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Abstract—This Gait identification assists in recognition of human body components from temporal image sequences. Such components consist 

of connected-body entities including head, upper body, lower body regions. Existing Gait recognition models use deep learning methods 

including variants of Convolutional Neural Networks (CNNs), Q-Learning, etc. But these methods are either highly complex, or do not perform 

well under complex background conditions. Moreover, most of these models are validated on a specific environmental condition, and cannot be 

scaled for general-purpose deployments. To overcome these issues, this text proposes design of a novel cross-domain bioinspired model for 

identification of gait components via Iterated Generative Adversarial Networks (IGANs). The proposed model initially extracts multidomain 

pixel-level feature sets from different images. These include frequency components via Fourier analysis, entropy components via Cosine 

analysis, spatial components via Gabor analysis, and window-based components via Wavelet &Convolutional analysis. These feature sets are 

processed via a Grey Wolf Optimization (GWO) Model, which assists in identification of high-density & highly variant features for different 

gait components. These features are classified via an iterated GAN, which comprises of Generator & Discriminator ssModels that assist in 

evaluating connected body components. These operations generate component-level scores that assist in identification of gait from complex 

background images. Due to which, the proposed model was observed to achieve 9.5% higher accuracy, 3.4% higher precision, and 2.9% higher 

recall than existing gait identification methods. The model also uses iterative learning, due to which its accuracy is incrementally improved w.r.t. 

number of evaluated image sets. 

Keywords-Gait, Multidomain, Frequency, Entropy, Connected, Body, Components, GAN, Scenarios. 

 

I. INTRODUCTION 

Biometric identification systems have come a long way in 

recent years. Access control systems and authentication 

systems are only two examples of where it has been 

effectively deployed. Behavioral and physiological traits are 

currently the two primary foci of biometric recognition. Some 

examples of physical traits include the face, iris, palm print, 

and fingerprint. [1, 2, 3, 4], that can be identified via long 

short-term memory (LSTM) In order to acquire physiological 

traits, it is frequently necessary to have physical touch with the 

target and to have the target's active participation. Gait is a 

behavior that may be seen and studied. Without direct touch or 

even permission from the target, the gait sequence may be 

recorded. Gait feature extraction, however, may be performed 

with lower-quality photos or movies. The two most frequent 

types of gait recognition systems [5, 6] are model-free and 

model-based. They use Graph Convolutional Neural Network 

(GCNN) and its counterparts for efficient analysis. With the 

use of the target's human body model, model-based 

approaches may extract the static or kinetic aspects of the gait 

cycle from video recordings. Work in [7]uses the knee and 
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hip's angular motion to create a motion model. Using data on 

the positions of the joints obtained from a Microsoft Kinect 

device, a 3D skeleton model is reconstructed to infer the gait 

characteristics. Unlike model-based approaches, model-free 

processes don't use body models to extract gait properties from 

gait sequence silhouettes. Han & Bhanu's Gait Energy Picture 

(GEP) method takes the many silhouettes that make up a gait 

cycle and uses them to create a single image by averaging the 

various forms. There are several variants of GEI that have 

been suggested, such as Pose Energy Image (PEI) with Self-

Adaptive Hidden Markov Model (SA HMM) [8, 9, 10], Frame 

Difference Energy Image (FDEI) [10], etc. Optical flow-based 

approaches are another model-free approach [11, 12, 13]. 

Reconstructing a human body model using Kinect data on its 

many joints is now a simple task. The Kinect may be used to 

acquire gait sequences, allowing us to construct a 3D skeleton 

by recording the 25 (Kinect V2) joint locations [14, 15, 16] in 

each frame of the gait sequences. In addition, the setting 

doesn't matter for the walking scenes. 

Model-based approaches are used in 3D skeleton-based 

recognition. Estimation techniques and body sensors/depth 

cameras like Kinect can provide a rough approximation of the 

skeleton's shape [17, 18, 19, 20]. There have been three 

generations of Kinect released thus far. Current state-of-the-art 

AI sensors, like the Azure Kinect, combine a high-tech depth 

sensor with a video camera and an orientation sensor. The 3D 

skeleton may be used to measure static characteristics like 

height, weight, and bone length. Concurrently accessible 

kinetic parameters may indicate the dynamic components of 

the gait sequence. 

Auto encoders (AEs) are a kind of artificial neural network 

that typically have both an encoder and a decoder [21, 22, 23, 

24], each of which may be used for certain tasks. They use 

some form of Ensemble Deep Neural Network (EDNN) for 

estimation of gait features. Unique property of the auto 

encoder is that its input data samples serve as the output target. 

