
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

DOI: https://doi.org/10.17762/ijritcc.v11i9.8341

Article Received: 16 July 2023 Revised: 02 September 2023 Accepted: 19 September 2023

 254

IJRITCC | September 2023, Available @ http://www.ijritcc.org

GPU Accelerated Simulation of Scene Generation of

3D Photonic Mixer Device Camera

Sangita Gautam Lade1, Sanjesh Pawale2, Aniket Patil3
1Department of computer Engineering,

Vishwakarma University, Pune, India

sangita.lade@vit.edu
2Department of computer Engineering,

Vishwakarma University, Pune, India

sangita.lade@vit.edu
3IFM engineering pvt ltd, Pune, India

Aniket.patil@ifm.com

Abstract—Simulation of Photonic Mixer Device (PMD) sensors have the capability to create virtual environment to test 3D camera design.

This simulation comprises of multiple steps like scene generation using ray tracing, power calculation, raw data generation and raw data

processing. However, each step-in situation process takes longer time to implement and they are simulation process, simulators need to be

faster. In this paper, we propose parallel implementation method for scene generation using GPGPUs. The feasibility of the method is confirmed

using Amdahl’s law before implementation. The method is implemented and tested on GeForce 820M, GeForce 750Ti and Volta V100.Tthe

highest speed up obtained is 219.913 using Volta (GV100) GPU for block size 1024. Thus, parallel method optimizes the scene generation time

as compared to serial processing and the implemented results are better than the state of the art in the literature.

Keywords-GPU; CUDA; simulation; PMD sensor; Ray tracing; scene generation.

I. INTRODUCTION

Simulation plays a vital role in industries, academics and in

research. The PMD sensor simulator has ability to reproduce the

essential sensor characteristics. Also, for dynamic scene setups,

it becomes essential to carry out experiments under reproducible

conditions. E.g., if we want to customize the camera for outdoor

applications, then building prototype for it is very expensive, but

if we develop a simulator for it, we can generate the dynamic

scenes using the simulator. Therefore, the simulation results

must reflect major sensor characteristics in order to produce

results representative of and comparable to real sensor data.

 The simulation process of PMD sensor comprises of multiple

steps like scene generation using ray tracing, power calculation,

raw data generation and raw data processing. Therefore, to

optimize time for simulation process, simulators need to be

faster.

 Generation of scene is the basic step in simulating PMD

sensors. Generally, when the snap is actually captured using 3D

camera, the scene is in front of us. But when we are simulating

it, we have to generate the scene. Here ray tracing is used to

generate the scenes. Ray Tracing is a method of generating photo

realistic images of the 3D scenes [1]. Here the path of light is

traced through each pixel in an image plane. In ray tracing, the

intersection of the rays and each pixel in the 3D object is found

out. The scene may consist of a set of geometric primitives like

polygons, spheres, cones etc. Also, generating scenes using

random shapes is really a challenging job, so very basic 3D

objects are used for scene generation i.e. sphere, box, plane and

triangle.

 The major contribution of this research paper are the proposed

parallel method for scene generation on three different GPUs viz

GeForce 820M, GeForce 750Ti and Volta V100 and time

optimization using parallel implementation using GPU and

improved performance over multiple algorithms like Hierarchy

traversal algorithm [2] , Optimized ray tracing algorithm using

CUDA library [3], A uniform grid accelerated GPU ray tracer

[4], A Parallel ray tracer on GPU [5], Traversal of a kd-tree

without stack [6], Bounding Volume Hierarchies [7],

Algorithms to manage scene complexity using cache [8],

Parallel ray tracer [9] and Parallelized version of ray tracing in

CUDA[10].

 This paper covers the parallel implementation for scene

generation. Section 1 provides the introduction. Section 2 briefs

about the literature survey & related work. Section 3 describes

the methodology. In section 4 the results of sequential and

parallel implementation for scene generation are discussed.

