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Abstract—Smart environmental monitoring and corrective measures in small-scale poultry farming leads to significant improvements in 

productivity. The growing demand for chicken production has emphasized the importance of maintaining optimal conditions to improve quality 

and productivity.The integration of Artificial Intelligence (AI) and the Internet of Things(IoT) is recommended for the efficient management of 

the farm's environment. A potential solution is presented in this paper, utilizing IoT-based sensor nodes with ARM Cortex M3 - LPC 1769 and 

LORA technology to monitor chicken farms across diverse regions.The proposed solution incorporates a low-cost edge computing server-Jetson 

Nano device equipped with a machine learning model to categorize and monitor live environmental conditions in poultry farms. Real-time data 

from various branches is collected and analyzed using machine learning classification techniques including logistic regression, K nearest 

neighbors, and support vector machines.The performance of these algorithms is compared to identify the most effective approach. Upon 

evaluation, the K nearest neighbors emerges as the superior performer, achieving an impressive accuracy of 99.72% and an execution duration of 

0.087 seconds on the Jetson Nano edge computing device. This cost-effective technology is tailored for small businesses in regions where 

farmers can gain valuable insights from data-driven decisions and closely monitor their operations. By incorporating AIoT into farm 

management, the challenges faced by small-scale poultry farming can be addressed, empowering farmers with enlightened techniques to 

improve overall productivity and quality. 
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I. INTRODUCTION 

 The introduction of standardized farming methods 

and enhanced manufacturing procedures has led to significant 

growth in the worldwide chicken production industry over the 

past few decades. The demand for high-quality chicken food 

has risen due to increasing consumer awareness about the 

safety of chicken products [1]. Chicken is recognized as the 

most popular form of meat consumed globally, owing to its 

abundance of nutrients, including high-quality protein, low fat, 

and low cholesterol [1].However, the production of gases such 

as ammonia (NH3) and hydrogen sulfide (H2S), which emit 

foul odors, remains a primary environmental concern in 

poultry farms. Dust generated from feed mill operations and 

the storage and processing of solid waste, such as manure, 

dead birds, and hatchery waste, all contribute to these odor 

issues. Furthermore, water usage for cleaning tasks can 

exacerbate these problems, and the presence of rats and flies 

introduces additional difficulties [2]. 

 Poultry farms employ various strategies to address 

these issues. Precautions include maintaining adequate 

ventilation and air flow to control odors from off-gas 

emissions, as well as using dust-removal equipment in feed 

factories to improve the working environment [3]. Effective 

management of solid waste involves procedures such as  

composting, routine manure collection, and proper disposal of 

deceased birds. To limit environmental impact, it is crucial to 

find efficient ways to handle reproductive waste, including 

eggshells, unhatched eggs, and liquid waste. These techniques 

could include methods like open burning or the use of imaging 

equipment. In general, by implementing suitable mitigation 

measures and adhering to ethical waste management practices, 

the environmental consequences associated with chicken farm 

operations can be reduced.  

 Traditional poultry farming is often characterized by 

manual management methods, which may not sufficiently 

preserve the health and growth of chicks [4][5]. The 

introduction of automated systems for running chicken farms 

is necessary, particularly due to labor shortages. The suggested 

approach aims to significantly enhance the administration and 

oversight of chicken farms by incorporating automated 

methods. The proposed solution offers an innovative approach 

to address the challenges faced by poultry farmers, 
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emphasizing cost-effectiveness, asset-saving, quality-oriented, 

and productive management of chicken farming. Furthermore, 

it provides a convenient and efficient way of monitoring and 

managing poultry farms for small-scale industries through the 

utilization of AIoT (Artificial Intelligence of Things) 

technology.  

II. LITERATURE SURVEY 

Li, N et al. [6] conducted a survey and highlighted the 

significance of monitoring poultry behavior for both animal 

welfare and Precision Livestock Farming (PLF). The study 

revealed that behavior served as a non-invasive indicator of 

welfare, contributing to enhanced poultry health and 

production quality. Modern technologies, such as sound 

analysis and wireless wearable sensors, enabled continuous 

monitoring and real-time tracking of individual birds. 

