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Abstract: Crop diseases imperil global food security and economies, demanding early detection and effective management. Convolutional 

Neural Networks (CNNs), particularly in rice and maize leaf disease classification, have gained traction due to their automatic feature extraction 

capabilities. CNN models eliminate manual feature extraction, enabling precise disease diagnosis based on learned features. Researchers have 

rapidly advanced these models, achieving promising results. Leaf disease characteristics like color changes, texture variations, and lesion 

appearance have been identified as useful for automated diagnosis using machine learning. Developing CNN models involves crucial stages: 

dataset preparation, architecture selection, hyperparameter tuning, and model training and evaluation. Diverse and accurately annotated datasets 

are pivotal, and appropriate CNN architecture selection, such as ResNet101 and XceptionNet, ensures optimal performance. These architectures' 

pre-training on vast image datasets enhances feature extraction. Hyperparameter tuning fine-tunes the model, and training and evaluation gauge 

its precision. CNN models hold potential to enhance rice and maize productivity and global food security by effectively detecting and managing 

diseases. 
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I. Introduction: 

Crop diseases pose a major threat to the global food supply 

chain, resulting in significant economic losses and jeopardizing 

food security. Early detection and timely management of crop 

diseases are crucial to prevent their spread and minimize the 

damage caused by them. Image-based methods have emerged 

as a promising tool for detecting and classifying crop diseases 

accurately and efficiently. Deep learning-based techniques, 

specifically Convolutional Neural Networks (CNNs), have 

shown remarkable performance in image classification tasks 

[1]. 

In recent years, CNNs have been extensively used for leaf 

disease classification in various crops, including rice and maize. 

Leaf diseases in rice and maize are caused by various fungal, 

bacterial, and viral pathogens, leading to significant crop losses 

worldwide. Early and accurate detection of leaf diseases in 

these crops is essential for timely and effective management of 

these diseases [2]. 

CNN-based models have demonstrated excellent 

performance in leaf disease classification tasks in various crops. 

These models learn discriminative features automatically from 

the images, eliminating the need for manual feature extraction, 

which was a significant challenge in traditional image 

classification methods. The features learned by the CNN 

models are highly representative of the underlying patterns and 

characteristics of the disease, enabling accurate classification 

and diagnosis [3]. 

The development of CNN models for rice and maize leaf 

disease classification has gained significant momentum in 

recent years [4]. Researchers have proposed various CNN 

architectures and training strategies to improve the accuracy 

and efficiency of these models. Several studies have reported 

promising results in rice and maize leaf disease classification 

using CNN models, indicating the potential of these models for 

practical applications. 

The changes in leaf features that are typically observed in 

the presence of leaf diseases such as Gray Spot, Blight, and 

Measles may vary depending on the specific disease and the 

plant species being affected. However, here are some common 

changes that may be observed in these diseases compared to a 

healthy condition: 

1. Gray Spot: Gray Spot is a fungal disease that affects 

many different plant species. In infected leaves, gray 

or brown spots with yellow halos may appear. The 

affected areas may also have a fuzzy or powdery 

appearance due to the growth of fungal spores. Some 

common changes in leaf features that may be observed 

in Gray Spot include changes in leaf color and texture, 

as well as the presence of lesions or spots. 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 8 

DOI: https://doi.org/10.17762/ijritcc.v11i8.8006 

Article Received: 20 May 2023 Revised: 24 July 2023 Accepted: 09 August 2023 

___________________________________________________________________________________________________________________ 

 
    332 
IJRITCC | August 2023, Available @ http://www.ijritcc.org 

2. Blight: Blight is a broad term that refers to any disease 

that causes rapid and widespread death of plant tissue. 

Symptoms of blight can include wilting, yellowing, 

and browning of leaves, as well as the presence of 

lesions or spots. Some common changes in leaf 

features that may be observed in blight include 

changes in leaf color, texture, and shape, as well as the 

presence of lesions or spots. 

