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Abstract— The Brain-Computer Interface (BCI) technologies have excellent clinical and non-clinical uses. Among the most popular 

imaging methods adopted in BCI technologies is electroencephalography (EEG). But EEG signals are typically quite complicated, so analyzing 

them necessitates a significant amount of effort. With the help of machine learning (ML), this research investigates the feasibility of a BCI 

platform based on the motor imagery (MI) concept. The steps of pre-processing, feature extraction and classification are the underpinning of any 

conventional ML model. To train such a model, however, a large amount of data is needed. To address this gap, this work introduces a new 

mayfly-optimized multiclass weighted random forest (MFO-MWRF) technique that uses retrieved features as input to mitigate the need for this 

supplementary data. In this study, we gather a dataset of hybrid EEG and fNIRS motor imagery that can be pre-processed using a Wiener filter 

(WF) to filter out noisier signals without affecting the high-quality images. The characteristics are extracted using the discrete wavelet transform 

(DWT). The research results indicate that the proposed approach achieves the best performance compared to existing approaches for classifying 

motor movement images. 

Keywords- Brain-Computer Interface (BCI), Electroencephalography (EEG), Wiener filter (WF), discrete wavelet transform (DWT), mayfly 
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I.  INTRODUCTION 

The introduction of innovative signal processing methods in 

recent years has greatly increased the usefulness of BCIs. 

Experiments with wide scope are a wonderful way to amass the 

mountains of data required to test out different processing 

methods. It is difficult and time-consuming to collect high-

quality data from a big population. To control an external 

device, brain-computer interface (BCI) systems aim to track 

and record activity in the brain's cerebral cortex. It's the brain's 

technique of communicating with machines through electrical 

impulses it creates, bypassing the need for any musculature or 

involvement of the spinal cord or brain stem in the process [1]. 

A hybrid BCI system is created by combining any two 

modalities. In our research, signals that were obtained utilizing 

a combination of fNIRS and EEG were employed for analysis. 

The majority of the disturbances in these signals, which are 

physiological sounds that cause motion artifacts, must be 

removed to prepare the signal for categorization. These artifacts 

are often eliminated using bandpass filters [2]. 

A hybrid BCI system was developed using MI-BCI and 

transient visual evoked potentials. Controlling the amplitude of 

motion using the intensity of motion imaging EEG will 

increase the efficiency of rehabilitation by involving the 

neurological system of the brain directly in practice. This will 

enable closed-loop control, encourage active movement 

awareness, encourage the rehabilitation of nerve function, and 

encourage neuroplasticity [3]. The suggested block diagram is 

shown in Fig 1. Applications of BCIs are quite valuable, 

particularly in terms of offering patients with motor 

dysfunction new forms of rehabilitation. They provide a novel 

route for communication and control between the brain and 

each outer environment by obviating the need for peripheral 

nerve and muscle tissue. Users can connect and communicate 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 12 Issue: 1 

DOI: https://doi.org/10.17762/ijritcc.v12i1.7907 

Article Received: 09 July 2023 Revised: 16 August 2023 Accepted: 28 August 2023 

___________________________________________________________________________________________________________________ 

 

    30 

IJRITCC | January 2024, Available @ http://www.ijritcc.org 

in new ways because of this technology. BCI systems have 

been employed effectively in the control of robots, intelligent 

homes, and electric wheelchairs [4]. 

 
Figure 1: Block Diagram of Proposed Method 

Electroencephalography (EEG) detection techniques are the 

most widely used in the area of BCIs because they are very 

safe, inexpensive, and simple to use. They often select these 

typical awareness activities in everyday life due to their 

improved ability to do mental tasks. When using the motor 

imaging paradigm, EEG signals from the cerebral cortex that 

processes movement experience event-related 

desynchronization/synchronization (ERD/ERS) [5]. This 

development for the Mayfly Optimised Multiclass Weighted 

Random Forest (MFO-MWRF) can improve the categorization 

of motor movement pictures using hybrid BCI signals.  

The article's remaining sections are broken down as 

follows: In Section II, an overview of current research is 

provided; in Section III, the suggested methodology is 

explained in greater detail; and in Section IV, experimental 

data sets and simulation results are presented and discussed. 