Moreover, image processing technology provided direct 

measurements of behavior and early disease warning. Despite 

the promise shown by these technologies for commercial 

applications, their implementation faced certain challenges. 

Advancements in PLF systems were deemed necessary to 

improve data processing and device detection for commercial 

validation. The potential benefits of fully developed PLF 

systems included enhanced animal welfare, health, and overall 

efficiency for poultry farmers.Chigwada et al. [7] proposed a 

low-cost IoT-based remote poultry management system 

designed for small to medium-scale farmers. The system 

effectively monitored and regulated various parameters such 

as temperature, humidity, water level, ammonia gas, and 

lighting. This implementation resulted in reduced labor costs, 

time savings, and improved egg production, mainly due to 

unique light scheduling. The system provided remote 

accessibility through a web portal, enhancing convenience for 

farmers.The implementation of this innovative system has the 

potential to support multiple United Nations Sustainable 

Development Goals (UNSDGs), including ending poverty and 

achieving zero hunger. Policy support was considered 

essential for addressing food security challenges in the context 

of poultry farming. Additionally, research on poultry 

technology and disease detection was identified as a means to 

enhance resilience and support the achievement of UNSDGs 

in developing countries. 

Lufyagila et al. [8] discussed the significance of 

poultry health for growth and production. The challenges 

faced by Tanzanian smallholder farmers in adopting 

automated systems due to cost constraints were addressed. In 

the past, an IoT-based system was developed, offering a cost-

effective solution for monitoring poultry conditions and 

resulting in time and cost savings. The implementation of such 

systems has the potential to empower smallholder farmers and 

improve poultry health and productivity in Tanzania.Singh et 

al. [9] conducted a comprehensive evaluation of chicken 

health monitoring using artificial intelligence (AI) methods on 

an internet of things (IoT) platform. The research explored IoT 

device tracking using sensors, video/image processing, and 

audio-based poultry analysis. Considering the importance of 

eggs and poultry as main sources of protein and the 

availability of cheap computer resources and common 

methods, there is a compelling case for using modern 

technology to continuously monitor large farms and increase 

production. In poultry farming, especially in small-scale 

industries in rural areas, the application of AIoT offers 

significant benefits with cost-effective and user-friendly 

solutions. This empowers smallholder farmers, addresses 

poultry management challenges, and contributes to sustainable 

agriculture and improved livelihoods in rural communities. 

However, existing systems still face limitations in terms of 

accuracy and execution time. To overcome these challenges, 

the proposed system aims to monitor multiple poultry barns 

and classify environmental conditions with low cost, high 

performance, and high speed. By incorporating AIoT 

technology, this system seeks to revolutionize poultry farming 

practices, ensuring efficient and accurate monitoring of 

poultry house conditions for enhanced productivity and 

welfare. 

III. PROPOSED SYSTEM 

The proposed system comprises two modules: the 

Poultry Farm Environment Monitoring and Management 

(PFEM) IoT node and the Artificial Internet of Things (AIoT) 

edge server module. The system overview is depicted in 

Figure 1. Each poultry farm is monitored using the PFEM IoT 

node, which incorporates various environmental monitoring 

sensors. The temperature is regulated by controlling the fans. 

Data from the PFEM IoT nodes of different branches is 

transmitted to the Thing Speak cloud via the LORA module. 

The AIoT edge server, equipped with a JETSON Nano 

computing device, utilizes machine learning algorithms and 

data from the cloud to monitor the environmental parameters 

of various poultry farm branches. It classifies whether the 

poultry farm environment is normal or abnormal for chicken 

growth. 

