
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

DOI: https://doi.org/10.17762/ijritcc.v11i7.7846

Article Received: 29 April 2023 Revised: 22 June 2023 Accepted: 03 July 2023

 200

IJRITCC | July 2023, Available @ http://www.ijritcc.org

A Novel Approach for Triggering the Serverless

Function in Serverless Environment

Shashank Srivastava1 , Bineet Kumar Gupta2, Dheeraj Tandon3, Kartikesh Tiwari4, Anshita Raj4, Megha Agarwal4

1Author, DCSIS, IOT, Shri Ramswaroop Memorial University,Lucknow, Uttar Pradesh, India
1shivam.shashank@gmail.com

2,4 DCSIS, IOT, Shri Ramswaroop Memorial University,Lucknow, Uttar Pradesh, India
2hod.dcsis@srmu.ac.in, 4kartikesh.csis@srmu.ac.in, 4anshitaraj.csis@srmu.ac.in, 4meghaaggarwal.csis@srmu.ac.in

3Department of Computer Science and Engineering, SRM Institute of Science & Technology, Delhi - NCR Campus, Modinagar –Ghaziabad,

Uttar Pradesh, India
3dheerajtandon9@gmail.com

Abstract— Serverless computing has gained significant popularity in recent years due to its scalability, cost efficiency, and simplified

development process. In a serverless environment, functions are the basic units of computation that are executed on-demand, without the need

for provisioning and managing servers. However, efficiently triggering serverless functions remains a challenge, as traditional methodologies

often suffer from latency, Time limit and scalability issues and the efficient execution and management of serverless functions heavily rely on

effective triggering mechanisms. This research paper explores various design considerations and proposes a novel approach for designing

efficient triggering mechanisms in serverless environments. By leveraging our proposed methodology, developers can efficiently trigger

serverless functions in a variety of scenarios, including event-driven architectures, data processing pipelines, and web application backend.

Keywords- Serverless Computing, AWS, AWS Lambda, Cloud Computing, Serverless Functions.

I. INTRODUCTION

Serverless computing is a cloud computing model where the

cloud provider (such as AWS Lambda, Azure Functions, or

Google Cloud Functions) manages the infrastructure and

automatically provisions and scales the resources needed to

run applications. In serverless computing, developers focus

solely on writing and deploying code without having to

manage servers or infrastructure.

A. Key Characteristics of Serverless Computing:

Event-Driven Architecture: Serverless applications are

designed around events or triggers. Functions are invoked in

response to events such as HTTP requests, database changes;

file uploads, or scheduled events. This event-driven

architecture allows for a highly decoupled and scalable

system.

Automatic Scaling: Serverless platforms automatically

handle the scaling of resources based on the incoming

workload. Functions are automatically scaled up or down

based on the demand, ensuring optimal resource utilization

and high availability. This scalability is achieved without the

need for manual configuration or capacity planning.

Pay-Per-Use Pricing: Serverless computing follows a pay-

per-use pricing model, where users are billed only for the

actual usage of resources. Billing is typically based on the

number of function invocations and the duration of each

invocation. This pricing model offers cost efficiency as users

pay only for the actual execution time of their functions, rather

than paying for idle resources.

Stateless Execution: Serverless functions are stateless,

meaning they don't maintain any persistent state between

invocations. This statelessness allows functions to be

easily scaled horizontally and ensures that each

invocation is independent and isolated.

Event-Driven Scaling: Serverless platforms scale resources

based on the incoming workload. As the number of events

increases, the platform automatically provisions more

compute resources to handle the workload. This event-driven

scaling ensures that resources are efficiently utilized and can

handle varying workloads without manual intervention.

Developer Productivity: Serverless computing abstracts

away the infrastructure management, allowing developers to

focus solely on writing application logic. It reduces the

operational burden by eliminating the need to provision,

manage, and scale servers, enabling faster development cycles

and improved developer productivity.

Fault Tolerance and High Availability: Serverless platforms

handle fault tolerance and high availability transparently.

They automatically replicate functions across multiple

availability zones, ensuring resilience and fault tolerance. In

case of a failure or resource unavailability, the platform

seamlessly redirects the events to available resources.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

DOI: https://doi.org/10.17762/ijritcc.v11i7.7846

Article Received: 29 April 2023 Revised: 22 June 2023 Accepted: 03 July 2023

 201

IJRITCC | July 2023, Available @ http://www.ijritcc.org

II. SERVERLESS COMPUTING OVERVIEW:

Serverless computing offers several benefits and advantages,

but it also comes with its own set of challenges. The benefits

and challenges of serverless computing are as follows:

A. Benefits of Serverless Computing:

Reduced Operational Overhead: With serverless computing,

developers are relieved of the burden of managing

infrastructure, including servers, operating systems, and

networking. The cloud provider takes care of these operational

aspects, allowing developers to focus solely on writing code

and delivering business value.

Scalability and Elasticity: Serverless platforms automatically

scale resources based on the incoming workload. They handle

the provisioning and scaling of resources, ensuring that

applications can handle sudden spikes in traffic and scale

down during periods of low activity. This enables applications

to achieve high scalability and responsiveness without manual

intervention.

Cost Efficiency: Serverless computing follows a pay-per-use

pricing model. Users are billed only for the actual execution

time of their functions, rather than paying for idle resources.