3. Measles: Measles is a viral disease that affects many 

different plant species. In infected leaves, small, 

circular or irregularly shaped spots may appear, which 

can be either light or dark in color. Some common 

changes in leaf features that may be observed in 

Measles include changes in leaf color and texture, as 

well as the presence of lesions or spots. 

Overall, changes in leaf color, texture, and the presence of 

lesions or spots are common features that may be observed in 

the presence of leaf diseases such as Gray Spot, Blight, and 

Measles [5]. These changes can be used to develop machine 

learning models for automated disease diagnosis and 

classification. Figure 1 shows the respective diseases impacts 

on the leaves of selected crops. 

The development of CNN models for rice and maize leaf 

disease classification involves several critical steps, including 

dataset preparation, model architecture selection, 

hyperparameter tuning, and model training and evaluation. The 

choice of dataset and its quality are crucial for the performance 

of the CNN models. The dataset should be diverse, 

representative, and annotated accurately to ensure reliable 

training and evaluation of the models. 

The selection of the appropriate CNN architecture is also 

essential for achieving optimal performance in leaf disease 

classification tasks. Various CNN architectures, such as VGG, 

ResNet, Inception, and DenseNet, have been used for rice and 

maize leaf disease classification, each with its unique 

advantages and limitations. The architecture should be selected 

based on the specific requirements of the task and the dataset 

characteristics. 

Hyperparameter tuning is another critical step in CNN model 

development, which involves optimizing the model's learning 

rate, batch size, regularization, and other parameters to achieve 

the best possible performance [6]. Several techniques, such as 

grid search, random search, and Bayesian optimization, have 

been used for hyperparameter tuning in CNN model 

development. 

Finally, the model training and evaluation stage involves 

training the model on the dataset and evaluating its performance 

on the test set. Various performance metrics, such as accuracy, 

precision, recall, and F1 score, are used for evaluating the 

model's performance. Cross-validation and data augmentation 

techniques are often used to improve the model's generalization 

ability and reduce overfitting. The development of CNN 

models for rice and maize leaf disease classification has shown 

great promise for accurate and efficient disease detection and 

management. The advancement of these models is expected to 

play a vital role in enhancing crop productivity and ensuring 

global food security. 

 

Figure 1: Different Diseases and Healthy Condition Images of Rice 

and Maize 

ResNet101 [7] and XceptionNet [8] are both deep neural 

network architectures that have been pre-trained on large image 

datasets, such as ImageNet. These networks have been shown 

to be highly effective at feature extraction, which makes them 

well-suited for tasks such as leaf disease classification. 

ResNet101 is a deep residual network that is designed to 

address the problem of vanishing gradients in deep neural 

networks. It achieves this by using skip connections that allow 

information to bypass multiple layers and be directly fed into 

deeper layers. This architecture enables ResNet101 to learn 

highly discriminative features that are useful for tasks such as 

leaf disease classification. XceptionNet, on the other hand, is a 

network architecture that uses a combination of convolutional 
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layers with different filter sizes and pooling operations to 

extract features at multiple scales. This allows XceptionNet to 

capture both fine-grained and coarse-grained features, which 

can be useful for tasks such as leaf disease classification. 

Both ResNet101 and XceptionNet have been shown to be 

highly effective at feature extraction for a wide range of image 

classification tasks, including leaf disease classification. This is 

due to their ability to learn highly discriminative features that 

are representative of the underlying patterns and structures in 

the images. Additionally, because they have been pre-trained 

on large image datasets, they are able to generalize well to new 

images, which makes them useful for tasks such as transfer 

learning. 

