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Abstract— Serverless computing has gained significant popularity in recent years due to its scalability, cost efficiency, and simplified 

development process. In a serverless environment, functions are the basic units of computation that are executed on-demand, without the need 

for provisioning and managing servers. However, efficiently triggering serverless functions remains a challenge, as traditional methodologies 

often suffer from latency, Time limit and scalability issues and the efficient execution and management of serverless functions heavily rely on 

effective triggering mechanisms. This research paper explores various design considerations and proposes a novel approach for designing 

efficient triggering mechanisms in serverless environments. By leveraging our proposed methodology, developers can efficiently trigger 

serverless functions in a variety of scenarios, including event-driven architectures, data processing pipelines, and web application backend.  
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I. INTRODUCTION 

Serverless computing is a cloud computing model where the 

cloud provider (such as AWS Lambda, Azure Functions, or 

Google Cloud Functions) manages the infrastructure and 

automatically provisions and scales the resources needed to 

run applications. In serverless computing, developers focus 

solely on writing and deploying code without having to 

manage servers or infrastructure. 

A. Key Characteristics of Serverless Computing: 

Event-Driven Architecture: Serverless applications are 

designed around events or triggers. Functions are invoked in 

response to events such as HTTP requests, database changes; 

file uploads, or scheduled events. This event-driven 

architecture allows for a highly decoupled and scalable 

system. 

Automatic Scaling: Serverless platforms automatically 

handle the scaling of resources based on the incoming 

workload. Functions are automatically scaled up or down 

based on the demand, ensuring optimal resource utilization 

and high availability. This scalability is achieved without the 

need for manual configuration or capacity planning. 

Pay-Per-Use Pricing: Serverless computing follows a pay-

per-use pricing model, where users are billed only for the 

actual usage of resources. Billing is typically based on the 

number of function invocations and the duration of each 

invocation. This pricing model offers cost efficiency as users 

pay only for the actual execution time of their functions, rather 

than paying for idle resources. 

Stateless Execution: Serverless functions are stateless, 

meaning they don't maintain any persistent state between 

invocations. This statelessness allows functions to be 

easily scaled horizontally and ensures that each 

invocation is independent and isolated. 

Event-Driven Scaling: Serverless platforms scale resources 

based on the incoming workload. As the number of events 

increases, the platform automatically provisions more 

compute resources to handle the workload. This event-driven 

scaling ensures that resources are efficiently utilized and can 

handle varying workloads without manual intervention. 

Developer Productivity: Serverless computing abstracts 

away the infrastructure management, allowing developers to 

focus solely on writing application logic. It reduces the 

operational burden by eliminating the need to provision, 

manage, and scale servers, enabling faster development cycles 

and improved developer productivity. 

Fault Tolerance and High Availability: Serverless platforms 

handle fault tolerance and high availability transparently. 

They automatically replicate functions across multiple 

availability zones, ensuring resilience and fault tolerance. In 

case of a failure or resource unavailability, the platform 

seamlessly redirects the events to available resources. 
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II. SERVERLESS COMPUTING OVERVIEW: 

Serverless computing offers several benefits and advantages, 

but it also comes with its own set of challenges. The benefits 

and challenges of serverless computing are as follows: 

A.  Benefits of Serverless Computing: 

Reduced Operational Overhead: With serverless computing, 

developers are relieved of the burden of managing 

infrastructure, including servers, operating systems, and 

networking. The cloud provider takes care of these operational 

aspects, allowing developers to focus solely on writing code 

and delivering business value. 

Scalability and Elasticity: Serverless platforms automatically 

scale resources based on the incoming workload. They handle 

the provisioning and scaling of resources, ensuring that 

applications can handle sudden spikes in traffic and scale 

down during periods of low activity. This enables applications 

to achieve high scalability and responsiveness without manual 

intervention. 

Cost Efficiency: Serverless computing follows a pay-per-use 

pricing model. Users are billed only for the actual execution 

time of their functions, rather than paying for idle resources. 

This results in cost savings as resources are efficiently 

utilized, and users pay only for the actual usage of compute 

resources. 

Increased Developer Productivity: By abstracting away 

infrastructure management, serverless computing allows 

developers to focus on writing business logic and delivering 

features. It reduces the time and effort required for 

provisioning, managing, and scaling servers, enabling faster 

development cycles and improved developer productivity. 