 
Fig.1.AIoT- Poultry Farm monitoring system architecture 
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IV. PFEM IOT NODE 

PFEM IoT node is designed to monitor the environment of 

poultry farm and regulate the temperature of farm using 

industrial fan. The main processing unit is ARM CORTEX 

M3 LPC 1769. [10]The ARM Cortex M3 - LPC 1769 is a 

feature-rich microcontroller with a 32-bit RISC architecture, 

clock speed up to 120 MHz, 512 KB flash memory, multiple 

communication interfaces, low power consumption, built-in 

ADC and DAC, and high-speed GPIO pins. Figure 2a 

represents the various sensors interfaced with LPC 1769 and 

Fan controlled through relay. Figure 2b is hardware 

implementation of PFEM IoT node. 

The poultry farm monitoring system incorporates 

various sensors to ensure accurate and efficient data collection. 

The HTU31D temperature and humidity sensor offer precise 

readings with fast response times, making it ideal for 

monitoring environmental conditions. The VEML7700-TT lux 

sensor measures ambient light levels, providing valuable 

insights into the lighting system's effectiveness. For gas 

monitoring, the SCD4X CO2 sensor covers a wide output 

range and operates with low power consumption, while the 

MQ 137 ammonia gas sensor and MQ 7 CO sensor offer high 

sensitivity to NH3 and carbon monoxide, respectively. 

These sensors are essential to detect potential threats and 

protect the welfare of poultry. A wind sensor based on a hot-

wire anemometer is used to monitor airflow; it provides 

accurate data with hardware control of ambient temperature. 

DC fans are also integrated into the system, which ensure 

energy-efficient and adjustable air flow to maintain ideal 

conditions in the hen house. [11][12]The poultry farm 

parameters and their corresponding desired values include 

maintaining a temperature of 27°C or lower, maintaining 

humidity levels between 40% and 70%, ensuring carbon 

dioxide (CO2) levels remain below 2500 ppm, keeping 

ammonia levels below 25 ppm, and providing light intensity 

within the range of  20 to 50 lux.  

 

a. Architecture of PFEM IoT Node 

 

b. Hardware Implementation of PFEM IoT Node 

Fig. 2. PFEM IoT Node of Poultry farm 

 The SX1262-LoRa-DTU is a reliable wireless 

transmitter for sending data wirelessly over long distances. It 

employs LoRa technology to reduce interference. Its 

multilayer relay network and AES encryption enable secure 

and effective data transfer, making it appropriate for many 

protocols and industries. Only these sensors and wireless 

technologies enable a complete and sophisticated poultry farm 

monitoring system. 

The pseudo code for the PFEM IoT node is depicted 

in Figure 3. Sensors measure temperature, humidity, pressure, 

CO2, CO, NH3, light, and airflow every 5 seconds. Values are 

transmitted to the controller using I2C protocols, then 

calibrated and sent to the cloud via the LORA module. The 

system controls fans based on temperature: 2 fans are activated 

at 27°C-29°C, 4 fans at 29°C-33°C, and all 8 fans above 33°C. 

Additionally, if the temperature remains constant for one 

minute, the fan rotation sequence is initiated, optimizing usage 

and power consumption. 

Pseudo code of PFEM node 

Assume Temperature=T, Humidity=H, carbon-di- oxide=CO2, 

carbonmonoxide=CO, Ammonia=NH3, 

Pressure=P,Airflow-A,LuX-L,LPC1769-µC,DC 

fan=DCF1,DCF2,DCF3,DCF4,DCF5,DCF6,DCF7,DCF8 

while(1) 

{ 

  for every 5 sec: 

    T, H, CO2, CO, NH3, A, LP➔ µC 

     µC➔ LORA module➔ Thing speak cloud 

     µC➔GLCD display 

if T <27°C constant 

           DCF1 to DCF8 = off 

else if T=27°C to 29°C 

          DCF1, DCF2=ON 

else if T=29°C to 33°C 

         DCF1-DCF4=ON 

else if T>33°C 

         DCF1-DCF8=ON 

} 

Fig. 3. Pseudo code for the PFEM IoT node 
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V. IOT CLOUD 

The sensor data from the PFEM IoT nodes in the poultry farm 

branches is transmitted in real-time to the ThingSpeak cloud 

platform. ThingSpeak is an IoT platform that collects, 

visualizes, and analyzes data in the cloud[13][22]. It supports a 

variety of embedded devices and assigns unique channel IDs. 