II. Related Work 

The recent surge in deep learning, especially Convolutional 

Neural Networks (CNNs), for plant disease detection has 

sparked notable research. Abade et al. [9] investigated CNN 

algorithms, emphasizing trends like PlantVillage and 

TensorFlow. Dhaka et al. [10] delved into CNN-based 

techniques, highlighting framework choice, model architecture, 

and pre-processing's role. Their study underscored dataset 

quality's impact. Nagaraju et al. [11] reviewed 80+ Deep 

Learning (DL) disease studies, emphasizing pre-processing's 

significance. Kamilaris et al. [12] showcased DL's superiority 

in addressing agricultural challenges, surpassing traditional 

methods. Fernandez-Quintanilla et al. [13] explored crop weed 

monitoring, stressing weed control and data collection through 

diverse monitoring methods, cloud platforms, and accessible 

information. These studies collectively reveal the 

transformative potential of deep learning in agriculture. 

Setiawan et al. [14] provide comparison of machine learning 

and deep learning for maize leaf disease classification. 

Lu et al. [15] evaluated CNN performance in plant disease 

classification, exploring architectures, strengths, and 

improvements. Golhani et al. [16] highlighted hyperspectral 

data's potential for plant disease diagnosis, emphasizing 

comprehensive data collection. Mosleh et al. [17] developed an 

effective CNN model for potato disease detection, showcasing 

high accuracy. Huang et al. [18] introduced DenseNet, 

enhancing CNN architectures for information flow. Li et al. 

[19] extended this with fire-FRD-CNN and mobile-FRD-CNN, 

optimizing feature map generation. Lee et al. [20] simplified 

disease classification with GoogleNet-BN for Plant Village 

dataset. Mao et al. [21] optimized models with depth-wise 

separable convolution and filter pruning. Singh et al. [22] 

proposed joint pruning and fine-tuning for model efficiency. Li 

et al. [23] emphasized compact, accurate models through 

CNNPruner, aligning with efficiency demands. Qian et al. used 

self-attention mechanism in CNN model for Maize leaf disease 

identification. Ma et al. [24] provided transfer learning 

approach for maize leaf disease detection work. 

Rawat et al. [25] used ResNet50 for detection rice leaf disease 

detection along with 4000 images sample size. Yang et al. [26] 

used stacking approach in CNN based rice leaf disease 

detection method. Improvement in AlexNet, ResNet50 and 

MobileNet-V3 are observed with stacking method. Simhadri et 

al. [27] provided analysis of 15 different CNN models in 

transfer learning approach for rice leaf disease detection. 

Inception-V3 was found effective among all the models with 

better accuracy of rice leaf disease detection. 

Collectively, these studies underscore the dynamic landscape of 

plant disease detection, driven by the evolution of deep learning 

models and their application-specific adaptations. The pursuit 

of accurate, efficient, and scalable disease detection systems 

remains a driving force in the realm of agricultural technology, 

with implications for precision agriculture, crop management, 

and sustainable food production. 

This study's limitations encompass its focus on specific neural 

network architectures and datasets, potentially hindering 

generalization. The proposed techniques, although effective, 

may require further optimization. The scope extends to 

enhancing model efficiency, but does not extensively explore 

alternative approaches or real-world deployment challenges. 

III. Methodology 

The important features for leaf disease classification may vary 

depending on the type of disease and the specific dataset being 

used. However, some common features that have been found to 

be useful in leaf disease classification include: 

1. Color features: Leaf diseases can often cause changes in 

leaf color, such as yellowing, browning, or spotting. 

Therefore, color features such as mean color intensity, 

color histograms, and color channel statistics can be 

informative for disease classification [28]. 

2. Texture features: Leaf diseases can also cause changes in 

leaf texture, such as roughness or deformation. Texture 

features such as local binary patterns, gray level co-

occurrence matrices, and wavelet transforms can capture 

these changes and aid in disease classification. 

3. Shape features: Leaf diseases can also affect the overall 

shape and size of the leaf, as well as the shape and size of 

individual lesions or spots. Shape features such as area, 

perimeter, circularity, and eccentricity can capture these 

changes and aid in disease classification. 