Section 5 ends with conclusion.

http://www.ijritcc.org/
mailto:sangita.lade@vit.edu
mailto:sangita.lade@vit.edu

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

DOI: https://doi.org/10.17762/ijritcc.v11i9.8341

Article Received: 16 July 2023 Revised: 02 September 2023 Accepted: 19 September 2023

 255

IJRITCC | September 2023, Available @ http://www.ijritcc.org

II. LITERATURE SURVEY AND RELATED WORK

A new hierarchy traversal algorithm for speeding up ray-

object intersection calculations are presented in [2]. But no

parallel algorithm was proposed for the same. Optimized ray

tracing algorithm using CUDA library is proposed in [3]. But

they used GT840M graphics card for it. Since, Cuda’s library

prepares threads to computation based on power of graphic

card, therefore they can’t activate some of top and down

threads. So, some threads were not utilized for parallel

implementation. A uniform grid accelerated GPU ray tracer was

implemented but there is an overhead incurred due to state-

based programming [4]. A GPU ray tracer where the load on

GPU is transferred to CPU using partitioning, was implemented

in [5]. But the problem of CPU-GPU communication bottleneck

is not solved as the data needs to be transferred from CPU

memory to GPU memory. Two algorithms were implemented

viz kd-restart and kd-backtrack. These variations of kd tree are

designed without using stack for the traversal. kd-restart uses

top-down approach while kd-backtrack uses bottom-up

approach. But they achieved only 10% of the performance using

GPU as compared to its counterpart using CPU [6]. Tracing

static models can be efficiently done by Bounding Volume

Hierarchies (BVHs) but they can be used to ray trace

deformable models with little loss of performance. Also, they

have not used GPU to enhance the speed [7].

The algorithms based on caching to manage scene

complexity are developed. These algorithms are used for scene

generations where scene contains millions of primitives but

only ten percent of the scene description is stored in memory.

This task is also embarrassingly parallel in nature but no parallel

architecture like GPU was used for the same [8]. A sequential

ray tracer on CPU and parallel ray tracer on GPU was designed

which achieved the speed up of 185.241% for producing images

using GPU over CPU [9]. A typical run of the serial C code for

ray tracing on Lincoln took 90.56 seconds. Compared to the

serial code, the naive implementation achieved a speedup of 52

times using CUDA on GPU. The cyclic implementation and the

dynamic implementation achieved a speedup of 211 compared

to the serial code using GPU [10]. The techniques and

algorithms known for ray tracing were studied and the results

concluded that ray tracing will be the most revolutionary

technology ever witnessed in the field of animation and

graphics [11].

III. METHODOLOGY

A. Scene Generation

In Scene Generation, Ray Tracing is carried out by

generating and tracing rays through each pixel of the picoflex

camera having a resolution of 172 X 224 and finding the nearest

ray-object intersection. Five output matrices are generated which

stores the data of Intersection Point, Distance, Normal,

Reflectivity and Visibility. The Intersection Point matrix stores

the nearest Ray-Object intersection for each ray that is casted

into the scene. The distance matrix holds the Euclidean distance

from the sensor to the point of the nearest intersection for each

ray. The normal matrix stores the normal at the point of

intersection for every ray. The reflectivity matrix stores the

reflectivity of the object at the point of intersection whereas the

visibility matrix stores the information of whether or not the

point of intersection is illuminated by the light source.

 To get the intersection point of a ray and any object is to

solve the two equations i.e., the equation of a ray and the

equation of an object. For each of the object, the intersection

with the ray is calculated. For the plane, A, B, C are the x, y and

z components of the plane normal and D is the perpendicular

distance from ray origin to the plane. Ray’s parametric variable

t is calculated by substituting the equation of ray in the equation

of plane. The variable t is bounded by [0, ∞]. If t is negative, the

object lies behind the ray’s origin, thus invalidating the obtained

intersection point. If t is positive, the intersection point can be

obtained by re-substituting t in the ray’s equation.

 The Ray- Triangle intersection is divided into two parts.