Event-Driven Architecture: Serverless applications are built 

around an event-driven architecture. They can easily integrate 

with various event sources, such as HTTP requests, database 

triggers, or message queues. This event-driven nature enables 

the development of loosely coupled, modular applications that 

can react to events in real-time. 

B. Challenges of Serverless Computing Environment: 

Cold Start Latency: Serverless functions may experience a 

cold start when invoked for the first time or after a period of 

inactivity. This can result in increased latency as the cloud 

provider provisions resources to handle the request. Cold 

starts can impact real-time and low-latency applications, 

requiring careful optimization and management of functions to 

minimize their occurrence [11]. 

Vendor Lock-in: Serverless platforms have varying degrees 

of compatibility and interoperability between different cloud 

providers. Moving serverless functions from one provider to 

another may require significant modifications and 

rearchitecting. This can lead to vendor lock-in, limiting 

flexibility and making it challenging to switch providers. 

Function Execution Limits: Serverless platforms impose 

limits on function [3][6] execution time, memory usage, and 

maximum request payload size. These limits can impact 

certain workloads that require longer execution times or deal 

with large data sets. Developers need to carefully design their 

functions and consider these limitations to ensure 

compatibility with serverless platforms. 

Debugging and Testing: Debugging and testing serverless 

functions can be challenging due to the distributed and event-

driven nature of serverless architectures. Traditional 

debugging techniques may not work effectively, requiring the 

use of specialized debugging tools and techniques for 

identifying and fixing issues in serverless applications. 

State Management: Serverless functions are stateless by 

nature, meaning they don't maintain persistent state between 

invocations. Managing and persisting state across function 

invocations can introduce complexity, especially for 

applications that require context or have long-running 

workflows. Additional measures, such as external storage or 

caching, need to be implemented to handle stateful scenarios. 

III. ARCHITECTURAL COMPONENTS OF 

SERVERLESS COMPUTING 

As shown in Figure 1 Serverless computing relies on a set of 

architectural components to enable its functionality and 

provide a seamless experience for developers. These 

components work together to handle function invocations, 

manage resources, and ensure scalability and responsiveness. 

The key architectural components of serverless computing: 

Function-as-a-Service (FaaS): 

FaaS[18][30] is the core component of serverless computing. 

It allows developers to write and deploy functions that are 

executed in response to events or triggers.Functions are self-

contained units of code that perform specific tasks or 

operations. They are stateless and designed to be event-

driven.FaaS platforms, such as AWS Lambda, Azure 

Functions, or Google Cloud Functions, handle the 

deployment, scaling, and execution of functions. 

Event Sources: 

Event sources [7][31][32] trigger the execution of serverless 

functions. They generate events that serve as the input for 

functions to process.Common event sources include HTTP 

requests, database changes, file uploads, message queues, 

scheduled events, and IoT device messages.Event sources can 

be external systems or services that emit events, or they can be 

internal triggers defined within the serverless platform. 
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Function Triggers: 

Function triggers [10] are responsible for connecting the event 

sources to the serverless functions.Triggers define the 

conditions or rules that determine when a function should be 

invoked in response to an event.Triggers can be configured to 

handle specific events, filter events based on criteria, or route 

events to different functions or workflows. 

Compute Infrastructure: 

Serverless platforms manage the underlying compute 

infrastructure required to execute functions. The platforms 

automatically provision and allocate resources based on the 

incoming workload to ensure scalability and availability. The 

compute infrastructure can dynamically scale up or down to 

handle varying levels of demand without manual intervention. 

Resource Orchestration: 

Resource orchestration components manage the allocation and 

coordination of resources needed to execute functions. They 

handle the provisioning and lifecycle management of compute 

resources, network resources, and other dependencies required 

by functions. Orchestration components ensure that the 

necessary resources are available to handle function 

invocations and coordinate their execution. 

Monitoring and Logging: 

Monitoring and logging components provide visibility into the 

execution and performance of serverless functions.They 

collect and analyze metrics, logs, and traces to help developers 

monitor the behavior, identify bottlenecks, and optimize the 

performance of their functions.Monitoring and logging tools 

enable real-time monitoring, debugging, and troubleshooting 

of serverless applications. 