 
Fig. 4. Thing Speak IoT dashboard of Poultry Farm 

 
Fig. 5. Live visualization of Poultry farm of branch 1 

Each channel is associated with a specific PFEM IoT node 

through an API key. This enables the visualization of up to 

eight different parameters in the cloud. Only authorized 

individuals can access the Thing Speak cloud, where they can 

monitor the live data and take actions based on specific values. 

Figure 4 represents IoT cloud dashboard of four Poultry farm 

branch with unique channel IDs. By selecting a specific 

channel, real-time sensor values can be viewed as a graph, 

providing a live visual representation of the data as shown in 

figure 5. 

VI. ARTIFICIAL INTERNET OF THINGS (AIOT) EDGE 

SERVER MODULE 

The AIoT edge server module is implemented using 

the Jetson Nano embedded edge computing platform, running 

Ubuntu 18.04 Linux operating system. With the USB Dual 

Band WiFi Network Card featuring the RTL8811CU chip and 

USB 2.0 interface, seamless integration with the Jetson Nano 

is achieved. This integration empowers the Jetson Nano to 

establish wireless connections, utilizing both the 2.4GHz and 

5GHz frequency bands.  

 

Fig. 6. AIoT Edge computing server-Jetson Nano 

Consequently, the network card significantly enhances the 

Jetson Nano's networking capabilities, facilitating reliable and 

efficient WiFi connectivity. The figure 6 shows the hardware 

implementation of AIoT edge computing server. 

VII. EDGE AI MODEL DEVELOPMENT 

The AIoT edge computing server is utilized for 

remote monitoring of environmental parameters across 

multiple branches. It also employs a machine learning model 

to classify the condition of specific poultry farms as normal or 

abnormal. Figure 7 illustrates the workflow of the AI model on 

the Jetson Nano. The PFEM IoT node comprises device 

integration, data acquisition, and data storage blocks. Device 

integration involves connecting environmental monitoring 

sensors to the processing unit and LoRa module. In our 

proposed system, eight parameters, namely temperature, 

humidity, pressure,CO2, NH3, CO, Airflow, and light 

conditions, are collected from the poultry farm using the data 

acquisition unit. The PFEM IoT node then transmits the 

calibrated values to the data storage unit, specifically the 

Thing Speak cloud. 
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Fig. 7. Workflow of AI model in Jetson nano 

The AIoT edge Jetson Nano system receives real-time data 

from four branches via the cloud. The dataset is generated by 

utilizing cloud data and includes information about both 

normal and abnormal environmental conditions in a poultry 

farm, based on sensor values. The dataset consists of eight 

independent features and one dependent feature, which 

indicates whether the poultry farm environmental condition is 

normal or abnormal.  

A. Data Preprocessing 

AIoT preprocessing is converting unstructured IoT 

data into a format that can be used by machine learning AI 

models. The method includes a number of crucial steps. First, 

data cleaning removes errors and discrepancies to allow for 

precise analysis. The next step is feature selection or 

extraction, which increases prediction accuracy by locating 

valuable attributes. For thorough analysis, data integration 

compiles data from several IoT sources into a single dataset. 

The goal of outlier identification is to locate and control 

anomalies that could skew results. Resampling and regulating 

erratic time-series patterns are necessary when handling time-

series data. Unbiased analysis is ensured by scaling features 

through normalization or standardization. For effective model 

training, data augmentation produces new data. Filtering out 

interference and sensor mistakes is a part of noise reduction. 

 The dataset is prepared for model testing, validation, 

and training by data splitting. The Predictive Power Score 

(PPS) [14] is a versatile metric that can identify relationships 

between variables, regardless of their data types. It is an 

asymmetric measure that can capture both linear and non-

linear dependencies. The score ranges from 0, indicating no 

predictive power, to 1, representing a perfect predictive 

relationship. Figure 8 represents the heatmap of PPS scores 

between the variables of poultry farm data set, with higher 

scores indicated by warmer colors. 