First, the intersection is computed with the plane containing the

triangle. The normal of the plane containing the triangle is

computed by taking cross product of any two edges of the

triangle. The perpendicular distance between the plane and the

ray origin is calculated by taking dot product of the normal and

any vertex of the triangle. Ray’s parametric variable t is

calculated by substituting the equation of ray in the equation of

plane. The variable t is bounded by [0, ∞]. If t is negative, the

object lies behind the ray’s origin, thus invalidating the obtained

intersection point. If t is positive, the ray-plane intersection point

can be obtained by re-substituting t in the ray’s equation.

Further, Moller Trumbore’s algorithm is used is to find if the

intersection point lies within the boundaries of the triangle. For

finding the intersection with the sphere, the ray’s equation is

substituted in the equation of sphere and the value of t

(parametric variable) is computed. Since the equation of the

sphere is quadratic, the value of t is calculated using determinant.

If the determinant is less than zero, then there is no intersection

of the ray and the sphere. If it is positive, the intersection point

can be calculated by resubstituting the t in the equation of ray.

Before that, the value of t is checked to be greater than zero to

avoid behind the ray, Ray-Object intersections.

 Ray-Box intersection is found out by slab method

proposed by Kay and Kajiya. Slab is the space between two

parallel planes. So, the intersection of a set of slabs defines a

bounding volume or a box. The method looks at the intersection

of each pair of slabs by the ray. It finds tfar and tnear for each

pair of slabs. If the overall largest tnear value i.e., intersection

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

DOI: https://doi.org/10.17762/ijritcc.v11i9.8341

Article Received: 16 July 2023 Revised: 02 September 2023 Accepted: 19 September 2023

 256

IJRITCC | September 2023, Available @ http://www.ijritcc.org

with the near slab, is greater than the smallest tfar value

(intersection with far slab) then the ray misses the box, else it

hits the box. In order to calculate the normal at the intersection

point, a vector is generated from the center of the cube to the

point of intersection. The vector is then divided by the length of

the box along x, y and z dimension to get a unit vector. The

normal vector is obtained by extracting only the integer form of

the obtained vector.

B. Therotical SpeedUp using Amdhl’s Law

Before implementing the parallel method, the theoretical

speed up is computed using Amdahl’s law to check the

feasibility of the method as the scene generation using multiple

objects is time consuming and embarrassingly parallel. The

speed up calculated using Amdahl’s law is presented in fig. 1.

The computation for each ray with each object pixel is

considered here.

Figure 1. No. of CUDA cores V/s Theoretical Speedup

Figure 2 : Flowchart for Parallel Ray Tracing

Here in this method, the intersection of 38,528 rays (172 *

224) with the number of pixels of the objects are computed.

When the number of objects in the scene are increased, the

computations are increased exponentially (in the multiples of the

number of objects). So, to use sequential algorithm poses a

restriction on the number of iterations, memory as well as time.

Some sequential algorithms even cannot be executed completely

if the number of objects is increased beyond certain limit. So,

this task of calculation can be done parallelly with the help of

GPU as shown in fig. 2.

IV. EXPERIMENTATION AND RESULTS

 Generally, when the repetitive task is done, in sequential

method loops are used. But GPU has multi core architecture. So

assigning task to each core is a critical task. So, thread

organization is to be done properly so that each streaming

multiprocessor can evenly get the number of threads to execute.

Here a total number of thread generated are 172 * 224. For

the experimentation three GPGPUs are used viz GeForce820M,

GeForce850Ti and Volta V100. The basic configuration of all

these GPUs is given in Table 1.

To assign a task to every core, the number of threads are

created which is called as a grid. The task to be given is to be

assigned by writing a kernel. The kernel is written for the grid of

38528 (172 * 224) threads here. Further these threads are

organized as 2D blocks for scheduling it on the number of

streaming multiprocessors available in each GPU. The warp size

is 32 but the block size is varied from 32 to 1024 in the multiples

of 32 and the time for scene generation is measured. Finally, the

actual speedup is calculated for all the 15 different scenes.