Authentication and Authorization: 

Serverless platforms incorporate authentication and 

authorization mechanisms to secure function invocations and 

access to resources.They provide authentication methods, such 

as API keys, OAuth, or IAM roles, to ensure that only 

authorized users or systems can trigger functions and access 

protected resources.Authorization mechanisms control the 

permissions and access levels granted to different entities 

interacting with the serverless application. 

These architectural components[33][34] work together to 

provide the foundation for serverless computing. They enable 

the seamless execution of functions, handle event-driven 

triggers, manage resources, ensure scalability, and provide 

monitoring and security capabilities. By leveraging these 

components, developers can focus on writing business logic 

without the need to manage infrastructure or worry about 

scalability and availability. 

 

Fig. 1: Architectural Components of Serverless Computing 

IV. RELATED APPROACHES 

FaaS is based on the event-driven programming approach, 

which is inspired by the well-known Active Database Systems 

[8]. Numerous event-driven abstractions, including as triggers, 

Event Condition Action (ECA), and composite event 

detection, have been implemented into the FaaS framework." 

In the past, event-based triggering was widely used to provide 

responsive coordination of remote systems [9,10]. 

Furthermore, event-based mechanisms and triggers have been 

widely used in the development of workflow and orchestration 

systems [11-14]. The ECA paradigm, which includes triggers 

and rules, is well-suited for describing transitions in finite 

state machines that reflect workflows. In research paper [15], 

for instance, they propose employing synchronous aggregation 

triggers to coordinate massively parallel data processing 

operations. 

The research paper [14] highlights a captivating related work 

that shows how composite subscriptions in content-based 

publish/subscribe systems are used to provide decentralized 

Event-based Workflow Management. Through content-based 

subscriptions in a Composite Subscription Language, their 

PADRES technologies enable parallelization, alternation, 

sequence, and repetition compositions. 

The intersections of the Complex Event Processing (CEP) and 

Business Process Management (BPM) communities have 

recently been examined in a pertinent study [16]. This survey 

summarizes recent efforts in this field as well as current 

problems with merging both models. Our article specifically 

addresses their issue of "Executing business processes via 

CEP rules," and our main contribution is our serverless 

reactive and flexible architecture. 

http://www.ijritcc.org/
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The "Serverless trilemma" proposed by IBM [17] is a 

pertinent related work applicable to serverless settings that 

aims to provide reactive orchestration of serverless functions. 

The authors provide a method for sequential compositions on 

top of Apache OpenWhisk and support reactive run-time 

support for function orchestration. 

The CNCF community has recently concentrated its efforts on 

creating a standardized specification for Serverless Workflows 

[18]. In their approach, workflows are defined explicitly using 

a YAML file that includes state transitions for data 

management and control flow logic, descriptions for 

CloudEvents for consumption, and instructions for event-

driven execution of serverless services. In order to ensure 

portability and prevent vendor lock-in, an abstract 

specification that may be understood by several systems is 

intended. 

Various serverless computing orchestration systems have been 

proposed in numerous studies, including [19–24]. Many of 

them, however, rely on centralized server-based resources that 

cannot scale down to zero, including machine virtualization or 

dedicated resources. The orchestrator component 

consequently remains active throughout the whole workflow 

execution, leading to wasteful resource use for workflows that 

take a long time to finish because the orchestrator frequently 

sits idle while waiting for lengthy tasks to complete. 

Additionally, the designs and fault tolerance of some of these 

systems are complicated by the utilization of functions calling 

functions patterns. None of these solutions currently available 

offer flexible trigger abstractions to generate different types of 

orchestrators. 

Workflow orchestration is compared across triggers and 

Durable Functions by using workflow as code in [25]. They 

contend that although using triggers for workflow 

orchestration is technically feasible, it is not ideal due to 

drawbacks such as the requirement to create different queues 

or directories for every step, triggers' inability to wait for the 

completion of numerous prior steps, and their unsuitability for 

proper error handling. In contrast, we will demonstrate in this 

post that by using a Rich Trigger framework, we may get 

around these difficulties. Extended trigger logic allows us to 

provide rules for event screening to prevent the creation of 

additional queues and event aggregation to carry out a 

multiple join. We can also ensure fault tolerance through the 

use of event replay and checkpointing. 