This results in cost savings as resources are efficiently

utilized, and users pay only for the actual usage of compute

resources.

Increased Developer Productivity: By abstracting away

infrastructure management, serverless computing allows

developers to focus on writing business logic and delivering

features. It reduces the time and effort required for

provisioning, managing, and scaling servers, enabling faster

development cycles and improved developer productivity.

Event-Driven Architecture: Serverless applications are built

around an event-driven architecture. They can easily integrate

with various event sources, such as HTTP requests, database

triggers, or message queues. This event-driven nature enables

the development of loosely coupled, modular applications that

can react to events in real-time.

B. Challenges of Serverless Computing Environment:

Cold Start Latency: Serverless functions may experience a

cold start when invoked for the first time or after a period of

inactivity. This can result in increased latency as the cloud

provider provisions resources to handle the request. Cold

starts can impact real-time and low-latency applications,

requiring careful optimization and management of functions to

minimize their occurrence [11].

Vendor Lock-in: Serverless platforms have varying degrees

of compatibility and interoperability between different cloud

providers. Moving serverless functions from one provider to

another may require significant modifications and

rearchitecting. This can lead to vendor lock-in, limiting

flexibility and making it challenging to switch providers.

Function Execution Limits: Serverless platforms impose

limits on function [3][6] execution time, memory usage, and

maximum request payload size. These limits can impact

certain workloads that require longer execution times or deal

with large data sets. Developers need to carefully design their

functions and consider these limitations to ensure

compatibility with serverless platforms.

Debugging and Testing: Debugging and testing serverless

functions can be challenging due to the distributed and event-

driven nature of serverless architectures. Traditional

debugging techniques may not work effectively, requiring the

use of specialized debugging tools and techniques for

identifying and fixing issues in serverless applications.

State Management: Serverless functions are stateless by

nature, meaning they don't maintain persistent state between

invocations. Managing and persisting state across function

invocations can introduce complexity, especially for

applications that require context or have long-running

workflows. Additional measures, such as external storage or

caching, need to be implemented to handle stateful scenarios.

III. ARCHITECTURAL COMPONENTS OF

SERVERLESS COMPUTING

As shown in Figure 1 Serverless computing relies on a set of

architectural components to enable its functionality and

provide a seamless experience for developers. These

components work together to handle function invocations,

manage resources, and ensure scalability and responsiveness.

The key architectural components of serverless computing:

Function-as-a-Service (FaaS):

FaaS[18][30] is the core component of serverless computing.

It allows developers to write and deploy functions that are

executed in response to events or triggers.Functions are self-

contained units of code that perform specific tasks or

operations. They are stateless and designed to be event-

driven.FaaS platforms, such as AWS Lambda, Azure

Functions, or Google Cloud Functions, handle the

deployment, scaling, and execution of functions.

Event Sources:

Event sources [7][31][32] trigger the execution of serverless

functions. They generate events that serve as the input for

functions to process.Common event sources include HTTP

requests, database changes, file uploads, message queues,

scheduled events, and IoT device messages.Event sources can

be external systems or services that emit events, or they can be

internal triggers defined within the serverless platform.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

DOI: https://doi.org/10.17762/ijritcc.v11i7.7846

Article Received: 29 April 2023 Revised: 22 June 2023 Accepted: 03 July 2023

 202

IJRITCC | July 2023, Available @ http://www.ijritcc.org

Function Triggers:

Function triggers [10] are responsible for connecting the event

sources to the serverless functions.Triggers define the

conditions or rules that determine when a function should be

invoked in response to an event.Triggers can be configured to

handle specific events, filter events based on criteria, or route

events to different functions or workflows.

Compute Infrastructure:

Serverless platforms manage the underlying compute

infrastructure required to execute functions. The platforms

automatically provision and allocate resources based on the

incoming workload to ensure scalability and availability. The

compute infrastructure can dynamically scale up or down to

handle varying levels of demand without manual intervention.

Resource Orchestration:

Resource orchestration components manage the allocation and

coordination of resources needed to execute functions. They

handle the provisioning and lifecycle management of compute

resources, network resources, and other dependencies required

by functions. Orchestration components ensure that the

necessary resources are available to handle function

invocations and coordinate their execution.

Monitoring and Logging:

Monitoring and logging components provide visibility into the

execution and performance of serverless functions.They

collect and analyze metrics, logs, and traces to help developers

monitor the behavior, identify bottlenecks, and optimize the

performance of their functions.Monitoring and logging tools

enable real-time monitoring, debugging, and troubleshooting

of serverless applications.

Authentication and Authorization:

Serverless platforms incorporate authentication and

authorization mechanisms to secure function invocations and

access to resources.They provide authentication methods, such

as API keys, OAuth, or IAM roles, to ensure that only

authorized users or systems can trigger functions and access

protected resources.Authorization mechanisms control the

permissions and access levels granted to different entities

interacting with the serverless application.

These architectural components[33][34] work together to

provide the foundation for serverless computing. They enable

the seamless execution of functions, handle event-driven

triggers, manage resources, ensure scalability, and provide

monitoring and security capabilities. By leveraging these

components, developers can focus on writing business logic

without the need to manage infrastructure or worry about

scalability and availability.