Once the encoder network has been trained using the test data, 

it may be able to reduce a high-dimensional input to a useful 

set of low-dimensional vector sequences for usage in real-time 

applications. Moreover, the results of the many tests show that 

the encoder's outputs are now more reliable and helpful, 

particularly when combined with a deep auto encoder under 

complex image scenarios. 

Models for recognizing gaits now use deep learning 

techniques like Q-Learning and other kinds of Convolutional 

Neural Networks (CNN) [25, 26, 27, 28, 29, 30]. These 

methods, however, are either very sophisticated or fail 

miserably in more nuanced settings. More importantly, most 

of these models have only been proven under certain 

conditions, limiting their applicability. To address these 

problems, the book suggests constructing a unique cross-

domain bioinspired model for recognizing gait components 

using iterative generative adversarial networks (IGANs). Some 

other techniques that identify real-time analysis for other 

domains are discussed in [31, 32, 33]. 

Section 3 provides an assessment of the proposed model by 

comparing it to established methods for gait recognition under 

situations conceptually similar to those in practice. 

Conclusions and suggestions for further developing the 

suggested model for practical use cases. 

II. DESIGN OF THE PROPOSED CROSS-DOMAIN 

BIOINSPIRED MODEL FOR IDENTIFICATION OF 

GAIT COMPONENTS VIA ITERATED GANS     

Existing Gait recognition models employ deep learning 

techniques, such as variants of Convolutional Neural 

Networks (CNNs), Q-Learning, etc., based on a review of 

existing models that perform Gait identification. However, 

these methods are either extremely complex or have lower 

performance under complex background conditions. In 

addition, the majority of these models are validated on a 

specific environmental condition and cannot be scaled for 

deployments with a broad scope. This section discusses design 

of a novel cross-domain bioinspired model for identification of 

gait components using Iterated Generative Adversarial 

Networks to address these issues (IGANs). As per the flow of 

the model in figure 1, it can be observed that initially, the 

proposed model extracts multidomain pixel-level feature sets 

from various images. These include frequency components as 

determined by Fourier analysis, entropy components as 

determined by Cosine analysis, spatial components as 

determined by Gabor analysis, and window-based components 

as determined by Wavelet and Convolutional analysis. These 

feature sets are processed using the Grey Wolf Optimization 

(GWO) Model, which facilitates the identification of high-

density and highly variant features for various gait 

components. These features are classified using an iterative 

GAN consisting of Generator & Discriminator Models, which 

aid in the evaluation of interconnected body parts. These 

operations generate component-level scores that aid in 

identifying gait from images with complex backgrounds. 

As per the flow of proposed model, the collected image & 

video sets are represented via a multidomain feature extraction 

process. This process initially converts the frames into 1D 

samples, and extracts Fourier Features via equation 1, 
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Where,  are pixel intensity levels, and  are total pixels in 

individual images. This assists in identification of frequency 

components, which are extended by extraction of entropy 

components via evaluation of Discrete Cosine Transform 

(DCT) as per equation 2, 

 

 

Fig. 1. Design of the proposed Gait identification process 

These features are cascaded with convolutional features which 

are extracted as per equation 3, 

 

Where, are window & stride dimensions, while 

is a Leaky Rectilinear Unit that retains only positive 

feature sets via equation 4, 

 

Where,  is a positive scaling constant, that is used to 

quantize feature sets. The convolutional features are evaluated 

for different window & stride sizes, which assists in extraction 

of high-density feature sets. These sets are further extended 

via a Gabor feature extraction layer, that evaluates angular 

components via equation 5, 

 

Where,  represents 3D angles that are varied in the range 

of (0, 2 ), and assist in identification of orientation feature 

sets. In equation 5,  represents Cartesian value sets, which 

are estimated as per equation 6, 

 

 

The Gabor components are useful in identification of pixel-

level variations between different Gait components. The 

variance of this feature vector is aided via extraction of 

approximate & detailed Wavelet components via equations 7 

& 8 as follows, 

 

 

When combined, these components form a Gait Feature 

Vector (GFV), which might contain feature-level 

redundancies. These redundancies must be reduced in order to 

improve classification performance, and reduce the delay 

needed for classification operations. To perform these tasks, a 

Grey Wolf Optimization (GWO) Model is used, which works 

as per the following process, 
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• To setup the GWO process, following constants must be 

initialized, 

o Count of Wolves that must be reconfigured during the 

optimization process ( ) 

o Count of iterations that must be followed for 

configuration generation ( ) 

o Rate at which each of the Wolves will be learning from 

each other ( ) 

• The GWO Model, initially generates these  Wolf 

configurations as per the following process, 

o From the GFV set, select  stochastic features via 

equation 9, 

 

Where, represents a number generation process that 

uses Markovian operations. 

o Using these features, estimate Wolf fitness as per 

equation 10, 

 

o Generate  such feature configurations. 