Today, major cloud providers such as IBM Composer, 

Amazon Step Functions, Azure Durable Functions, and 

Google Cloud Workflows provide cloud orchestration and 

function composition capabilities. These services are suitable 

for various types of workloads because each one of them has 

particular features and limitations. 

In two earlier articles [4,5], public FaaS orchestration services 

for managing massively parallel workloads were evaluated. 

When executing map jobs, it was discovered that IBM 

Composer provided the best speed and had the lowest 

overheads, but competing services like ASF or ADF had high 

overheads. Furthermore, we will show how ASFE performs 

well for concurrent workloads in this research. 

Despite the wide range of cloud orchestration services already 

in existence, none of them provide an open and extensible 

trigger-based API that enables the creation of unique 

workflow engines. 

Although there are many cloud orchestration services 

accessible none of them provide an extensible trigger-based 

API that enables the development of unique workflow 

engines. In this study, we demonstrate how Trigger flow may 

be used to implement models that are already in existence, 

such as ASF or Airflow DAGs. Trigger flow, which makes 

use of Kubernetes standard features, is not merely another 

scheduler but a reactive meta-tool to build reactive 

orchestrators. 

The importance of cloud event routing and Knative Eventing 

as a unifying infrastructure for diverse cloud services and 

applications has grown in the context of event-based 

architectures. The CNCF Cloud Events standard is essential in 

this area and is utilized by major cloud providers such as 

Amazon, Azure, Google, and IBM to provide event routing 

services. 

For developers utilizing Kubernetes, the Knative project was 

developed to give a serverless-like experience. It offers high-

level abstractions for scalable functions (Knative Serving) and 

event processing (Knative Eventing). Utilizing sophisticated 

abstractions not found in Knative Eventing, such as dynamic 

triggers, trigger interception, custom filters, termination 

events, and a shared context, Trigger flow seeks to use 

Knative Eventing to enable extensible trigger-based 

orchestration of serverless workflows. Future event routing 

systems might use these innovative services to streamline task 

formulation, streaming, and orchestration. 

V. TRIGGERING MECHANISMS IN SERVERLESS 

ENVIRONMENTS: 

In serverless environments, triggering mechanisms play a 

crucial role in invoking functions based on events or triggers 

[1][2]. These mechanisms determine when and how functions 

are executed in response to specific events or conditions. 

http://www.ijritcc.org/
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Some common triggering mechanisms used in serverless 

environments: 

Event-Driven Invocations: 

Event-driven[7][8][35] invocations are the most fundamental 

triggering mechanism in serverless computing. Functions are 

triggered when specific events occur, such as an HTTP 

request, changes in a database, file uploads, or messages in a 

message queue.The event sources generate events, which are 

then forwarded to the serverless platform, which in turn 

invokes the relevant functions.Event-driven invocations 

enable real-time processing and allow functions to react to 

changes in the system or external events. 

HTTP Triggers: 

HTTP triggers enable functions to be invoked via HTTP 

requests.Functions can be exposed as HTTP endpoints, 

allowing external systems or users to invoke the functions by 

sending HTTP requests.HTTP triggers are commonly used for 

building RESTful APIs or handling webhooks. 

Timer-Based Triggers: 

Timer-based triggers schedule functions to execute at 

predefined intervals or specific times.Functions can be 

configured to run periodically, such as every minute, hourly, 

daily, or on specific dates.Timer-based triggers are useful for 

tasks that require periodic data processing, batch jobs, or 

scheduled maintenance tasks. 

Database Triggers: 

Database triggers invoke functions when changes occur in a 

connected database.Functions can be triggered when there are 

insertions, updates, deletions, or specific changes in database 

records.Database triggers enable functions to react to changes 

in data and perform actions such as data validation, data 

synchronization, or generating notifications. 

Message Queue Triggers: 

Message queue triggers invoke functions when new messages 

are added to a message queue.Functions can be connected to 

message queues such as Amazon Simple Queue Service 

(SQS) or Azure Service Bus, and they are triggered when new 

messages are available.Message queue triggers facilitate 

decoupling and asynchronous processing, allowing functions 

to handle messages at their own pace. 