Fig. 1: Architectural Components of Serverless Computing

IV. RELATED APPROACHES

FaaS is based on the event-driven programming approach,

which is inspired by the well-known Active Database Systems

[8]. Numerous event-driven abstractions, including as triggers,

Event Condition Action (ECA), and composite event

detection, have been implemented into the FaaS framework."

In the past, event-based triggering was widely used to provide

responsive coordination of remote systems [9,10].

Furthermore, event-based mechanisms and triggers have been

widely used in the development of workflow and orchestration

systems [11-14]. The ECA paradigm, which includes triggers

and rules, is well-suited for describing transitions in finite

state machines that reflect workflows. In research paper [15],

for instance, they propose employing synchronous aggregation

triggers to coordinate massively parallel data processing

operations.

The research paper [14] highlights a captivating related work

that shows how composite subscriptions in content-based

publish/subscribe systems are used to provide decentralized

Event-based Workflow Management. Through content-based

subscriptions in a Composite Subscription Language, their

PADRES technologies enable parallelization, alternation,

sequence, and repetition compositions.

The intersections of the Complex Event Processing (CEP) and

Business Process Management (BPM) communities have

recently been examined in a pertinent study [16]. This survey

summarizes recent efforts in this field as well as current

problems with merging both models. Our article specifically

addresses their issue of "Executing business processes via

CEP rules," and our main contribution is our serverless

reactive and flexible architecture.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

DOI: https://doi.org/10.17762/ijritcc.v11i7.7846

Article Received: 29 April 2023 Revised: 22 June 2023 Accepted: 03 July 2023

 203

IJRITCC | July 2023, Available @ http://www.ijritcc.org

The "Serverless trilemma" proposed by IBM [17] is a

pertinent related work applicable to serverless settings that

aims to provide reactive orchestration of serverless functions.

The authors provide a method for sequential compositions on

top of Apache OpenWhisk and support reactive run-time

support for function orchestration.

The CNCF community has recently concentrated its efforts on

creating a standardized specification for Serverless Workflows

[18]. In their approach, workflows are defined explicitly using

a YAML file that includes state transitions for data

management and control flow logic, descriptions for

CloudEvents for consumption, and instructions for event-

driven execution of serverless services. In order to ensure

portability and prevent vendor lock-in, an abstract

specification that may be understood by several systems is

intended.

Various serverless computing orchestration systems have been

proposed in numerous studies, including [19–24]. Many of

them, however, rely on centralized server-based resources that

cannot scale down to zero, including machine virtualization or

dedicated resources. The orchestrator component

consequently remains active throughout the whole workflow

execution, leading to wasteful resource use for workflows that

take a long time to finish because the orchestrator frequently

sits idle while waiting for lengthy tasks to complete.

Additionally, the designs and fault tolerance of some of these

systems are complicated by the utilization of functions calling

functions patterns. None of these solutions currently available

offer flexible trigger abstractions to generate different types of

orchestrators.

Workflow orchestration is compared across triggers and

Durable Functions by using workflow as code in [25]. They

contend that although using triggers for workflow

orchestration is technically feasible, it is not ideal due to

drawbacks such as the requirement to create different queues

or directories for every step, triggers' inability to wait for the

completion of numerous prior steps, and their unsuitability for

proper error handling. In contrast, we will demonstrate in this

post that by using a Rich Trigger framework, we may get

around these difficulties. Extended trigger logic allows us to

provide rules for event screening to prevent the creation of

additional queues and event aggregation to carry out a

multiple join. We can also ensure fault tolerance through the

use of event replay and checkpointing.

Today, major cloud providers such as IBM Composer,

Amazon Step Functions, Azure Durable Functions, and

Google Cloud Workflows provide cloud orchestration and

function composition capabilities. These services are suitable

for various types of workloads because each one of them has

particular features and limitations.

In two earlier articles [4,5], public FaaS orchestration services

for managing massively parallel workloads were evaluated.

When executing map jobs, it was discovered that IBM

Composer provided the best speed and had the lowest

overheads, but competing services like ASF or ADF had high

overheads. Furthermore, we will show how ASFE performs

well for concurrent workloads in this research.

Despite the wide range of cloud orchestration services already

in existence, none of them provide an open and extensible

trigger-based API that enables the creation of unique

workflow engines.

Although there are many cloud orchestration services

accessible none of them provide an extensible trigger-based

API that enables the development of unique workflow

engines. In this study, we demonstrate how Trigger flow may

be used to implement models that are already in existence,

such as ASF or Airflow DAGs. Trigger flow, which makes

use of Kubernetes standard features, is not merely another

scheduler but a reactive meta-tool to build reactive

orchestrators.

The importance of cloud event routing and Knative Eventing

as a unifying infrastructure for diverse cloud services and

applications has grown in the context of event-based

architectures. The CNCF Cloud Events standard is essential in

this area and is utilized by major cloud providers such as

Amazon, Azure, Google, and IBM to provide event routing

services.

For developers utilizing Kubernetes, the Knative project was

developed to give a serverless-like experience. It offers high-

level abstractions for scalable functions (Knative Serving) and

event processing (Knative Eventing). Utilizing sophisticated

abstractions not found in Knative Eventing, such as dynamic

triggers, trigger interception, custom filters, termination

events, and a shared context, Trigger flow seeks to use

Knative Eventing to enable extensible trigger-based

orchestration of serverless workflows. Future event routing

systems might use these innovative services to streamline task

formulation, streaming, and orchestration.