• Once all configurations are generated, then estimate Wolf 

fitness threshold via equation 11, 

 

• As per this threshold value, Mark the Wolves via the 

following process, 

o For Wolves with, , mark them as ‘Alpha’ 

o For Wolves with, , modify its learning rate via 

equation 12, and mark them as ‘Beta’, 

 

o For Wolves with , modify their learning 

rates as per equation 13, and Mark them as ‘Gamma’, 

 

o Other Wolves are marked as ‘Delta’, and their learning 

rates are varied as per equation 14, 

 

• Repeat the same process for iterations, and modify 

Wolf configurations. 

Once all iterations are completed, select all ‘Alpha’ Wolves, 

and aggregate their features via equation 15, 

 

These final feature sets are processed via an iterative GAN 

Model, which assists in loss minimization via generator and 

discriminator processes. The model initially extracts a loss 

function via equation 16, 

 

Where, are the component & non-component image 

pixels, while,  are their individually selected features. 

Using this value, estimate maximum loss levels via equation 

17, 

 

This loss is minimized via estimation of minimal loss levels 

via equation 18, 

 

These levels are processed via equation 19, in order to 

estimate current loss levels, 

 

A generator probability level is estimated via equation 20, that 

assists in segregation of body components from non-body 

components. 

 

All the non-body components are removed via estimation of 

an output probability level as per equation 21, 

 

Where, is the probability of pixel belonging to one of 

the Gait components. Pixels that are processed to similar 

probability levels are classified as ‘Gait’ components, while 

others are classified as ‘non-Gait’ components. This 

classification is done as per equation 22, which assists in 

activating features via Soft Max kernels. This activation 
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allows the model to identify Gait pixels via tuning of weights 

(w) and bias (b) value sets. 

 

As per these operations, the proposed model is able to identify 

Gait components with high efficiency even under complex 

background conditions. This efficiency can be observed from 

the next section of this text, where it is compared in terms of 

accuracy, precision and recall levels with existing gait 

recognition techniques. 

III. RESULT ANALYSIS & COMPARISON 

The proposed gait recognition model initially collects different 

video sets, and represents them via multidomain features. 

These features include frequency levels, convolutional sets, 

entropy levels, Gabor sets wavelet sets. The fused features are 

then processed via an efficient GWO Model, which assists in 

identification of high inter-class variance features. These 

classes include ‘Gait’ and ‘non-Gait’ categories, which are 

identified via an iterative GAN Model, that uses Soft Max 

activation for evaluation of Gait pixels. These evaluations 

were done on the following datasets, 

• NLPR Gait Database 

(http://www.cbsr.ia.ac.cn/users/szheng/?page_id=71) 

• Human Gait Phase Dataset 

(https://www.kaggle.com/datasets/dasmehdixtr/human-

gait-phase-dataset) 

• Kinematic Gait Dataset (http://gaitanalysis.th-

brandenburg.de/), and  

• Human Gait Dataset 

(https://www.kaggle.com/datasets/drdataboston/93-

human-gait-database) samples.  

These samples were combined to form a total of 50k image 

samples, out of which 80% were used to train the GAN Model, 

while 10% each were used for testing & validation operations. 

Results of the model on these datasets can be observed from 

figure 2 (a), 2 (b), and 2 (c), where the model was tested on 

simpler to complex backgrounds. 

 

Figure 2 (a). Gait identified on simple backgrounds 

 

Fig. 2 (b). Gait recognized on slightly complex backgrounds 

 

Fig. 2 (c). Gait recognized on complex backgrounds 

The results were further compared with LSTM [2], GCNN [5], 

and EDNN [22] in terms of accuracy (A), precision (P), recall 

(R), and delay (d) values, which were estimated via equations 

23, 24, 25 & 26 as follows, 
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Where, are constants of confusion matrix, while are the 

timestamps for finishing and starting the classification process. 

As per this strategy, the accuracy of classification w.r.t. 