Streaming Triggers: 

Streaming triggers enable functions to process data streams in 

real-time.Functions can be connected to streaming platforms 

such as Amazon Kinesis or Apache Kafka, where they receive 

data records as they are generated.Streaming triggers are 

suitable for scenarios that require continuous processing of 

high-volume data streams, such as real-time analytics or 

event-driven architectures.These triggering mechanisms 

provide the flexibility to design serverless applications that 

respond to various events and conditions. By selecting the 

appropriate triggering mechanisms and configuring the event 

sources, developers can build reactive and event-driven 

systems in serverless environments. 

VI. CONSIDERATIONS IN PROPOSED DESIGNING 

APPROACH  

In our proposed designing approach for designing effective 

triggering mechanisms in AWS Lambda for handling more 

than 15 minutes processing requests, we have consider 

following considerations which are as follows: 

Asynchronous Processing: To handle long-running requests, 

design your framework to support asynchronous processing. 

Break down the processing into smaller, manageable tasks that 

can be executed asynchronously. Implement mechanisms for 

tracking the progress and status of these tasks. 

Job Queues: Utilize job queues to manage and prioritize the 

processing requests. When a request comes in, enqueue it into 

a job queue. This allows you to handle requests in a scalable 

and efficient manner, ensuring that they are processed in the 

order they were received. 

Distributed Processing: Distribute the processing tasks 

across multiple instances of AWS Lambda functions to 

achieve parallel processing and improved performance. 

Partition the workload and assign different segments to 

individual function instances for concurrent execution. 

Request Chunking: If the request payload is large, consider 

implementing request chunking. Split the request into smaller 

chunks that can be processed independently. This approach 

allows you to handle large requests efficiently and avoid any 

limitations imposed by AWS Lambda, such as maximum 

payload size. 

State Management: Implement a mechanism for managing 

the state of long-running requests. Store the intermediate state 

and progress of the request in a persistent storage system, such 

as a database or an external caching service. This allows you 

to resume processing if a function invocation is interrupted or 

times out. 

Timeouts and Retries: Set appropriate timeouts for the AWS 

Lambda functions to handle long-running requests. Implement 

retry mechanisms to handle failures or timeouts, ensuring that 

processing continues from the last checkpoint in case of 

failures. Consider using AWS Step Functions for orchestration 

and handling retries. 

Monitoring and Alerting: Incorporate monitoring and 

alerting mechanisms to track the progress and performance of 

long-running requests. Monitor the execution time, resource 

http://www.ijritcc.org/
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utilization, and any errors or exceptions that occur during 

processing. Set up alerts to notify administrators or 

stakeholders in case of any issues. 

Error handling: Design a robust error handling mechanism to 

handle failures during processing. Implement a rollback 

mechanism to undo any changes made in case of processing 

errors. Use Error Handling and Rollback compensating 

transactions or idempotent operations to ensure data 

consistency and integrity. 

Cost Optimization: Consider the cost implications of long-

running requests. Design your framework to optimize costs by 

utilizing AWS Lambda features like provisioned concurrency, 

which can help reduce cold starts and improve performance. 

Implement mechanisms to pause or optimize resources during 

idle periods to minimize costs. 

Performance Optimization: Continuously optimize the 

performance of your framework by monitoring and analyzing 

the processing times, identifying bottlenecks, and optimizing 

resource utilization. Consider leveraging AWS Lambda 

features like provisioned concurrency, memory allocation 

tuning, and function-specific optimization[9]. 

By considering these design considerations, we have 

developed a methodology for effective triggering mechanisms 

in AWS Lambda that can handle long-running processing 

requests efficiently, ensure fault tolerance, optimize costs, and 

provide scalability and reliability. 

VII.  PROPOSED METHODOLOGY  

To handle longer requests in AWS Lambda, we have 

implemented an asynchronous processing framework. AWS 

Lambda has a maximum execution time limit, which varies 

depending on the region and the type of Lambda function 

you're using. By implementing an asynchronous framework, 

you can overcome this time limit and process longer requests 

effectively. The methodology that we have followed: 

Receive the initial request: When a request comes to your 

Lambda function, the first step is to receive and validate the 

request. Make sure the request contains all the necessary 

information for processing. 

Store the request: Instead of processing the request 

immediately, store it in a durable storage service such as 

Amazon S3, Amazon DynamoDB, or an external database like 

Amazon RDS or Aurora. This step ensures that the request is 

not lost in case of a Lambda function timeout or failure. 