Initially the scene is generated using a single 3D object. Then the

complex scenes are generated using all possible combinations of

multiple objects. E.g. initially the scene is generated using

individual objects like plane, box, sphere & triangle. Then two

objects are combined to generate the scene with all permutations

and combinations. There are 15 cases tested on each GPU for the

scene generation using multiple block sizes varying from 32 to

1024. Deciding the optimum block size for scene generation is

very crucial. That’s why the experimentation is done with

varying block sizes from 32 to 1024 in the multiples of 32. The

time taken by parallel method for various block sizes on three

different GPUs is shown in Figure 2. The least execution time

for the scene generation of all the four objects was taken by block

sizes 1024 for GeForce 750Ti and Volta respectively.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

DOI: https://doi.org/10.17762/ijritcc.v11i9.8341

Article Received: 16 July 2023 Revised: 02 September 2023 Accepted: 19 September 2023

 257

IJRITCC | September 2023, Available @ http://www.ijritcc.org

TABLE I. SPECIFICATIONS OF THREE DIFFERENT GPUS

GPU Architecture

Parameters

GPU Architecture

GeForce

820M

GeForce

750Ti

Volta V100

Cores 96 640 5120

Memory Capacity 2 GB 2 GB 16 GB

Memory Bus 64 Bit 128 Bit 4096 Bit

Power Consumption 15 W 60 W 300 W

Figure 3. Block size V/s Time taken by GPU for execution

The time taken by sequential method is measured on CPU

and for parallel method, it is measured on GPU using

CudaEvents. Sequential implementation on CPU takes 0.5080

seconds to execute. A gradual reduction of execution time is seen

when the same is implemented in parallel on GPUs. The

execution time required by GeForce 820M, GeForce 750Ti and

Volta is 0.0215, 0.002804 and 0.00231 seconds respectively for

block size of 1024. The time taken by sequential method on CPU

and parallel method on GPU is shown in fig. 3.

The speed up is one of the important metrics to evaluate the

performance of a parallel algorithm where the speedup of GPU

over CPU is calculated by considering the time taken by CPU &

GPU for the execution. Figure 4 shows the speedup obtained

using GPU over CPU. A speed up of 23.3445, 181.1697 and

219.9134 was obtained on GeForce 820M, GeForce 750Ti and

Volta respectively. As the number of cores are increased from

96 to 640, the speedup has also increased from 23.35 to 181.17.

For the increased number of cores from 640 to 5120 , the

speedup has also increased from 181.17 to 219 .91.

Figure 4. Processor (GPUs) V/s Execution Time in secs

Figure 5. GPUs V/s Speed Up

The results obtained are also compared with the algorithms

listed in table 2 from the literature. It is observed that the

implemented parallel method out performs all the algorithms

presented in table 2. The parallel algorithm like Optimized ray

tracing algorithm, A uniform grid accelerated GPU ray tracer ,

Parallel ray tracer on GPU, Traversal of a kd-tree without stack

Have their own limitations in terms of speedup & thread

organization. All these limitations are overcome by the proposed

parallel method.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

DOI: https://doi.org/10.17762/ijritcc.v11i9.8341

Article Received: 16 July 2023 Revised: 02 September 2023 Accepted: 19 September 2023

 258

IJRITCC | September 2023, Available @ http://www.ijritcc.org

TABLE II. COMPARISON OF PROPOSED METHOD WITH

EXISTING ALGORITHMS

Ref

No

Algorithms for

scene generations

Type of

Algorithm

Results

2 Hierarchy traversal

algorithm

Sequential NA

3 Optimized ray

tracing algorithm

using CUDA library

Parallel on

GT840M

Some threads were

not used due to

inbuilt library.