The analysis is finished in Section V, which also makes 

recommendations for more research.. 

II. RELATED WORKS 

The research [6] presents a smart hospital collaboration 

system built on the Internet of Things (IoT) and Brain-

Computer Interface (BCI) that makes use of mixed signals. The 

paper [7] suggests a simultaneous hybrid Brain-Computer 

Interface (BCI) system that can decode Dual-channel EEG 

signals Electroencephalography (EEG) setup with sensors over 

the central region to detect both Motor Imagery (MI) and 

steady-state visually evoked potentials (SSVEP). The research 

[8] proposed an end-to-end semi-supervised learning system 

for EEG categorization and Electroencephalogram-

Electromyogram (EEG-EMG) fusion analysis. The study [9] 

suggested linear, tensor, and p-order polynomial fusion are the 

three fusion methods used for the hybrid EEG and NIRS-based 

brain-computer interface system. The paper [10] developed and 

evaluate control of home automation using a hybrid brain-

computer interface (BCI) technology.BCIs have become a 

potential option in the last ten years for distance 

communication, mind reading, and medical education. The 

research [11] suggests a brand-new hybrid asynchronous BCI 

system that utilizes both blink-related electrooculography 

(EOG) data and EEG signal steady-state visual evoked 

potentials (SSVEPs). The investigation [12] proposed a 

distinctive channel selection method that exclusively chooses 

strongly associated channels from each hemisphere using the 

Pearson product-moment correlation coefficient. The paper 

[13] discussed a state-of-the-art Brain-computer interface (BCI) 

report focused on steady-state visual evoked potential 

(SSVEP), with particular emphasis on data analytics that allows 

for continuous, precise SSVEP detection and high information 

transmission rates. The research [14] conducted a 5-week 

longitudinal pilot study on 4 individuals with persistent 

hemiparesis after a stroke to assess each neurophysiological 

importance of Band-limited Power Time-courses (CBPT) 

Correlation for Motor Recovery Monitoring. The article [15] 

presented a variety of BCI applications, including telepresence, 

object grabbing, navigation, etc., that guide a humanoid robot 

using multi-sensor fusion and machine learning to carry out one 

specific job. 

III. PROPOSED MODEL 

Hybrid BCI signals are a computer-based system that 

collects brain impulses, evaluates them, and transforms them 

into instructions that are delivered to an output device to 

perform the specified operation. Experiments with the MFO-

MWRF system were undertaken in this setting. With prior 

empirical research, the clinical and non-clinical applications of 

BCI signals were established. 

A. Hybrid EEG and fNIRS dataset 

A public dataset that concurrently captures Functional 

Near-Infrared Spectroscopy (FNIR) along with 

Electroencephalography (EEG) signals. Each piece of 

information was gathered from 28 right-handed competitors 

and 1 (14 men and 15 women) with left-handedness, with a 

mean lifetime and standard deviation of 28.5 and 3.7 years, 

respectively. The data source was then downscaled to 200 Hz 

and 10 Hz, respectively, the EEG and fNIRS signals. Each task, 

which included Baseline (BS), Mental Arithmetic (MA), Left-

Hand Motor Imagery (MI), and Right-Hand Motor Imagery 

(MI), as a rest state condition, required each subject to 

complete 30 trials. Throughout the BS condition, the 

participant slept off without thinking. During every MA 

assignment, the topic was instructed into frequently a digit is 

subtracted numbers from three-digit numbers (for example, 384 

8). For each MI assignment, participants used kinesthetic MI to 
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visualize their hands opening and closing. A two-second visual 

task introduction kicked off the study. There were EEG signals 

down-sampled, a shared average reference re-referenced, and 

then 0.5–50 Hz filtered. There were EEG signals down-

sampled a frequent example of the average, 120 Hz was re-

referenced before being filtered at 0.5—50 Hz. Artifacts from 

Electrooculography (EOG) were then eliminated using 

Independent Component Analysis (ICA). MI dataset and MS 

dataset Right-hand MI and left-handed MI are considered. We 

clipped instantaneous BCI performance, 3 s of EEG also fNIRS 

data were collected using a 1-s time step. rather than utilizing a 

10-second task time for network training. There were 1,740 

trials overall for each dataset (29 subjects 30 trials 2 tasks), 

making the size of the EEG and fNIRS signals 30 360 (channel 

time) and 36 30 (channel time), respectively. 