Return a response: Acknowledge the receipt of the request 

by returning an appropriate response to the client. This 

response can include a unique identifier or a token that the 

client can use to check the processing status later. 

Process the request asynchronously: Trigger another 

Lambda function or an AWS service like Amazon Simple 

Queue Service (SQS) or Amazon Simple Notification Service 

(SNS) to process the request asynchronously. Pass the unique 

identifier or token from the previous step so that the 

processing function can retrieve the request. 

Implement the processing function: Develop a separate 

Lambda function or worker that reads the request from the 

storage service and performs the necessary processing. 

Depending on the workload, you can process the request 

entirely within a single function invocation or break it down 

into smaller tasks for parallel processing. 

Update the processing status: As the processing function 

progresses, update the status of the request in the storage 

service. You can use a database table, a document in a NoSQL 

database, or an S3 object to store the status and progress of the 

request. 

Notify completion: Once the processing is complete, notify 

the client using mechanisms like SNS or by updating a status 

field in the request storage. The client can then retrieve the 

processed results using the unique identifier or token. 

By implementing this methodology, we can handle longer 

requests in AWS Lambda by breaking down the processing 

into asynchronous steps, ensuring reliability, and allowing for 

efficient utilization of resources. 

 
Fig. 2: Proposed Process Flow Diagram 

http://www.ijritcc.org/
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In the Figure 2 Process Flow diagram: 

The initial request is submitted to an AWS Lambda function. 

The Lambda function enqueues the request details into a 

message queue or pub/sub system. 

A long-running worker process outside of AWS Lambda 

listens to the queue or topic and retrieves the request details 

from the persistent storage service. 

The worker process performs the request processing outside of 

the time constraints of AWS Lambda and updates the progress 

and results in the persistent storage service. 

The Lambda function periodically checks the storage service 

for completion and retrieves the final results for post-

processing. 

Finally, the Lambda function notifies the client about the 

completion of the request, and the client receives the 

processed results. 

This process flow diagram demonstrates the separation of 

processing between AWS Lambda and a long-running worker 

process, facilitating the handling of requests that require more 

than 15 minutes of execution time. 

VIII. COMPARISON BETWEEN EXISTING AWS 

SERVER & OUR PROPOSED METHODOLOGY 

 

Fig 3: Comparison between Existing AWS Server & Proposed Methodology 

In the Fig 3 

S3 Bucket 

An S3 bucket is a storage resource provided by Amazon Web 

Services (AWS). It is a scalable and secure object storage 

service designed to store and retrieve large amounts of data. 

S3 stands for Simple Storage Service. 

SQS 

Amazon Simple Queue Service (SQS) is a fully managed 

message queuing service provided by Amazon Web Services 

(AWS). It offers a reliable and scalable platform for 

decoupling and asynchronously processing distributed 

systems. 

AWS Lambda 

AWS Lambda is a serverless computing service provided by 

Amazon Web Services (AWS). It allows developers to run 

their code without provisioning or managing servers. Lambda 

executes code in response to events and automatically scales 

the resources to match the incoming workload. 

Timeout Measurement in Existing Scenario in AWS 

Server 

Total Request Processing Time = Request Execution 

Time+ Uploading Time on Vendor API 

 

In current scenario of AWS Server total execution includes 

Request Execution Time & time to upload the response on 

Vendor or user API. 

Timeout Measurement in our proposed Methodology 

Total Request Processing Time = Request Execution Time 

& Store in SQS 

 

 In our proposed methodology we are saving the time of 

uploading the response on vendor or user API by saving the 

response in SQS. In this scenario the stored response will be 

available to user as per need by giving the unique token 

number. With this unique token number any user can identify 

its individual response.  

Using Amazon SQS: Our approach utilizes Amazon SQS, a 

fully managed message queue service, to temporarily store 

responses. 

Time-saving: Storing the response in SQS allows us to avoid 

the need to upload responses directly to the vendor or user 

API. This can save time as it offloads the direct processing 

overhead from the main application server. 

Unique Token: Each user's response is associated with a 

unique token number, enabling easy identification and 

retrieval of individual responses. 