4. Symmetry features: Some leaf diseases can cause 

asymmetric damage to the leaf, which can be captured by 

symmetry features such as the difference in shape or 

texture between the left and right halves of the leaf. 
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5. Structural features: The underlying structure of the leaf, 

such as the arrangement of veins or the presence of 

stomata, can also be informative for disease 

classification. 

6. Contextual features: The context in which the leaf image 

was taken can also be useful for disease classification. For 

example, the type of plant, the location of the plant, and 

the time of year can all affect the likelihood of certain 

diseases occurring. 

These features can be extracted from leaf images using various 

techniques such as image processing and computer vision 

algorithms, and can be used to train machine learning models 

for leaf disease classification. 

The leaf disease and nutrient Deficiency identification work is 

carried out as the block diagram shown in figure 1. The dataset 

preparation, feature extraction and model training, testing the 

model is detailed in further sections. 

 

 

 

 

 

 

 

 

 

Figure 1: Proposed System Framework 

3.1 Dataset Preparation 

The dataset of nutrient deficiency in Maize [29] and Rice [30] 

are collected from standard public repositories as shown in 

table 1. The images obtained are then passed through 

augmentation process to get maximum combinations for better 

training of the models. The respective details are shown in table 

1. 

Table 1: Dataset Details 

Dataset Name Number of Images 

(Healthy, Ca, K, 

Mg) 

Images After 

Augmentation 

IPNI  680 

(176, 158, 171, 175) 

2720 

Kaggle Maize 

Nutrient Dataset 

800 

(163, 186, 237, 214) 

3200 

Total Number of 

Images 

1480 5920 

 

Table 2: Maize Leaf Disease Dataset Details 

Type of Disease Images After Augmentation 

Blight 1146 4584 

Common Rust 1306 5224 

Gray Leaf Spot 574 2296 

Healthy 1162 4648 

Total Images 4188 16752 

 

 

 

Table 3: Maize Nutrient Deficiency Leaf Dataset: 

Deficiency Images After Augmentation 

Calcium 339 1356 

Potassium 344 1376 

Nitrogen 408 1632 

Healthy 389 1556 

Total Images 1480 5920 

 

Table 4: Rice Leaf Disease Dataset 

Type of Disease Images After Augmentation 

Brown Spot 523 2092 

Hispa 565 2260 

Leaf Blast 779 3116 

Healthy 1488 5952 

Total Images 3355 13420 

 

Table 5: Rice Leaf Nutrient Deficiency Dataset 

Deficiency Images After Augmentation 

Phosphorus 333 1332 

Potassium 383 1532 

Nitrogen 440 1760 

Healthy 389 1556 

Total Images 1545 6180 

 

3.2 Feature extraction 

3.2.1 Features from Pretrained Network 

When using ResNet101 and Xception in parallel for feature 

extraction, we need to determine the optimal layer from each 

Dataset 

Preparation 

Feature Extraction from 

Pretrained Networks Proposed Model Training 

Trained Model Test Set 

Prediction of Disease or 

Nutrient Deficiency 
Performance Evaluation 
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network to extract complementary and discriminative features. 

The choice of layers depends on the specific task and dataset. 

For leaf disease classification, a good starting point for 

ResNet101 may be to extract features from the output of the last 

layer in the last residual block, just before the global average 

pooling layer. In ResNet101, with consideration of all the 

sublayers within the Residual Block, the total number of layers 

is 347. For Xception, a good starting point may be to extract 

features from a specific layer. To select an appropriate layer in 

Xception for feature extraction, we can consider the deeper 

layers closer to the end of the network, as they tend to capture 

more abstract and high-level features. The specific layer 

number in Xception will depend on the implementation and 

how you define a "layer". Once features have been extracted 

from ResNet101 and Xception, they can be concatenated and 

passed through an attention layer. The attention layer can 

selectively weight the importance of different features based on 

their relevance to the classification task. Various attention 

mechanisms, such as channel-wise or spatial attention, can be 

employed. Finally, the features from the attention layer can be 

fed into one or more dense layers for the final classification 

task. The architecture of the dense layers will depend on the 

specific requirements of the task and dataset, and can be 

designed accordingly. 