B. Weiner Filter 

The Wiener filter employs spectral characteristics of the 

signal-to-noise ratio is favorable while viewing both as linear 

stochastic processes features. 

With coefficientsW_K, this linear filter is applied to the 

predicted signal. The input signal,e(k)  include noise, p(k).  

𝑒(𝑘) = 𝑓(𝑘) + 𝑝(𝑘)                         (1) 

A should be the output signal, y(n) precise estimation 

off(k). Therefore, the appropriate error signal should x(n) be as 

little as possible. The adaptive method attempts weight 

adjustment Wk such as to the fact that the mean square error is 

kept to a minimum. 

𝑥 = 𝑚𝑖𝑛⁡(𝑥(𝑛)2)  (2) 

𝑒(𝑘) = 𝑝(𝑘) − 𝑓(𝑘)       (3) 

 The value of y is determined by the following equation 

using a discrete Wiener filter with k taps (n),  

𝑝(𝑘) = ∑𝑇𝑛(𝑓(𝑘 − 𝑛) ∗ 𝑣(𝑘 − 𝑛))

𝐾−1

𝑛=0

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4) 

The most important characteristic of the Wiener filter is the 

equation of the Wiener-Hopf, which determines perfect 

weights,  

∑ 𝑇0𝑟𝑙𝑒𝑒(𝑛 − 1) = 𝑙𝑒𝑓(−𝑟)
𝑛−1
𝑟=0                           (5) 

Where 𝑊𝑜0,𝑊01 ...,𝑊𝑜𝑛−1 represent the filter's ideal tap 

weight values, l_ee represents e(k) autocorrelation function, 

and l_ef represents x(n) and cross-correlation function between 

e(k) and f(k). 

C. Discrete Wavelet Transform 

A mathematical method for converting a picture into a 

series of discrete wavelets is known as the DWT pyramidal 

sub-images. The analysis of a signal into short waves of 

changing frequency and length is crucial to the transformation. 

Qualities are typical of waves in the wavelet range. Parameters 

of wavelet transformations that once referred to a specific place 

become less accurate. By applying a reverse wavelet 

transformation to these coefficients, the original signal may be 

recreated in its entirety. The signals may be series produced by 

a mother wavelet representation of a square-integrable 

function. Since the Short-time Fourier Transform (STFT) 

window's length is fixed, it is unable to identify the frequency 

of EEG signals that fluctuate erratically in the temporal 

domain. We can easily analyze time domain and frequency 

domain signals in their raw form since the mother wavelet was 

able to dilate and translate the represented original signals. 

𝑇𝑊(∝ ,1) =
1

√𝛼
∫ 𝑑(𝑤) ∗ 𝜑 (

𝑤−1

𝛼
) 𝑓𝑤

+∞

−∞
⁡            (6) 

𝜑(𝑒) = 𝑥−𝑒
2
𝑐𝑜𝑠 (𝜋√

2

2
𝑒)                            (7) 

Feature A may be derived from the input signal B using the 

equation (6).  

The dilation property is represented by d(w), whereas the 

translation property is represented by TW. The wavelet 

function is denoted by the letter B. In this case, the Morlet 

wavelet is substituted for the wavelet in equation (7). 

∆𝑤 = √
∫ (𝑤−𝑤0)

2|𝜑(𝑤)|2𝑓𝑤
∞
−∞

∫ |𝜑(𝑤)|2𝑓𝑤
∞
−∞

                                   (8) 

∆𝜔 = √
∫ (𝜔−𝜔0)

2|𝜑(𝜔)|2𝑓𝜔
∞
−∞

∫ |𝜑(𝑤𝜔)|2𝑓𝜔
∞
−∞

                                    (9) 

𝜔0 = √
∫ 𝜔|𝜑(𝜔)|2𝑓𝜔
∞
−∞

∫ |𝜑(𝑤𝜔)|2𝑓𝜔
∞
−∞

                                            (10) 

𝑤0 = √
∫ 𝑤|𝜙(𝑤)|2𝑓𝜔
∞
−∞

∫ |𝜙(𝜔)|2𝑓𝜔
∞
−∞

                                   (11) 

The raw EEG signals' original features to be preserved, it is 

crucial to choose the appropriate wavelet. It is straightforward 

to determine the wavelet's characteristics by multiplying the 

two variables A and B in equations (7) and equations (8), 

which correspond to the time and frequency domains, 

respectively. Equations (9) and (11) provide us with t0 and 0. 