 

 
Fig. 8. Predictive Power Score of poultry farm dataset 

In the development of the Edge AI model, three supervised 

machine learning algorithms, namely Logistic Regression 

(LR), K-nearest neighbors (KNN), and support vector machine 

(SVM) classification, are employed. The performance metrics 

of these algorithms are carefully analyzed, and the best-

performing model is selected for deployment on the Jetson 

Nano edge computing device. To ensure accurate evaluation 

and assessment of the model, the dataset is split into training 

and testing subsets. The training dataset is utilized to develop 

the machine learning model, while the test dataset is used to 

evaluate its performance. In the suggested approach, the 

dataset is split so that 40% of the data is utilized to assess the 

model's performance, while 60% of the data is set aside for 

model training. This method offers a thorough examination of 

the model's capacity to generalize to new data and produce 

accurate predictions 

B. Logistic regression 

A logistic function is used to represent the dependent 

variable in the machine learning classification technique 

known as logistic regression [14][15]. The logistic function is 

commonly referred to as the sigmoid function and is a 

mathematical operation that converts an input real number into 

a probability value between 0 and 1.  

 

         𝐿𝑜𝑔𝑖𝑡(𝑃) = 𝑏0 + 𝑏1 𝐼1 + 𝑏2 𝐼2 + 𝑏3 𝐼3 . . +𝑏𝑘𝐼𝑘1        (1) 

Logistic regression is to construct a best fit model that predicts 

the likelihood of obtaining one of two possible results 

indicating whether the environment on a poultry farm is 

normal or abnormal based on input variables. Once the best fit 

model is formulated, the coefficients' values can be accessed 

within the provided equation 1, wherein 'p' signifies the 

probability of obtaining binary results and I1, I2, I3……Ik are 

independent features[16]. In the proposed system k value is 8. 
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C. KNN classification algorithm 

K Nearest Neighbors (KNN) is a machine learning approach 

that can be used for classification and regression tasks. Its 

functionality involves recognizing the k nearest neighbors 

from the training dataset that are closest to a new unknown 

data and then predicting the label of the new unknown data. 

[17] [16]Euclidean distance metric is used to find the distance 

between new data and trained data. Consider A as the input 

data and B as the trained data. In this context, the Euclidean 

distance(Ed) between these two sets is quantified by the 

equation (2). 

                    𝐸𝑑(𝐴, 𝐵) = √∑ (  𝐴𝑛 − 𝐵𝑛)2𝑖
𝑛=0               (2) 

The KNN algorithm is non-parametric in nature. It is a 

versatile and powerful machine learning method that can be 

applied to a wide range of problems. The value of k is a 

hyperparameter that the programmer must set. The accuracy of 

the KNN algorithm is influenced by the value of k [17]. A 

lower k number makes the algorithm more precise, but it also 

makes the method more susceptible to noise. On the other 

hand, a higher k number makes the algorithm more resistant to 

noise, but it may also lead to reduced accuracy. 

D. Support Vector Machine classification algorithm 

Support vector machines (SVMs) [20, 21] are a 

supervised learning technique that can be used for both 

classification and regression tasks. They are an effective 

machine learning approach and are commonly employed in 

various fields, such as fraud detection, text classification, and 

image classification. Even if the data points are not linearly 

separable in the original feature space, SVMs can still find a 

hyper plane that separates the data points of two different 

classes by transforming the original feature space into a 

higher-dimensional space using a kernel. SVMs can use 

different kernels depending on the problem to transform the 

data into a higher dimensional space. Equation 3 gives the 

SVM decision function f(x), Where N is the support vectors, αi 

is co-efficient, b is bias term and k is the kernel function with 

support vector xi and unknown data x. Table 1 shows SVM 

kernel function formulas. 