3.2.2 Residual Block Based Network 

 

 

 

 

 

 

Figure 2: Residual Block 

Residual blocks play a crucial role in deep learning models, 

especially in convolutional neural networks (CNNs) [11]. They 

were introduced in the paper "Deep Residual Learning for 

Image Recognition" by He et al. in 2016 and have since become 

an integral component in numerous cutting-edge models. 

At a high level, a residual block enables a neural network to 

learn residual functions, which capture the difference between 

the input and output of a layer. This is achieved by 

incorporating a shortcut connection that allows the network to 

bypass one or more layers and directly propagate information 

between layers. The typical architecture of a residual block is 

depicted in Figure 3. 

The process begins with the input passing through a 

convolutional layer, followed by batch normalization and a 

Rectified Linear Unit (ReLU) activation. Subsequently, another 

convolutional layer and batch normalization are applied, 

followed by the introduction of the shortcut connection. The 

shortcut connection combines the input with the output of the 

second convolutional layer using element-wise addition. The 

resulting sum is then subjected to another ReLU activation 

before being returned as the output of the residual block. 

The effectiveness of residual blocks can be attributed to the 

shortcut connection, which allows the network to optimize the 

residual function instead of solely focusing on mapping the 

input to the output. This property is particularly advantageous 

when training deep networks, as it helps address the issue of 

vanishing gradients that can occur during backpropagation 

through multiple layers. 

In mathematical terms, the representation of a residual block 

can be written as: 

𝑂𝑢𝑡𝑝𝑢𝑡 =  𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 (𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑖𝑛𝑝𝑢𝑡))))) + 𝑖𝑛𝑝𝑢𝑡 

...(1) 

Here, input refers to the input of the block, convolution denotes 

the convolutional operation, normalization represents the batch 

normalization operation, activation signifies the ReLU 

activation function, and output indicates the output of the block. 

The addition operation is performed element-wise, and the 

resulting output is returned after passing through an activation 

function. 

In summary, the shortcut connection in residual blocks 

establishes a direct link between the input and output of a layer, 

facilitating the bypassing of one or more layers. This 

mechanism enables efficient information transmission within 

the network and contributes to the success of residual blocks in 

deep learning models. 

 

Conv2D Batch 

Norm 

Conv2D Batch 

Norm 
ReLU Conv2D Batch 

Norm 
ReLU Conv2D Batch 

Norm 
ReLU 
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3.2.3 Proposed Architecture 

    
 

Input   
 

(224X224X3) 

          

(10X10X2048) XceptionNet   ResNet101 (7X7X2048) 

(9X9X2048) 
 

Conv2D       

(8X8X2048) Conv2D       

(7X7X2048) Conv2D       

          

    Concatenate   (7X7X4096) 

          

Average Pooling MaxPooling 
 

Residual Block (3X3X4096) 

          

    Concatenate   (3X3X12288) 

    Residual Block     

    GlobalAveragePooling   (1X1X12288) 

    Dense Layer   (1X1X4096) 

    DenseLayer   (1X1X8) 

Figure 3: Architecture Proposed Model 

The proposed model consists of an input layer that receives an 

input image with dimensions (224x224x3). The ResNet101 and 

Xception models are employed to extract features from this 

image, yielding feature maps with dimensions of (7x7x2048) 

and (10x10x2048), respectively. These feature maps are 

obtained from the last selected layer before the Global Average 

Pooling layer in both models. To match the dimensions of the 

features without losing valuable information, the output feature 

map from Xception undergoes a sequence of three 

convolutional layers, each reducing the dimensions. This 

ensures compatibility with the dimensions of the feature map 

from ResNet101. The two sets of feature maps are then 

concatenated. An attention effect is achieved through the 

parallel combination of Average Pooling and Max Pooling. The 

output from the attention layer, along with the parallel output 

from the Residual Block, is concatenated. The Residual Block 

employed here is the Residual Pooling block, which reduces the 

dimensions to 3x3x4096 to match those of the Attention Layer. 