(10). Thus, the time-frequency trade-off allows the WT 

algorithm to achieve great resolution. 

D. Mayfly Optimized Multiclass Weighted Random 

Forest 

Along with introducing the Particle Swarm Optimization 

(PSO) and Mayfly Optimized (MO) algorithms, we would also 

present the skeletal approach to the MO algorithm in this study. 

In addition, investigations based on simulations would be 

conducted to confirm the potential. The following equations 

might be used by users of the MO method to update their 

positions: 

𝑣𝑜(𝑤 + 1) = 𝑣𝑜(𝑡) + 𝑔1𝑙1[𝑒𝑗,𝑜 − 𝑒𝑜(𝑤)] + 𝑔2𝑙2[𝑒𝑐 − 𝑒𝑜(𝑤)]  (12) 

𝑣𝑜(𝑡 + 1) = 𝑒𝑜(𝑤) + 𝑣𝑜(𝑤)                         (13) 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 12 Issue: 1 

DOI: https://doi.org/10.17762/ijritcc.v12i1.7907 

Article Received: 09 July 2023 Revised: 16 August 2023 Accepted: 28 August 2023 

___________________________________________________________________________________________________________________ 

 

    32 

IJRITCC | January 2024, Available @ http://www.ijritcc.org 

Where A represents the velocity of the ith agent in the 

current iteration t and the previous iteration t+1, and B 

represents random variables. In the current iterations, C 

represents the greatest trajectory in history up to and including 

the i-th iteration, while D represents the best prospects globally. 

E stands for its current and future locations in the iteration. 

The results of extensive simulations demonstrated that 

individuals' locations in the Gauss distribution A would be 

updated after a very large number of simulation iterations. 

Individuals in the MO algorithm might also use the following 

formulae to adjust their positions: 

𝑣𝑜(𝑡 + 1) = {

𝑒𝑗,𝑜+𝑒𝑐

2
+ 𝑙3|𝑒𝑗,𝑜−𝑒𝑐|𝑙4 > 0.5

𝑡𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝑤𝑎𝑦𝑠𝑙4 > 0.5
                (14) 

Two arbitrary numbers, A and B, are used here. The 

remainder of the regulating variables and equations would be 

implemented in the standard fashion. 

E. Multiclass Weighted Random Forest 

A binary classification issue with 𝑖 ∈ {1, … . 𝑛} should be 

considered 𝑃𝑜ℎ{0,1} predictor variables in the training sample 

(D), and 𝑋1 − 𝑋𝑝, and a class variable 𝑘 ∈ {1, … . . 𝑝}. Finding a 

model that predicts the 𝑃𝑜ℎ values derived from new X values 

is the key goal. 

The Random Forest method applies the bagging strategy to 

each decision tree and employs Ktree fresh training datasets p_j 

(also known as In-bag sample; further abbreviated as INB) 

(base learner). Results in the possibility of some observations 

can be duplicated. Electronics 2020 is often projected to make 

up 9996 of every 20 samples, or around 63.2% of the unique 

observations; the remaining observations are categorized as 

belonging to referred to as the "Out-of-Bag sample" (further 

denoted as OOB). Each applicant experiences a learning break; 

the RF method incorporates an extra sampling step known as a 

Random Decision Tree (RDT). The selection is made among 

the traits at random. To employ floor p features in each split for 

a classification issue with p features.  

𝑃𝑜
𝐿𝐷 = ∑ 𝑂[𝑃𝑜ℎ > 0.5]𝐾𝑡𝑟𝑒𝑒

ℎ=1                       (15) 

Where P ^_oh stands for probability and o serves as an 

indication that each jth tree will assign to the other observation. 

The aforementioned method relies on a majority of a 

predetermined threshold set at 0.5, which may not always be 

the best choice. 