               𝑓(𝑥) = ∑ αi 
𝑁
𝑖=1 yi k(xi, x) + b                                 (3) 

TABLE I.  SVM  KERNEL  FUNCTIONS 

Kernel function Mathematical formula 

Linear k(xi, x) = xi
T. x 

Polynomial k(xi, x) = (xi
T. x + c)d ;  c=constant, d=degree 

Radial Basis Function 

k(xi, x) = exp
−(

‖xi−x‖
2

2σ2 )
   ;  σ=width of Gaussian  

Sigmoid k(xi, x) = tanh (αxi
Tx + c)  ; α = c = constants 

 

Linear kernels transform data points to a higher-dimensional 

space where they are linearly separable. Polynomial kernels 

map data points into a higher-dimensional space where they 

can be separated by a curved hyperplane.RBF (Radial Basis 

Function) kernels map the data points into a higher-

dimensional space where they are separated by a spherical 

hyperplane. Sigmoid kernels map data points into a higher-

dimensional space where they are separated by a sigmoid 

hyperplane. 

VIII. ANALYSIS OF PERFORMANCE METRICS 

Evaluation metrics play a crucial role in assessing the 

performance of AI machine learning models. The performance 

metrics of an AI model for classification are accuracy, 

precision, specificity, recall, and F1 score. Accuracy 

represents the ratio of correctly predicted instances to all 

predictions made. Precision evaluates the proportion of 

predicted positive instances that were genuinely positive, 

while specificity measures the ratio of accurately predicted 

negative instances among all negative predictions. Recall 

calculates the fraction of actual positive instances that were 

correctly identified as positive. To strike a balance between 

precision and recall, the F1 score comes into play. It combines 

both metrics into a single accuracy measure. Although 

accuracy provides a useful overall performance indicator, it 

may be misleading when dealing with imbalanced class 

distributions. In such cases, precision and recall offer more 

insightful evaluations, particularly for specific classes. Hence, 

the F1 score serves as a valuable compromise, capturing the 

interplay between precision and recall to provide a more 

comprehensive assessment of the model's performance [23]. 

Equations 4, 5, 6, 7, and 8 present the formulas for 

computing various performance metrics in classification tasks, 

namely accuracy, precision, specificity, recall, and F1 score 

[24]. These metrics are represented using True negative (TN), 

False negative (FN), False positive (FP), and True positive (TP) 

values. These equations allow us to quantitatively evaluate the 

model's performance by comparing the correctly classified 

instances with the misclassifications for different evaluation 

criteria. 

                               Accuracy =
(TP+TN)

(TP+TN+FP+FN)
                    (4) 

                                 Precision =
TP

(TP+FP) 
                           (5)  

                                 Specificity =
TN

(TN+FP)
                           (6) 

                                       Recall =
TP

(TP+FN)
                              (7) 

                         F1 score = 2 ∗
(Precision∗Recall)

(Precision+Recall)
                    () 

The Figure 9 presents the performance of the KNN algorithm 

for various K values on the Jetson Nano. Figure 12 illustrates 

the comparison of AI models based on their execution times.  
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The accuracy remains consistently high, ranging from 99.55% 

to 99.72%. Notably, K=3 to K=6 achieve a perfect precision of 

100% while K=7 to K=9 maintain a commendable 99.36%. 

The specificity, indicating the accurate identification of 

negative instances, is 100% for K=3 to K=6 and 99.77% for 

K=7 to K=9. The recall, reflecting the ability to identify 

positive instances, remains at 98.95% for all K values. The F1 

score, balancing precision and recall, ranges from 99.15% to 

99.47%. Moreover, the execution time for KNN predictions is 

generally low, varying from 0.087 to 0.099 seconds. 

Considering these results, K=3 to K=6 are optimal choices, 

particularly if precision and specificity are critical. For quicker 

execution, K=3 stands out as the most suitable option. 

 
Fig.9. Performance analysis of KNN algorithm. 

The figure 10 presents the performance of SVM with different 

kernels on the Jetson Nano. All kernels achieve high accuracy, 

ranging from 95.50% to 99.83%. The linear kernel stands out 

with perfect precision of 100%, indicating all positive 

predictions are correct. For recall, the polynomial and RBF 

kernels achieve 100%, effectively identifying all positive 

instances. In terms of execution time, the linear kernel is the 

fastest, taking only 0.173 seconds, while the sigmoid kernel is 

slower at 0.692 seconds. 