Number of Test Image Sequences (NTIS) can be observed 

from table 1. 
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Fig. 3. Accuracy of Gait identification for different image sets 

Table 1. Accuracy of Gait identification for different image sets 

NTIS 
A (%) 

LSTM [2] 

A (%) 

GCNN [5] 

A (%) 

EDNN [22] 

A (%) 

This Work 

2216 83.24 89.59 91.18 98.91 

4450 83.30 89.91 91.37 98.98 

6666 83.35 90.23 91.57 99.05 

8884 83.40 90.56 91.76 99.10 

11116 83.45 90.89 91.97 99.15 

13334 83.50 91.23 92.18 99.19 

15550 83.56 91.56 92.39 99.23 

17784 83.61 91.89 92.61 99.27 

20000 83.66 92.22 92.82 99.31 

22216 83.71 92.55 93.03 99.36 

24450 83.77 92.87 93.24 99.41 

27784 83.82 93.20 93.45 99.47 

33334 83.87 93.52 93.65 99.54 

36116 83.93 93.85 93.85 99.60 

38884 83.98 94.17 94.06 99.65 

44450 84.03 94.50 94.26 99.70 

47216 84.09 94.83 94.47 99.75 

50000 84.14 95.16 94.67 99.80 

Based on this evaluation and figure 3, it can be observed that 

the proposed model is able to improve Gait identification 

accuracy by 15.3% when compared with LSTM [2], 5.5% 

when compared with GCNN [5], and 3.9% when compared 

with EDNN [22] under real-time image sets. This accuracy is 

improved due to use of high-density feature sets, and use of 

GAN which assists in improving the classification 

performance even under complex backgrounds. Similarly, the 

precision levels can be observed from table 2 as follows, 

Table 2. Precision of Gait identification for different image sets 

NTIS P (%) 

LSTM [2] 

P (%) 

GCNN [5] 

P (%) 

EDNN [22] 

P (%) 

This Work 

2216 81.29 85.78 88.17 97.79 

4450 81.34 86.09 88.36 97.84 

6666 81.39 86.41 88.55 97.89 

8884 81.44 86.73 88.74 97.94 

11116 81.50 87.05 88.94 97.98 

13334 81.55 87.37 89.15 98.02 

15550 81.60 87.68 89.35 98.06 

17784 81.65 87.99 89.56 98.11 

20000 81.71 88.30 89.76 98.16 

22216 81.76 88.61 89.96 98.21 

24450 81.81 88.91 90.16 98.27 

27784 81.86 89.22 90.35 98.33 

33334 81.91 89.53 90.54 98.39 

36116 81.96 89.84 90.74 98.44 

38884 82.01 90.15 90.93 98.50 

44450 82.06 90.46 91.13 98.54 

47216 82.11 90.78 91.33 98.59 

50000 82.16 91.09 91.53 98.64 

 
Fig. 4. Precision of Gait identification for different image sets 

Based on this evaluation and figure 4, it can be observed that 

the proposed model is able to improve Gait identification 

precision by 16.2% when compared with LSTM [2], 6.5% 

when compared with GCNN [5], and 5.9% when compared 
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with EDNN [22] under real-time image sets. This precision is 

improved due to use of multidomain feature extraction, and 

use of high efficiency GAN which assists in improving the 

classification performance even under complex backgrounds. 

Similarly, the recall levels can be observed from table 3. 
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Fig. 5. Recall of Gait identification for different image sets 

Table 3. Recall of Gait identification for different image sets 

NTIS R (%) 

LSTM [2] 

R (%) 

GCNN [5] 

R (%) 

EDNN [22] 

R (%) 

This Work 

2216 80.28 87.84 88.66 97.16 

4450 80.33 88.16 88.85 97.23 

6666 80.38 88.48 89.05 97.28 

8884 80.44 88.80 89.24 97.33 

11116 80.50 89.10 89.44 97.38 

13334 80.57 89.39 89.63 97.43 

15550 80.65 89.64 89.82 97.49 

17784 80.74 89.88 90.01 97.56 

20000 80.83 90.11 90.19 97.63 

22216 80.92 90.35 90.37 97.71 

24450 81.01 90.59 90.55 97.78 

27784 81.09 90.84 90.73 97.86 

33334 81.17 91.10 90.92 97.94 

36116 81.24 91.37 91.10 98.01 

38884 81.31 91.66 91.29 98.07 

44450 81.38 91.94 91.48 98.13 

47216 81.44 92.23 91.67 98.19 

50000 81.52 92.50 91.86 98.25 

Based on this evaluation and figure 5, it can be observed that 

the proposed model is able to improve Gait identification 

recall by 15.9% when compared with LSTM [2], 5.4% when 

compared with GCNN [5], and 6.3% when compared with 

EDNN [22] under real-time image sets. This recall is 

improved due to use of GWO which assists in identification of 

high-density feature sets, and use of GAN which assists in 

improving the classification performance even under complex 

backgrounds. Similarly, the delay needed for identification can 

be observed from table 4 as follows, 

Table 4. Delay needed during Gait identification for different image 

sets 

NTIS D (ms) 