Current AWS Server Working: 

Direct API Responses: In the traditional approach, the 

application server would directly handle responses from 

vendors or users through APIs. When a user submits a request, 

the server processes it and responds directly to the user or 

vendor. 

http://www.ijritcc.org/
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Real-time Response: With direct API responses, users 

receive responses in real-time without the need for additional 

retrieval mechanisms like tokens. 

Comparison: 

Scalability: Our proposed methodology using SQS can offer 

better scalability because it decouples the processing of 

responses from the main application server. As the number of 

requests increases, SQS can handle the message queue 

efficiently, allowing the application server to focus on 

processing new requests. 

Resilience: Amazon SQS provides high availability and fault 

tolerance, ensuring that messages (responses) are not lost even 

if a server or component fails. This resilience can lead to a 

more robust system compared to direct API processing. 

Asynchronous Processing: Using SQS allows for 

asynchronous processing, where the application server can 

send responses to the queue and proceed with other tasks 

without waiting for a response from the user or vendor API. 

This can improve overall system responsiveness 

IX. EXPERIMENTAL SPECIFICATION:  

To perform the experiment on Server less Environment, we 

have chosen the following specifications, which have been 

shown in Table1. 

S. No. Requirement Specifications 

1 Programming Language Node.js 

2 Serverless Environment AWS 

3 Serverless Function AWS Lambda 

Table 1: Experimental Specification 

X. ALGORITHM 

async function validateResult(requestId) { 

const maxRetries = 10; 

let retries = 0; 

while (retries &lt; maxRetries) { 

// Query the status of the request from the storage service 

const status = await queryRequestStatus(requestId); 

if (status === &#100;completed&#100;) { 

// Request is complete, retrieve the results 

const results = await retrieveResults(requestId); 

// Perform result validation or additional processing here 

// Notify completion to the client 

await notifyCompletionToClient(requestId, results); 

break; // Exit the loop 

} else if (status === &#100;pending&#100;) { 

// Request is still in progress, wait before checking again 

await wait(5000); // Wait for 5 seconds before the next 

iteration 

} else { 

// Handle other status scenarios or errors 

break; // Exit the loop 

} 

retries++; 

} 

// Handle cases where the request is taking too long or 

encounters errors 

// perform appropriate error handling or cleanup tasks 

• Implement helper functions: 

QueryRequestStatus(requested): This function queries the 

status of the request from the storage service, such as a 

database or an API endpoint. 

RetrieveResults (requestId): This function retrieves the 

processed results from the storage service based on the request 

identifier. 

Notify CompletionToClient (requestId, results): This 

function notifies the client about the completion of the request 

and provides the processed results. 

wait(ms): This function creates a delay for the specified 

number of milliseconds before the next iteration. 

• Invoke the validate Result function: Trigger the 

validateResult function from our result validation Lambda 

function or an external service to start the result validation 

program. Passed the unique identifier or token associated with 

the request. 

By using this methodology, we have implemented a result 

validation program in Node.js that continuously monitors the 

status of a request, retrieves the results once available, and 

performs validation or additional processing as required. 

XI. RESULT VALIDATION 

Result validation program on node.js framework to handle 

more than 15 minutes request in AWS lambda server To 

implement a result validation program in Node.js to handle 

requests that exceed the 15-minute time limit in AWS 

Lambda, we have used the following methodology: 

http://www.ijritcc.org/
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• Initial request submission: Follow the steps mentioned 

earlier to store the initial request and return a response to 

the client with a unique identifier or token. 

• Trigger the result validation program: After storing the 

request, trigger a separate Lambda function or an external 

service to initiate the result validation program. This 

program will continuously monitor the status of the 

request and validate the result once it &#100;s available. 

• Result validation loop: Implemented a loop that 

periodically checks the status of the request. We have 

used a combination of setTimeout and async/await 

to achieve this. 

XII. CONCLUSION 

In summary, the novel methodology addresses the limitation 

of AWS Lambda's 15-minute execution time limit by 

introducing a separate long-running worker process and 

leveraging persistent storage and asynchronous processing. It 

provides scalability, flexibility, resilience, and additional post-

processing capabilities. On the other hand, the existing 

framework of AWS Lambda offers simplicity, serverless 

benefits, and rapid development but is constrained by the 15-

minute time limit. The choice between the two frameworks 

depends on the specific requirements of the processing tasks 

and the desired trade-offs between development simplicity and 

long-running processing capabilities. 
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