V. TRIGGERING MECHANISMS IN SERVERLESS

ENVIRONMENTS:

In serverless environments, triggering mechanisms play a

crucial role in invoking functions based on events or triggers

[1][2]. These mechanisms determine when and how functions

are executed in response to specific events or conditions.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

DOI: https://doi.org/10.17762/ijritcc.v11i7.7846

Article Received: 29 April 2023 Revised: 22 June 2023 Accepted: 03 July 2023

 204

IJRITCC | July 2023, Available @ http://www.ijritcc.org

Some common triggering mechanisms used in serverless

environments:

Event-Driven Invocations:

Event-driven[7][8][35] invocations are the most fundamental

triggering mechanism in serverless computing. Functions are

triggered when specific events occur, such as an HTTP

request, changes in a database, file uploads, or messages in a

message queue.The event sources generate events, which are

then forwarded to the serverless platform, which in turn

invokes the relevant functions.Event-driven invocations

enable real-time processing and allow functions to react to

changes in the system or external events.

HTTP Triggers:

HTTP triggers enable functions to be invoked via HTTP

requests.Functions can be exposed as HTTP endpoints,

allowing external systems or users to invoke the functions by

sending HTTP requests.HTTP triggers are commonly used for

building RESTful APIs or handling webhooks.

Timer-Based Triggers:

Timer-based triggers schedule functions to execute at

predefined intervals or specific times.Functions can be

configured to run periodically, such as every minute, hourly,

daily, or on specific dates.Timer-based triggers are useful for

tasks that require periodic data processing, batch jobs, or

scheduled maintenance tasks.

Database Triggers:

Database triggers invoke functions when changes occur in a

connected database.Functions can be triggered when there are

insertions, updates, deletions, or specific changes in database

records.Database triggers enable functions to react to changes

in data and perform actions such as data validation, data

synchronization, or generating notifications.

Message Queue Triggers:

Message queue triggers invoke functions when new messages

are added to a message queue.Functions can be connected to

message queues such as Amazon Simple Queue Service

(SQS) or Azure Service Bus, and they are triggered when new

messages are available.Message queue triggers facilitate

decoupling and asynchronous processing, allowing functions

to handle messages at their own pace.

Streaming Triggers:

Streaming triggers enable functions to process data streams in

real-time.Functions can be connected to streaming platforms

such as Amazon Kinesis or Apache Kafka, where they receive

data records as they are generated.Streaming triggers are

suitable for scenarios that require continuous processing of

high-volume data streams, such as real-time analytics or

event-driven architectures.These triggering mechanisms

provide the flexibility to design serverless applications that

respond to various events and conditions. By selecting the

appropriate triggering mechanisms and configuring the event

sources, developers can build reactive and event-driven

systems in serverless environments.

VI. CONSIDERATIONS IN PROPOSED DESIGNING

APPROACH

In our proposed designing approach for designing effective

triggering mechanisms in AWS Lambda for handling more

than 15 minutes processing requests, we have consider

following considerations which are as follows:

Asynchronous Processing: To handle long-running requests,

design your framework to support asynchronous processing.

Break down the processing into smaller, manageable tasks that

can be executed asynchronously. Implement mechanisms for

tracking the progress and status of these tasks.

Job Queues: Utilize job queues to manage and prioritize the

processing requests. When a request comes in, enqueue it into

a job queue. This allows you to handle requests in a scalable

and efficient manner, ensuring that they are processed in the

order they were received.

Distributed Processing: Distribute the processing tasks

across multiple instances of AWS Lambda functions to

achieve parallel processing and improved performance.

Partition the workload and assign different segments to

individual function instances for concurrent execution.

Request Chunking: If the request payload is large, consider

implementing request chunking. Split the request into smaller

chunks that can be processed independently. This approach

allows you to handle large requests efficiently and avoid any

limitations imposed by AWS Lambda, such as maximum

payload size.

State Management: Implement a mechanism for managing

the state of long-running requests. Store the intermediate state

and progress of the request in a persistent storage system, such

as a database or an external caching service. This allows you

to resume processing if a function invocation is interrupted or

times out.

Timeouts and Retries: Set appropriate timeouts for the AWS

Lambda functions to handle long-running requests. Implement

retry mechanisms to handle failures or timeouts, ensuring that

processing continues from the last checkpoint in case of

failures. Consider using AWS Step Functions for orchestration

and handling retries.

Monitoring and Alerting: Incorporate monitoring and

alerting mechanisms to track the progress and performance of

long-running requests. Monitor the execution time, resource

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

DOI: https://doi.org/10.17762/ijritcc.v11i7.7846

Article Received: 29 April 2023 Revised: 22 June 2023 Accepted: 03 July 2023

 205

IJRITCC | July 2023, Available @ http://www.ijritcc.org

utilization, and any errors or exceptions that occur during

processing. Set up alerts to notify administrators or

stakeholders in case of any issues.

Error handling: Design a robust error handling mechanism to

handle failures during processing. Implement a rollback

mechanism to undo any changes made in case of processing

errors. Use Error Handling and Rollback compensating

transactions or idempotent operations to ensure data

consistency and integrity.