LSTM [2] 

D (ms) 

GCNN [5] 

D (ms) 

EDNN [22] 

D (ms) 

This Work 

2216 114.24 105.28 107.21 104.95 

4450 114.31 105.66 107.44 105.02 

6666 114.39 106.05 107.67 105.08 

8884 114.46 106.44 107.90 105.13 

11116 114.53 106.83 108.14 105.18 

13334 114.61 107.22 108.39 105.22 

15550 114.68 107.61 108.64 105.26 

17784 114.75 108.00 108.89 105.31 

20000 114.82 108.38 109.13 105.36 

22216 114.90 108.76 109.38 105.41 

24450 114.97 109.14 109.62 105.47 

27784 115.04 109.52 109.86 105.54 

33334 115.12 109.90 110.10 105.60 

36116 115.19 110.28 110.34 105.66 

38884 115.26 110.66 110.58 105.72 

44450 115.34 111.05 110.82 105.77 

47216 115.41 111.43 111.06 105.82 

50000 115.48 111.82 111.30 105.87 
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Fig. 6. Delay needed during Gait identification for different image 

sets 

Based on this evaluation and figure 6, it can be observed that 

the proposed model is able to reduce the delay needed for Gait 

recognition by 10.5% when compared with LSTM [2], 8.3% 

when compared with GCNN [5], and 8.5% when compared 

with EDNN [22] under real-time image sets. This delay is 

reduced due to use of GWO which assists in removal of low 

variance feature sets, and use of GAN which assists in 

improving the classification performance even under complex 

backgrounds. Due to these enhancements, the proposed model 

can be used for large-scale gait recognition use cases. 
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IV. CONCLUSION AND FUTURE SCOPE 

The proposed model for gait recognition initially collects 

multiple video sets and represents them using multidomain 

features. These characteristics consist of frequency levels, 

convolutional sets, entropy levels, Gabor sets, wavelet sets, 

and wavelet sets. The fused features are then processed using 

an effective GWO Model, which aids in the identification of 

features with high inter-class variance. These classes consist of 

'Gait' and 'non-Gait' categories, which are determined by an 

iterative GAN Model that employs Soft Max activation to 

evaluate Gait pixels. The model improved Gait identification 

accuracy by 15.3% when compared to LSTM [2], 5.5% when 

compared to GCNN [5], and 3.9% when compared to EDNN 

[22] when using real-time image sets. The use of high-density 

feature sets and GAN, which aids in improving classification 

performance even with complex backgrounds, contributes to 

the improvement of this accuracy. In terms of precision levels, 

it was observed that the proposed model can improve Gait 

identification precision by 16.2% compared to LSTM [2], 

6.5% compared to GCNN [5], and 5.9% compared to EDNN 

[22] using real-time image sets. This precision is enhanced as 

a result of the use of multidomain feature extraction and high-

efficiency GAN, which improves the classification 

performance even against complex backgrounds. Consistently, 

the proposed model improved Gait identification recall by 

15.9% when compared to LSTM [2], 5.4% when compared to 

GCNN [5, and 6.3% when compared to EDNN [22] using 

real-time image sets. This recall is enhanced as a result of the 

application of GWO, which aids in the identification of high-

density feature sets, and GAN, which aids in improving 

classification performance even in the presence of complex 

backgrounds. In terms of operation speed, it was observed that 

the proposed model can reduce the delay required for Gait 

recognition by 10.5% when compared to LSTM [2], 8.3% 

when compared to GCNN [5], and 8.5% when compared to 

EDNN [22] when using real-time image sets. This delay is 

reduced as a result of the application of GWO, which aids in 

the removal of low-variance feature sets, and GAN, which aids 

in enhancing classification performance even against complex 

backgrounds. As a result of these enhancements, the proposed 

model is suitable for large-scale gait recognition applications. 

In the future, the proposed model will need to be evaluated on 

larger image sequences, and its performance can be enhanced 

through the incorporation of hybrid deep learning models such 

as Auto Encoders, Transformers, and Q-Learning processes. 

This efficacy can also be enhanced through bioinspired feature 

analysis, which enables the model to self-tune its performance 

in real-time use scenarios. 
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