The output from both sides is concatenated. The features are 

then passed through another residual block before reaching the 

Global Average Pooling layer. The output of the Global 

Average Pooling layer is then fed into a Dense layer with 256 

hidden neurons. This Dense layer utilizes the ReLU activation 

function. Finally, the last Dense layer performs the 

classification task using the Softmax activation function, 

assigning the features to one of the eight classes. The proposed 

model combines features from ResNet101 and Xception 

through dimension matching and concatenation. It incorporates 

an attention layer and Residual Blocks to enhance feature 

representation. The classification is performed using Dense 

layers with ReLU activation and concludes with the final 

Softmax layer for class assignment. 

𝑅𝑒𝑠𝑁𝑒𝑡101𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑅𝑒𝑠𝑁𝑒𝑡101(𝐼𝑛𝑝𝑢𝑡𝐼𝑚𝑎𝑔𝑒) 

...(2) 

where Input_Image is the input image with dimensions 

(224x224x3). 

𝑋𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑋𝑐𝑒𝑝𝑡𝑖𝑜𝑛(𝐼𝑛𝑝𝑢𝑡𝐼𝑚𝑎𝑔𝑒) 

...(3) 

where Input_Image is the input image with dimensions 

(224x224x3). 

𝑋𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑜𝑢𝑡𝑝𝑢𝑡_𝐶𝑜𝑛𝑣 = 𝐶𝑜𝑛𝑣2𝐷(𝑋𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑜𝑢𝑡𝑝𝑢𝑡) 

...(4) 

where Xception_Output has dimensions (10x10x2048) and 

Xception_Output_Conv has reduced dimensions. 
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𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑟𝑒𝑠

= 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑅𝑒𝑠𝑁𝑒𝑡101𝑜𝑢𝑡𝑝𝑢𝑡 , 𝑋𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑜𝑢𝑡𝑝𝑢𝑡) 

...(5) 

where Concatenated_Features combines the features from 

ResNet101 and Xception. 

3.2.4 Attention Layer:  

Average Pooling: The Average Pooling operation calculates the 

average value of each local region in the input. It computes the 

average of the values within a window or kernel, sliding it 

across the input feature map. Average Pooling helps capture the 

overall distribution and general patterns in the data. 

Max Pooling: The Max Pooling operation, on the other hand, 

selects the maximum value from each local region in the input. 

It identifies the most prominent or salient features within each 

kernel window. Max Pooling is effective in capturing the most 

distinctive and important features. By combining Average 

Pooling and Max Pooling in parallel, the attention layer can 

gather information from both average-level and maximum-

level representations. This combination allows the network to 

attend to different aspects of the input, enhancing its ability to 

learn and represent diverse features. 

The outputs of the Average Pooling and Max Pooling 

operations are then combined, often through element-wise 

addition or concatenation, to create the final output of the 

attention layer. This final output represents a fused 

representation that incorporates both average-level and 

maximum-level information, resulting in an attention effect that 

highlights relevant features in the data. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑜𝑢𝑡𝑝𝑢𝑡

= 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 . 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑜𝑜𝑙(𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠)

+ 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠  . 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠) 

...(6) 

where dot product represents element-wise multiplication. 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝐵𝑙𝑜𝑐𝑘𝑂𝑢𝑡𝑝𝑢𝑡

= 𝑅𝑒𝑎𝑠𝑖𝑑𝑢𝑎𝑙𝑃𝑜𝑜𝑙(𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑜𝑢𝑡𝑝𝑢𝑡) 

...(7) 

reducing dimensions to (3x3x4096). 