Cost Optimization: Consider the cost implications of long-

running requests. Design your framework to optimize costs by

utilizing AWS Lambda features like provisioned concurrency,

which can help reduce cold starts and improve performance.

Implement mechanisms to pause or optimize resources during

idle periods to minimize costs.

Performance Optimization: Continuously optimize the

performance of your framework by monitoring and analyzing

the processing times, identifying bottlenecks, and optimizing

resource utilization. Consider leveraging AWS Lambda

features like provisioned concurrency, memory allocation

tuning, and function-specific optimization[9].

By considering these design considerations, we have

developed a methodology for effective triggering mechanisms

in AWS Lambda that can handle long-running processing

requests efficiently, ensure fault tolerance, optimize costs, and

provide scalability and reliability.

VII. PROPOSED METHODOLOGY

To handle longer requests in AWS Lambda, we have

implemented an asynchronous processing framework. AWS

Lambda has a maximum execution time limit, which varies

depending on the region and the type of Lambda function

you're using. By implementing an asynchronous framework,

you can overcome this time limit and process longer requests

effectively. The methodology that we have followed:

Receive the initial request: When a request comes to your

Lambda function, the first step is to receive and validate the

request. Make sure the request contains all the necessary

information for processing.

Store the request: Instead of processing the request

immediately, store it in a durable storage service such as

Amazon S3, Amazon DynamoDB, or an external database like

Amazon RDS or Aurora. This step ensures that the request is

not lost in case of a Lambda function timeout or failure.

Return a response: Acknowledge the receipt of the request

by returning an appropriate response to the client. This

response can include a unique identifier or a token that the

client can use to check the processing status later.

Process the request asynchronously: Trigger another

Lambda function or an AWS service like Amazon Simple

Queue Service (SQS) or Amazon Simple Notification Service

(SNS) to process the request asynchronously. Pass the unique

identifier or token from the previous step so that the

processing function can retrieve the request.

Implement the processing function: Develop a separate

Lambda function or worker that reads the request from the

storage service and performs the necessary processing.

Depending on the workload, you can process the request

entirely within a single function invocation or break it down

into smaller tasks for parallel processing.

Update the processing status: As the processing function

progresses, update the status of the request in the storage

service. You can use a database table, a document in a NoSQL

database, or an S3 object to store the status and progress of the

request.

Notify completion: Once the processing is complete, notify

the client using mechanisms like SNS or by updating a status

field in the request storage. The client can then retrieve the

processed results using the unique identifier or token.

By implementing this methodology, we can handle longer

requests in AWS Lambda by breaking down the processing

into asynchronous steps, ensuring reliability, and allowing for

efficient utilization of resources.

Fig. 2: Proposed Process Flow Diagram

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

DOI: https://doi.org/10.17762/ijritcc.v11i7.7846

Article Received: 29 April 2023 Revised: 22 June 2023 Accepted: 03 July 2023

 206

IJRITCC | July 2023, Available @ http://www.ijritcc.org

In the Figure 2 Process Flow diagram:

The initial request is submitted to an AWS Lambda function.

The Lambda function enqueues the request details into a

message queue or pub/sub system.

A long-running worker process outside of AWS Lambda

listens to the queue or topic and retrieves the request details

from the persistent storage service.

The worker process performs the request processing outside of

the time constraints of AWS Lambda and updates the progress

and results in the persistent storage service.

The Lambda function periodically checks the storage service

for completion and retrieves the final results for post-

processing.

Finally, the Lambda function notifies the client about the

completion of the request, and the client receives the

processed results.

This process flow diagram demonstrates the separation of

processing between AWS Lambda and a long-running worker

process, facilitating the handling of requests that require more

than 15 minutes of execution time.

VIII. COMPARISON BETWEEN EXISTING AWS

SERVER & OUR PROPOSED METHODOLOGY

Fig 3: Comparison between Existing AWS Server & Proposed Methodology

In the Fig 3

S3 Bucket

An S3 bucket is a storage resource provided by Amazon Web

Services (AWS). It is a scalable and secure object storage

service designed to store and retrieve large amounts of data.

S3 stands for Simple Storage Service.

SQS

Amazon Simple Queue Service (SQS) is a fully managed

message queuing service provided by Amazon Web Services

(AWS). It offers a reliable and scalable platform for

decoupling and asynchronously processing distributed

systems.

AWS Lambda

AWS Lambda is a serverless computing service provided by

Amazon Web Services (AWS). It allows developers to run

their code without provisioning or managing servers. Lambda

executes code in response to events and automatically scales

the resources to match the incoming workload.

Timeout Measurement in Existing Scenario in AWS

Server

Total Request Processing Time = Request Execution

Time+ Uploading Time on Vendor API

In current scenario of AWS Server total execution includes

Request Execution Time & time to upload the response on

Vendor or user API.

Timeout Measurement in our proposed Methodology

Total Request Processing Time = Request Execution Time

& Store in SQS

 In our proposed methodology we are saving the time of

uploading the response on vendor or user API by saving the

response in SQS. In this scenario the stored response will be

available to user as per need by giving the unique token

number. With this unique token number any user can identify

its individual response.

Using Amazon SQS: Our approach utilizes Amazon SQS, a

fully managed message queue service, to temporarily store

responses.