Therefore, to increase flexibility (and to be more aware of 

any possible deviations from the anticipated outcome), the 

formula below is used: 

𝑃𝑜
𝐿𝐷 =

1

𝐾𝑡𝑟𝑒𝑒
∑ 𝑃𝑜ℎ
𝐾𝑡𝑟𝑒𝑒
ℎ=1                               (16) 

This, represents into straightforward of each tree's 

probability, averaged. 

Although tree aggregation and performance-based weights 

are used, they applied the standard RF technique to generate the 

forest's trees. We focused on weighing the probability derived 

from each forest tree such that the weights of the better-

performing trees were higher: 

𝑃𝑜
𝐿𝐷 =

1

𝐾𝑡𝑟𝑒𝑒
∑ 𝑃𝑜ℎ,
𝐾𝑡𝑟𝑒𝑒
ℎ=1 ∗ 𝑤ℎ                      (17) 

The same set of data that was used to determine the weights 

(as was done in would bias prediction error assessment) would 

be unfair since they are based on how well the 

particular/distinct tree performs. As a result, estimations of 

each tree's predictive power are computed weights may then be 

calculated using the INB and OOB data. 

𝜃 = 𝑓(𝐴𝑈𝐶𝐼𝑁𝐵,𝐴𝑈𝐶𝑂𝑂𝐵) = −𝛼|𝐴𝑈𝐶(𝑡𝑜𝑏𝑠)𝐼𝑁𝐵 − 𝐴𝑈𝐶𝑂𝑂𝐵| +

(1 − 𝛼)𝐴𝑈𝐶(𝑡𝑜𝑏𝑠)𝑂𝑂𝐵                         (18) 

This approach evaluates each tree's performance. It utilizes 

the supplied weight computed based on findings from the Out-

of-Bag sample instead of using 1 for the above case since Such 

weights are implicitly supported by weighted AUC. 

𝑡𝑜
𝑜𝑏𝑠 =

1

𝑂𝑂𝐵
∑ |𝑃𝑜ℎ − 𝑃𝑜ℎ|ℎ𝜖𝑂𝑂𝐵                  (19) 

The example is essentially disregarded if, for example, If w 

obs I = 0, then each tree correctly predicted the class (which 

indicates that each tree accurately predicted the class). 

Therefore, each misclassified instances have a greater impact 

on a particular tree's ultimate performance.  

Assuming that P ^_oh∈R is the projected result for each 

observation; to estimate the weighted AUC, let's consider the 

sets of positive examples 𝛤0 = 𝑖: 𝑃𝑜ℎ = 0  and negative 

instances (0 = h 𝑃𝑜ℎ). Cases Formula (18). The total beneficial 

weight is thus equal to 𝑊1 = ∑ 𝜔𝑖
𝑜𝑏𝑠

𝑖𝜖𝛤1  while total negative 

weight is equal to equal to 𝑊0 = ∑ 𝜔𝑖
𝑜𝑏𝑠

𝑖𝜖𝛤0   additionally, 

established the following thresholding function: 𝑡𝜏: 𝑅 → {0,1} 

for any threshold R, such as: 

𝑤𝜏(𝑃) = {
1, 𝑃 ≥ 𝜏

0, 𝑃 < 𝜏
                                   (20) 

This rate of weighted false positives is determined just as 

follows using the formula shown above: 

𝐹𝑃𝑅(𝜏) =
1

𝑇0
∑ 𝑂[𝑤𝜏(𝑃𝑜) ≠ 0]𝑡𝑜

𝑜𝑏𝑠
𝑜𝜖ℸ0

         (21) 

Where, T is the indicator function, which is 1 in all other 

cases, and 0 if the prediction is correct. However, the weighted 

true positive rate is described as follows: 

𝑇𝑃𝑅(𝜏) =
1

𝑇1
∑ 𝑂[𝑤𝜏(𝑃𝑜) = 1]𝑡𝑜

𝑜𝑏𝑠
𝑜𝜖ℸ0         (22) 

The graphing of FPR(R) and TPR(R) for all thresholds 

results in the creation of the weighted ROC curve. To produce 

the weighted AUC metric using the trapezoid rule (integral), 

and it is especially accurate for calculating the definite integral 

of periodic functions. 

