[0,0.5)
a=1, a~| —a~| _ 02 for « €[0.5,1]
-810 for o €[0,0.5)
-8,10 for a €[0.5,1]

since for ¢ €[0,0.5) and o €[0.5,1] arithmetic intervals are equal.
Therefore, otz — @/ = [-6,-2,0,2,4,8] [-8,4,0,2,6,10]
Hence all the points coincide with the difference of two HIFNs.
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V. CONCLUSION

In this paper, a hexagonal intuitionistic fuzzy number is utilized to study the arithmetic operations on intuitionistic fuzzy
numbers. Moreover, the o cut of the Hexagonal intuitionistic fuzzy number is also studied and the appropriate operations
are presented. Further, some important properties were proved using the new proposed arithmetic operations. Numerical example
is also solved to prove the property.
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