  
Fig.10. Performance analysis of SVM algorithm 

considering the trade-off between accuracy and speed, the 

linear kernel appears to be the most attractive option for 

applications on the Jetson Nano, providing a good balance 

between these key performance metrics. 

The Logistic Regression model on the Jetson Nano shows 

impressive performance with high accuracy 99.66% and 

perfect precision and specificity 100%, indicating correct 

classification of positive and negative instances. It achieves a 

commendable recall of 98.74%, effectively capturing most 

positive instances. The F1 score of 99.36% reflects a good 

balance between precision and recall is shown in figure 11. 

Moreover, the model's execution time is low, taking only 

0.134 seconds, making it efficient for real-time or resource-

constrained applications. 

 

Fig. 11. Performance analysis of Logistic Regression algorithm 

 Figure 12 showcases the efficiency of each model in 

terms of processing speed. Considering the importance of 

quick data analysis, the figure allows us to identify the most 

time-efficient AI model for the given application. Execution 

time is a crucial factor to consider, especially for real-time 

applications and resource-constrained devices like the Jetson 

Nano. In the context of poultry farm environment monitoring, 

where prompt decision-making and responsiveness are 

essential, minimizing the execution time is of paramount 

importance. Among the AI models evaluated, KNN exhibits 

commendable execution times, with K=3 and K=4 achieving 

the lowest time of 0.087 seconds. This indicates that KNN can 

process and classify data quickly, making it suitable for real-

time monitoring in a poultry farm environment. While the 

execution times for KNN increase slightly for higher K values, 

the differences remain relatively small. Considering the 

emphasis on execution time, KNN with an appropriate K 

value, such as K=3 or K=4, emerges as an optimal choice for 

poultry farm environment monitoring on the Jetson Nano. Its 

efficient execution time ensures timely data analysis and 

decision-making, making it a practical and responsive solution 

for monitoring the farm conditions effectively. The AI model, 
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utilizing the K-Nearest Neighbors algorithm, has been 

deployed on the Jetson Nano, creating a real-time interface for 

an AIoT based edge computing system.

 

 

Fig. 12. Comparison of AI model with execution time 

This system is designed to monitor and classify the 

environmental conditions in various branches of a small-scale 

poultry farm as either normal or abnormal. By leveraging the 

Jetson Nano's processing capabilities and the efficiency of the 

KNN algorithm, the AIoT system can swiftly analyze 

incoming data, allowing timely detection of any anomalies or 

irregularities in the poultry farm environment. This proactive 

monitoring approach aims to enhance the overall management 

and productivity of the small-scale poultry industry, ensuring 

optimal conditions for poultry health and sustainable 

operations. 

IX. CONCLUSION 

 The proposed AIoT- based edge computing system 

for small-scale poultry farm monitoring is a cost-effective and 

environmentally friendly solution. The system utilizes efficient 

processing capabilities and the KNN algorithm to achieve real-

time monitoring and data analysis at a relatively low price 

point. This is especially beneficial for small-scale industries 

with limited budgets, enabling them to access advanced AI 

capabilities without significant financial investments. 

Additionally, the system's proactive monitoring approach 

helps ensure a better environment for the poultry farm by 

promptly detecting and addressing any anomalies or 

irregularities in the environmental conditions. This timely 

intervention leads to improved poultry health, increased 

productivity, and enhanced overall farm management. By 

integrating AIoT and edge computing technologies, small-

scale poultry farms can create a more sustainable and efficient 

environment, optimizing resources and minimizing 

environmental impact. Overall, the AIoT-based edge 

computing system for small-scale poultry farm monitoring is a 

promising technology with the potential to revolutionize 

poultry farm management. Its cost-effectiveness, 

environmental friendliness, and proactive monitoring 

capabilities make it an attractive option for small-scale 

industries seeking to improve their operations. 
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