𝑡ℎ =
(𝐾𝑡𝑟𝑒𝑒−𝑙ℎ+1)

𝑦

∑ (𝐾𝑡𝑟𝑒𝑒−𝑙𝑛+1)
𝐾𝑡𝑟𝑒𝑒
𝑛=1

𝑦′                              (23) 

The implementation could imply that this approach only 

works with Random Forest. It may, however, be used for any 

ensemble made up of any j basic model type. 
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IV. RESULT EVALUATION 

The suggested MFO-MWRF strategy’s quality is examined 

in-depth using comparison and assessment of the results. The 

efficiency and accuracy of a suggested approach are compared 

to those of contemporary methods like the Deep Neural 

Network (DNN), Two-stream Convolutional Neural Network 

(TSCNN), and Convolutional Neural Network+ Recurrent 

Neural Network (CNN+RNN) to show that it is effective. The 

estimated Precision, Accuracy, F1-Source, and Recall are 

shown in the result for the provided approach. 

A. Accuracy  

Accuracy is determined by contrasting the number of 

forecasts and adjustments. Using the following equation 24, 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
                 (24) 

 
Figure 2: Accuracy 

Fig 2 shows the accuracy of the proposed system. The 

accuracy of consumption forecasting in current systems and the 

suggested system is indicated. While the suggested system 

achieves the proposed 95% accuracy, DNN has obtained 50%, 

TSCNN has gained 75%, and CNN+ANN has attained 85%. It 

demonstrates that the suggested course of action is more 

successful than the existing one 

B. Precision 

Precision is the percentage of successfully predicted 

positive observations among all predicted positive 

observations. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑅𝑜

𝑅𝑜+𝐷𝑜
                                  (25) 

 
Figure 3: Precision 

Fig 3 shows the precision of the proposed system. The 

suggested system and current systems' predictions of precision 

usage are discussed. While DNN has a 50%, TSCNN has a 

75% precision, CNN+RNN has an 85% precision, and the 

suggested system has a 95% precision. It demonstrates that the 

suggested strategy is more successful than the current one. 

C. Recall 

Recall that compared to all observations in the class, it 

represents the percentage of positively anticipated observations 

that occurred. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑅𝑜

𝑅𝑜+𝐷𝑠
                            (26) 

 
Figure 4: Recall 

Fig 4 shows the Recall of the proposed system. Recall 

consumption forecasts for both the current system and the 

suggested system are shown. The suggested method achieves 

95% recall compared to 50% for TSCNN, 75% for DNN, and 

85% for CNN+RNN. It demonstrates how successful the 

suggested strategy is than the current one.  

D. F1-Score 

F1-score may be characterized as a weighted average of 

recall and accuracy. The F1 score is calculated using equation 

27, 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 12 Issue: 1 

DOI: https://doi.org/10.17762/ijritcc.v12i1.7907 

Article Received: 09 July 2023 Revised: 16 August 2023 Accepted: 28 August 2023 

___________________________________________________________________________________________________________________ 

 

    34 

IJRITCC | January 2024, Available @ http://www.ijritcc.org 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                  (27) 

 
Figure 5: F1-Score 

Fig 5 shows the f1-score of the proposed system. Recall 

consumption forecasts for both the current system and the 

suggested system are shown. The suggested method achieves 

95% f1-source compared to 65% for DNN, 75% for TSCNN, 

and 85% for CNN+RNN. It demonstrates how successful the 

suggested strategy is than the current one. 

V. CONCLUSION 

This paper includes an effective MFO-MWRF-based 

framework for hybrid BCI signals classification. According to 

each governing brain-computer interface, the conceptual 

approach is capable of conducting analyses in hybrid BCI 

signals domains. The model is an automated framework that 

enables the evaluation of both DWT characteristics for WF 

processing issues. From this perceptive, it perfectly replicates a 

hybrid BCI signals expert's assessment procedure. The paper 

acquires both signal and noise features concurrently as opposed 

to obtaining information just as transform as previous 

approaches do. The MFO-MWRF component is thoroughly 

examined, and the parameters are chosen, to better illustrate the 

efficiency of each technique. According to the results, the 

suggested strategy performs better than the competition in 

solving the current hybrid BCI signals classification problem. 

Future studies will focus on the categorization of brain-

computer interface signals at a greater level. Additionally, 

automated fixes will be made for problems brought on by 

composite signals with more than two signals.  
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