Time-saving: Storing the response in SQS allows us to avoid

the need to upload responses directly to the vendor or user

API. This can save time as it offloads the direct processing

overhead from the main application server.

Unique Token: Each user's response is associated with a

unique token number, enabling easy identification and

retrieval of individual responses.

Current AWS Server Working:

Direct API Responses: In the traditional approach, the

application server would directly handle responses from

vendors or users through APIs. When a user submits a request,

the server processes it and responds directly to the user or

vendor.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

DOI: https://doi.org/10.17762/ijritcc.v11i7.7846

Article Received: 29 April 2023 Revised: 22 June 2023 Accepted: 03 July 2023

 207

IJRITCC | July 2023, Available @ http://www.ijritcc.org

Real-time Response: With direct API responses, users

receive responses in real-time without the need for additional

retrieval mechanisms like tokens.

Comparison:

Scalability: Our proposed methodology using SQS can offer

better scalability because it decouples the processing of

responses from the main application server. As the number of

requests increases, SQS can handle the message queue

efficiently, allowing the application server to focus on

processing new requests.

Resilience: Amazon SQS provides high availability and fault

tolerance, ensuring that messages (responses) are not lost even

if a server or component fails. This resilience can lead to a

more robust system compared to direct API processing.

Asynchronous Processing: Using SQS allows for

asynchronous processing, where the application server can

send responses to the queue and proceed with other tasks

without waiting for a response from the user or vendor API.

This can improve overall system responsiveness

IX. EXPERIMENTAL SPECIFICATION:

To perform the experiment on Server less Environment, we

have chosen the following specifications, which have been

shown in Table1.

S. No. Requirement Specifications

1 Programming Language Node.js

2 Serverless Environment AWS

3 Serverless Function AWS Lambda

Table 1: Experimental Specification

X. ALGORITHM

async function validateResult(requestId) {

const maxRetries = 10;

let retries = 0;

while (retries < maxRetries) {

// Query the status of the request from the storage service

const status = await queryRequestStatus(requestId);

if (status === dcompletedd) {

// Request is complete, retrieve the results

const results = await retrieveResults(requestId);

// Perform result validation or additional processing here

// Notify completion to the client

await notifyCompletionToClient(requestId, results);

break; // Exit the loop

} else if (status === dpendingd) {

// Request is still in progress, wait before checking again

await wait(5000); // Wait for 5 seconds before the next

iteration

} else {

// Handle other status scenarios or errors

break; // Exit the loop

}

retries++;

}

// Handle cases where the request is taking too long or

encounters errors

// perform appropriate error handling or cleanup tasks

• Implement helper functions:

QueryRequestStatus(requested): This function queries the

status of the request from the storage service, such as a

database or an API endpoint.

RetrieveResults (requestId): This function retrieves the

processed results from the storage service based on the request

identifier.

Notify CompletionToClient (requestId, results): This

function notifies the client about the completion of the request

and provides the processed results.

wait(ms): This function creates a delay for the specified

number of milliseconds before the next iteration.

• Invoke the validate Result function: Trigger the

validateResult function from our result validation Lambda

function or an external service to start the result validation

program. Passed the unique identifier or token associated with

the request.

By using this methodology, we have implemented a result

validation program in Node.js that continuously monitors the

status of a request, retrieves the results once available, and

performs validation or additional processing as required.

XI. RESULT VALIDATION

Result validation program on node.js framework to handle

more than 15 minutes request in AWS lambda server To

implement a result validation program in Node.js to handle

requests that exceed the 15-minute time limit in AWS

Lambda, we have used the following methodology:

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

DOI: https://doi.org/10.17762/ijritcc.v11i7.7846

Article Received: 29 April 2023 Revised: 22 June 2023 Accepted: 03 July 2023

 208

IJRITCC | July 2023, Available @ http://www.ijritcc.org

• Initial request submission: Follow the steps mentioned

earlier to store the initial request and return a response to

the client with a unique identifier or token.

• Trigger the result validation program: After storing the

request, trigger a separate Lambda function or an external

service to initiate the result validation program. This

program will continuously monitor the status of the

request and validate the result once it ds available.

• Result validation loop: Implemented a loop that

periodically checks the status of the request. We have

used a combination of setTimeout and async/await

to achieve this.

XII. CONCLUSION

In summary, the novel methodology addresses the limitation

of AWS Lambda's 15-minute execution time limit by

introducing a separate long-running worker process and

leveraging persistent storage and asynchronous processing. It

provides scalability, flexibility, resilience, and additional post-

processing capabilities. On the other hand, the existing

framework of AWS Lambda offers simplicity, serverless

benefits, and rapid development but is constrained by the 15-

minute time limit. The choice between the two frameworks

depends on the specific requirements of the processing tasks

and the desired trade-offs between development simplicity and

long-running processing capabilities.

Acknowledgement

 We would like to express our sincere gratitude to our

supervisor, Dr. Bineet Kumar Gupta, Associate Professor,

DCSIS, IOT, SRMU Lucknow for his valuable guidance and

support throughout the research process. His expertise and

insights were invaluable in shaping our research and helping

us to overcome challenges. We also want to thank our SRMU

University,Lucknow for their helpful feedback and support.