4 A uniform grid

accelerated GPU

ray tracer

Parallel overhead incurred

due to state-based

programming

5 A Parallel ray tracer

on GPU

Parallel Bottleneck due to

CPU-GPU

communication

6 Traversal of a kd-

tree without stack

Parallel 10 % Speed Up

7 Bounding Volume

Hierarchies

Sequential NA

8 Algorithms to

manage scene

complexity using

cache

Sequential NA

9 Parallel ray tracer Parallel 185.241%

10 Parallelized version

of ray tracing in

CUDA

Parallel 52%

 Proposed Parallel

Method

Parallel 219 %

V. CONCLUSION

 The acceleration of scene generation is demonstrated in this

paper by making use of GPGPUs. The kernel is written

organizing the grid of 38,528 by into 2D blocks. Parallel

implementation was tested on three GPUs viz- GeForce 820M,

GeForce 750Ti and Volta V100 having 96, 640 and 5120

CUDA cores respectively. Highest speed up of 219.913 is

obtained on Volta GPU for the block size 1024. The parallel

algorithm implemented gives the highest speedup.

Acknowledgment

 This work is sponsored by ifm engineering private limited,

Pune. It is a privately-held global manufacturer of sensors and

controls for industrial automation, producing more than nine

million sensors annually. Ifm has more than 70 subsidiaries

located in all major countries including North America, South

America, Asia, Europe and Africa. We would like to thank Mr.

Jitesh Butala, Aniket Patil and their team for providing the

hardware details of 3D camera and providing the environment

to test the results.

REFERENCES

[1] Lade, S., Kulkarni, M., Patil, A. Ray Tracing Algorithm for

Scene Generation in Simulation of Photonic Mixer Device

Sensors. In: Swain, D., Pattnaik, P.K., Athawale, T. (eds)

Machine Learning and Information Processing. Advances in

Intelligent Systems and

[2] Computing. 2021; vol 1311. Springer, Singapore.

https://doi.org/10.1007/978-981-33-4859-2_25

[3] Timothy L. Kay James T. Kajiya. Ray Tracing Complex Scenes.

California Institute of Technology, © 1986; A CM 0-89791-196-

2/86/008/0269

[4] Sayed Ahmadreza Raziana, Hossein Mahvash Mohammadi.

Optimizing Raytracing Algorithm Using CUDA. Italian Journal

of Science and Engineering. October, 2017; Vol. 1, No. 3,

http://www.ijournalse.org/

[5] Timothy J. Purcell, Ian Buck, William R. Mark, and Pat

Hanrahan. Ray tracing on programmable graphics hardware.

2002; In Proc. SIGGRAPH.

[6] Hussain Bukhari, S. N. . (2021). Data Mining in Product Cycle

Prediction of Company Mergers . International Journal of New

Practices in Management and Engineering, 10(03), 01–05.

https://doi.org/10.17762/ijnpme.v10i03.127

[7] Nathan A. Carr, Jesse D. Hall, and John C. Hart. The ray engine.

In Proc. Graphics Hardware Sep 2002; pages 37–46.

[8] Vlastimil Havran. Heuristic Ray Shooting Algorithms. Ph.d.

thesis, Dept. of CSE, Fac. of EE, Czech Technical University in

Prague, Nov. 2000.

[9] Wald, I., Boulos, S., and Shirley, P. Ray tracing deformable

scenes using dynamic bounding volume hierarchies. ACM

Trans. Graph. 26, 1, Article 6. January 2007; 18 pages.

DOI=10.1145/1186644.1186650 http://doi.acm.org/

10.1145/1186644.1186650

[10] Matt Pharr, Craig Kolb, Reid Gershbein and Pat Hanraha.

Rendering Complex Scenes with Memory-Coherent Ray

Tracing. Association for Computing Machinery, Inc.1997

[11] Pitkin, Thomas A. GPU ray tracing with CUDA. EWU Masters

Thesis Collection. (2013); 94. http://dc.ewu.edu/theses/9

[12] Liang Chen Hirakendu Das Shengjun Pan. An Implementation

of Ray Tracing in CUDA CSE 260 Project Report. December 4,

2009

[13] Dhruv Dhote, Charu Virmani, Gopi Krishna, Shivansh Raghav.

The Science of Ray Tracing. International Journal of Computer

Applications (0975 – 8887). July 2020; Volume 176 – No. 42.

http://www.ijritcc.org/