𝐹𝑖𝑛𝑎𝑙𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠

= 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝐵𝑙𝑜𝑐𝑘𝑜𝑢𝑡𝑝𝑢𝑡 , 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑜𝑢𝑡𝑝𝑢𝑡) 

...(8) 

combining the features from the Residual Pooling block and 

the Attention Layer. 

𝐹𝑖𝑛𝑎𝑙𝐵𝑙𝑜𝑐𝑘𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝐵𝑙𝑜𝑐𝑘(𝐹𝑖𝑛𝑎𝑙𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) 

...(9) 

further enhancing feature representation. 

GlobalPoolOutput = 𝐺𝑙𝑜𝑏𝑎𝑙𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹𝑖𝑛𝑎𝑙𝐵𝑙𝑜𝑐𝑘𝑜𝑢𝑡𝑝𝑢𝑡) 

...(10) 

resulting in a feature vector. 

𝐷𝑒𝑛𝑠𝑒𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑅𝑒𝐿𝑈(𝐺𝑙𝑜𝑏𝑎𝑙𝑃𝑜𝑜𝑙𝑂𝑢𝑡𝑝𝑢𝑡 . 𝑊𝑒𝑖𝑔ℎ𝑡𝑠 + 𝑏𝑖𝑎𝑠) 

...(11) 

where Weights and bias are the learnable parameters of the 

Dense layer. 

𝐹𝑖𝑛𝑎𝑙𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐷𝑒𝑛𝑠𝑒𝑂𝑢𝑡𝑝𝑢𝑡) 

...(12) 

assigning the features to one of the eight classes using the 

Softmax activation function. 

IV. Results and Discussion 

Analysis of proposed model is performed for 4 way 

classification of maize leaf disease detection. Table and Figure 

show that proposed model shows better results over ResNet101 

and Xception Net with addition of attention layer. The 

performance parameters used for evaluation of the model are 

shown in table 6. 

Table 6: Performance Parameters 

Accuracy TP+TN / (TP+TN+FP+FN) 

Specificity TN/(TN+FP) 

Sensitivity TP/(TP+FN) 
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Figure 4: Analysis of proposed Model on Maize Leaf Disease Detection 

 

Figure 5: Analysis for Maize Leaf Nutrient Deficiency detection 

 

Figure 6: Analysis for Rice Leaf Disease detection 
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Figure 7: Analysis for Rice leaf nutrient deficiency detection 

Comparative analysis: 

In the existing methods, many researchers have considered 

maize and rice crops, one at a time. The disease detection work 

have included nutrient deficiency detection work. The 

comparative analysis of existing other methods with common 

crop factors are considered as shown Table 7. 

Table 7: Comparative Analysis with other existing methods. 

Method Diseased 

Crop 

Nutrient 

Deficiency 

Crop 

Accuracy 

Transfer Learning 

(VGG16,19, 

ResNet 18, 

GoogleNet) [31] 

Maize -- 98% 

Faster RCNN, 

YOLO-V2, 

RetinaNet [32] 

Maize -- 95% 

Convolutional 

Neural Network 

and OpenMP 

implementation 

[33] 

Maize -- 93% 

Custom CNN and 

Pretrained 

AlexNet [34] 

Maize -- 97% 

ResNet50  [35] Rice -- 99% 

GoogleNet, 

MobileNet-V3, 

AlexNet+SVM 

[36] 

Rice -- 99% 

Proposed Maize -- 95% 

Proposed -- Maize 97.3% 

Proposed Rice -- 97.6% 

Proposed -- Rice 97.6% 

 

Discussion: 