References:

[1] Bhamare, S., & Patil, V. (2020). Function Placement and

Triggering Techniques in Serverless Computing: A Survey.

International Journal of Computer Applications,pp. 975-980.

[2] Mao, H., & Wang, J. (2019). Fine-Grained Function Triggering

Mechanism in Serverless Computing. IEEE Transactions on

Cloud Computing, 7(2), pp. 446-459.

[3] Zhang, H., Huang, H., & Zhou, H. (2021). Intelligent Function

Placement in Serverless Computing. IEEE Transactions on

Services Computing, 14(4), pp. 656-669.

[4] P.G. López, M. Sánchez-Artigas, G. París, D.B. Pons, Á.R.

Ollobarren, D.A. Pinto, Comparison of faas orchestration

systems, in: 2018 IEEE/ACM International Conference on

Utility and Cloud Computing Companion (UCC Companion),

IEEE, 2018, pp. 148–153.

[5] D. Barcelona-Pons, P. García-López, A. Ruiz, A. Gómez-

Gómez, G. París, M. Sánchez-Artigas, FaaS orchestration of

parallel workloads, in: Proceedings of the 5th International

Workshop on Serverless Computing, in: WOSC ’19,

Association for Computing Machinery, New York, NY, USA,

2019, pp. 25–30, http://dx.doi.org/10.1145/3366623.3368137

[6] Chen, Y., & Chen, L. (2020). Survey and Taxonomy on

Function Placement Strategies in Serverless Computing. IEEE

Access, 8, 178530-178545.

[7] Shin, D., Yoo, S., & Woo, J. (2021). An Event-Driven Function

Placement Algorithm for Optimizing Function Invocation

Latency in Serverless Computing. Sensors, 21(1), 278.

[8] N.W. Paton, O. Díaz, Active database systems, ACM Comput.

Surv. 31 (1) (1999) 63–103.

[9] C. Mitchell, R. Power, J. Li, Oolong: asynchronous distributed

applications made easy, in: Proceedings of the Asia-Pacific

Workshop on Systems, ACM, 2012, p. 11.

[10] S. Han, S. Ratnasamy, Large-scale computation not at the cost

of expressiveness, in: Presented as Part of the 14th Workshop

on Hot Topics in Operating Systems, 2013.

[11] A. Geppert, D. Tombros, Event-based distributed workflow

execution with EVE, in: Middleware’98, Springer, 1998, pp.

427–442.

[12] Bent AL-Huda Sahib Ghetran, Enas Abdul Hafedh

Mohammed. (2023). Bayes Estimation of Parameters of the

Kibble-Bivariate Gamma Distribution Under A Precautionary

Loss Function for Fuzzy Data Using Simulation. International

Journal of Intelligent Systems and Applications in Engineering,

11(2s), 373–380. Retrieved from

https://ijisae.org/index.php/IJISAE/article/view/2733

[13] W. Chen, J. Wei, G. Wu, X. Qiao, Developing a concurrent

service orchestration engine based on event-driven architecture,

in: OTM Confederated International Conferences’’ on the

Move to Meaningful Internet Systems’’, Springer, 2008, pp.

675–690.

[14] W. Binder, I. Constantinescu, B. Faltings, Decentralized

orchestration of composite web services, in: 2006 IEEE

International Conference on Web Services (ICWS’06), IEEE,

2006, pp. 869–876.

[15] G. Li, H.-A. Jacobsen, Composite subscriptions in content-

based publish/subscribe systems, in: ACM/IFIP/USENIX

International Conference on Distributed Systems Platforms and

Open Distributed Processing, Springer, 2005, pp. 249–269.

[16] D. Dai, Y. Chen, D. Kimpe, R. Ross, Trigger-based incremental

data processing with unified sync and async model, IEEE

Trans. Cloud Comput. (2018).

[17] P. Soffer, A. Hinze, A. Koschmider, H. Ziekow, C. Di Ciccio,

B. Koldehofe, O. Kopp, A. Jacobsen, J. Sürmeli, W. Song,

From event streams to process models and back: Challenges

and opportunities, Inf. Syst. 81 (2019) 181–200.

[18] I. Baldini, P. Cheng, S.J. Fink, N. Mitchell, V. Muthusamy, R.

Rabbah, P. Suter, O. Tardieu, The serverless trilemma:

Function composition for serverless computing, in: Proceedings

of the 2017 ACM SIGPLAN International Symposium on New

Ideas, New Paradigms, and Reflections on Programming and

Software, Onward! 2017, 2017, pp. 89–103.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

DOI: https://doi.org/10.17762/ijritcc.v11i7.7846

Article Received: 29 April 2023 Revised: 22 June 2023 Accepted: 03 July 2023

 209

IJRITCC | July 2023, Available @ http://www.ijritcc.org

[19] Schad, J., Dittrich, J., & Quiané-Ruiz, J. A. (2018). Towards

Function-as-a-Service: Perspectives on Serverless Computing.

ACM Queue, 16(2), 70-111.

[20] B. Carver, J. Zhang, A. Wang, Y. Cheng, In search of a fast and

efficient serverless DAG engine, 2019, arxiv preprint

arXiv:1910.05896.

[21] S. Joyner, M. MacCoss, C. Delimitrou, H. Weatherspoon,

Ripple: A practical declarative programming framework for

serverless compute, 2020, arxiv preprint arXiv:2001.00222.

[22] Prof. Parvaneh Basaligheh. (2020). Mining Of Deep Web

Interfaces Using Multi Stage Web Crawler. International

Journal of New Practices in Management and Engineering,

9(04), 11 - 16. Retrieved from

http://ijnpme.org/index.php/IJNPME/article/view/94

[23] M. Malawski, A. Gajek, A. Zima, B. Balis, K. Figiela,

Serverless execution of scientific workflows: experiments with

hyperflow, aws lambda and google cloud functions, Future

Generation Comput. Syst. (ISSN: 0167- 739X) 110 (2020)

502–514, http://dx.doi.org/10.1016/j.future.2017.10.029,

https://www.sciencedirect.com/science/article/pii/S0167739X1

730047X.

[24] A. Jangda, D. Pinckney, Y. Brun, A. Guha, Formal foundations

of serverless computing, Proc. ACM Program. Lang. 3

(OOPSLA) (2019) 1–26.

[25] E. Van Eyk, J. Grohmann, S. Eismann, A. Bauer, L. Versluis,

L. Toader, N. Schmitt, N. Herbst, C. Abad, A. Iosup, The

SPEC-RG reference architecture for FaaS: From microservices

and containers to serverless platforms, IEEE Internet Comput.

(2019).

[26] Mark White, Thomas Wood, Carlos Rodríguez, Pekka

Koskinen, Jónsson Ólafur. Exploring Natural Language

Processing in Educational Applications. Kuwait Journal of

Machine Learning, 2(1). Retrieved from

http://kuwaitjournals.com/index.php/kjml/article/view/168

[27] S. Fouladi, F. Romero, D. Iter, Q. Li, S. Chatterjee, C.

Kozyrakis, M. Zaharia, K. Winstein, From laptop to lambda:

Outsourcing everyday jobs to thousands of transient functional

containers, in: 2019 USENIX Annual Technical Conference

(USENIX ATC 19), USENIX Association, Renton, WA, 2019,

pp. 475–488, URL

https://www.usenix.org/conference/atc19/presentation/ fouladi.

[28] S. Burckhardt, C. Gillum, D. Justo, K. Kallas, C. McMahon,

C.S. Meiklejohn, Serverless workflows with durable functions

and netherite, 2021, arXiv: 2103.00033

[29] Fernández, P., Tordsson, J., & Elmroth, E. (2019). Event-

Driven Function Placement in Serverless Computing. IEEE

International Conference on Cloud Engineering (IC2E), 32-37.

[30] Lu, Q., & Zhang, Z. (2020). Serverless Function Placement

with Data Locality Optimization in Edge Computing

Environment. Future Generation Computer Systems, 108, 136-

147.

[31] Wang, W., Zhang, S., & Liu, J. (2021). A Trigger-Based

Serverless Function Placement Algorithm for Edge Computing.

Journal of Parallel and Distributed Computing, 154, 139-148.

[32] Castro, P., & Cheng, L. T. (2019). Serverless computing:

Present and future trends. Journal of Systems and Software,

157, 110381.

[33] Shahrad, M., Yarom, Y., & Falkner, N. (2019). Function

Placement in Serverless Computing: From User Requirements

to Serverless Frameworks. IEEE International Conference on

Cloud Computing Technology and Science (CloudCom), 329-

336.

[34] Bineet Kumar Gupta, et. al. “Integrated hesitant fuzzy-based

decision-making framework for evaluating sustainable and

renewable energy” in International Journal of Data Science and

Analytics, ISSN 2364-4168, July 2023, Vlume 7(1), pp-1-12

https://doi.org/10.1007/s41060-023-00426-4,

[35] Kwame Boateng, Machine Learning-based Object Detection

and Recognition in Autonomous Systems , Machine Learning

Applications Conference Proceedings, Vol 3 2023.

[36] Bineet Kumar Gupta and Satya Bhushan“Containerization and

its Architectures: A Study ”Advances in Distributed

Computing and Artificial Intelligence Journal Regular Issue,

Vol. 11 N. 4 (2022), pp-395-409, eISSN: 2255-2863,

DOI: https://doi.org/10.14201/adcaij.28351

[37] Praveen Kumar Singh, Neeraj Kumar & Bineet Kumar Gupta

"Smart Card ID: An Evolving and Viable Technology"

International Journal of Advanced Computer Science and

Applications (IJACSA), ISSN: 2158-107X, Volume 9 (3), pp.

114-124, April 2018. [34] N. Kumar & B. K. Gupta, E-Health

Approach to Stipulate The Diabetic Patient Care and

Management”, Value Health in The Journal of international

Society for Pharmaeconomics and Outcomes Research, Volume

19, Issue 3, Page A211, May 2016,

https://doi.org/10.1016/j.jval.2016.03.1281

[38] N. Kumar, B.K. Gupta, V. Sharma, V. Dixit, and S.K.

Singh, “E-Health: Stipulation of mobile phone technology in

adolescent Diabetic Patient Care” Paediatric Diabetes, Jon Wily

& Sons A/A, Volume 14(18), October 2013, ISSN P: 1399-

543X, O: 1399-5448, p-90, 90. (DOI:10.1111/pedi.12075).

http://www.ijritcc.org/