The comparison of various methods for disease detection and 

nutrient deficiency identification in maize and rice crops is 

presented in Table 7. It is noteworthy that in the previous 

research, the focus was often directed towards analyzing either 

maize or rice crops individually, rather than considering both 

together. Moreover, the disease detection techniques were 

extended to include the identification of nutrient deficiencies in 

plants as well. This comprehensive evaluation sheds light on 

the performance of different methods in tackling these 

agricultural challenges. The first set of methods employs 

Transfer Learning techniques, utilizing architectures like 

VGG16, VGG19, ResNet 18, and GoogleNet. These methods 

were applied to detect diseases in maize crops, achieving an 

impressive accuracy of 98%. Following this, Faster RCNN, 

YOLO-V2, and RetinaNet were employed, again on maize 

crops, resulting in a slightly lower accuracy of 95%. Utilizing 

Convolutional Neural Networks (CNN) and OpenMP 

implementation led to a disease detection accuracy of 93% in 

maize. Custom CNN in combination with a pre-trained AlexNet 

yielded promising results with a disease detection accuracy of 

97% in maize crops. Shifting the focus to rice crops, ResNet50 

displayed remarkable performance with an accuracy of 99% in 

disease detection. GoogleNet, MobileNet-V3, and AlexNet 

with SVM achieved a similar accuracy of 99% in detecting 

diseases in rice crops. The proposed methods are introduced to 

enhance disease detection and nutrient deficiency 

identification. For maize crops, the proposed approach 

achieved an accuracy of 95%, while in the case of rice, it 

attained an accuracy of 97.6%. Interestingly, the proposed 

method targeting maize crops attained an accuracy of 97.3% 

even without specifying the nutrient deficiency factor. 

Similarly, the proposed method for rice crops, without 

considering nutrient deficiencies, achieved an accuracy of 
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97.6%. The fusion of Xception and ResNet101, along with the 

addition of an attention mechanism, can result in a highly 

complex model architecture. This complexity may require 

significant computational resources, including memory and 

processing power, which could limit its practicality for 

deployment on resource-constrained devices or in regions with 

limited access to advanced hardware. 

V. Conclusion 

In conclusion, the landscape of disease detection and nutrient 

deficiency identification in crops has seen significant 

advancements through various methodologies, as highlighted in 

the comparative analysis presented in Table 7. While individual 

methods have demonstrated commendable accuracy, the 

proposed model that integrates Xception and ResNet101, 

augmented by an attention mechanism, emerges as a potential 

solution to these challenges. However, this study also 

underscores several considerations and limitations that warrant 

attention. The proposed model's amalgamation of state-of-the-

art architectures showcases its potential for enhanced 

performance in detecting diseases and nutrient deficiencies. Its 

utilization of both Xception and ResNet101, along with an 

attention mechanism, reflects a sophisticated approach to 

feature extraction and focus on crucial regions within images. 

This bodes well for accurate identification and diagnosis, 

essential for optimizing crop health and yield. Nonetheless, the 

model's complexity demands thorough evaluation. Balancing 

computational demands with accessibility to resources remains 

a pivotal concern, ensuring the model's applicability across 

diverse agricultural settings. Moreover, the potential lack of 

interpretability in deep models could hinder their adoption by 

end-users seeking insights into decision-making processes. 

Furthermore, the model's effectiveness hinges upon robust 

training data and generalizability. Addressing biases and 

limitations in the dataset is imperative to avoid suboptimal 

performance and false predictions. The reliance on specific 

crops (maize and rice) necessitates caution when extrapolating 

results to other crops with distinct disease patterns. Despite 

these limitations, the proposed model presents a stepping stone 

towards holistic crop management. As agricultural systems 

grow more complex, incorporating diverse factors like pest 

infestations, soil health, and environmental conditions into 

future iterations of the model could yield more comprehensive 

insights. Furthermore, devising user-friendly interfaces and 

ensuring seamless integration into real-world farming practices 

will enhance the model's practical utility. 

In essence, the proposed model's strengths in disease detection 

and nutrient deficiency identification underscore its potential to 

revolutionize agricultural practices. While challenges persist, 

an adaptive and iterative approach to model development and 

deployment can pave the way for sustainable crop production, 

benefiting farmers and food security worldwide. 
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