
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7744

Article Received: 19 May 2023 Revised: 20 July 2023 Accepted: 07 August 2023

 718

IJRITCC | August 2023, Available @ http://www.ijritcc.org

A Hybrid Grey Wolf Optimization and Constriction

Factor based PSO Algorithm for Workflow

Scheduling in Cloud

Vinay Kumar Sriperambuduri1, Nagaratna M2

Department of CSE
1,2JNTUH College of Engineering

Hyderabad, India.
1s.vinaykumar@staff.vce.ac.in, 2mratnaraju@jntuh.ac.in

Abstract—Due to its flexibility, scalability, and cost-effectiveness of cloud computing, it has emerged as a popular platform for hosting

various applications. However, optimizing workflow scheduling in the cloud is still a challenging problem because of the dynamic nature of

cloud resources and the diversity of user requirements. In this context, Particle Swarm Optimization (PSO) and Grey Wolf Optimization (GWO)

algorithms have been proposed as effective techniques for improving workflow scheduling in cloud environments. The primary objective of

this work is to propose a workflow scheduling algorithm that optimizes the makespan, service cost, and load balance in the cloud. The proposed

HGWOCPSO hybrid algorithm employs GWO and Constriction factor based PSO (CPSO) for the workflow optimization. The algorithm is

simulated on Workflowsim, where a set of scientific workflows with varying task sizes and inter-task communication requirements are executed

on a cloud platform. The simulation results show that the proposed algorithm outperforms existing algorithms in terms of makespan, service

cost, and load balance. The employed GWO algorithm mitigates the problem of local optima that is inherent in PSO algorithm.

Keywords- Workflow, Scheduling; PSO; GWO; Cloudsim; Workflowsim; Cloud Scheduling.

I. INTRODUCTION

Cloud computing has become an increasingly popular

platform for hosting various applications due to its flexibility,

scalability, and cost-effectiveness. However, optimizing

workflow scheduling in the cloud is still a challenging problem

due to the scale of the resources, dynamic nature of the resources

and the diversity of user requirements. Workflow scheduling

involves allocating resources and scheduling tasks in a way that

minimizes makespan (i.e., the time it takes to complete all tasks)

and reduces costs while efficiently utilizing available resources.

A workflow can be represented as a directed acyclic graph

(DAG), where each node represents a task subset of Tasks (T)

and edges (E) represent dependencies between tasks. The DAG

is denoted as G(T, E), where T is the set of tasks and E is the set

of edges. The entry task, which has no parent, and the exit task,

which has no children, are two special tasks. The paired set of

tasks in E indicates that the second task must be executed after

the first task. For instance, if the pair {T1, T2} exists in E, then

T2 is dependent on T1 and must be executed after T1.

Figure 1 shows an example of a simple workflow DAG,

consisting of six tasks: T1, T 2, T3, T4, T5, T6 with T1 and T6

being the start and end tasks, respectively. The complete set of

dependencies in the example DAG is {{T1, T2}, {T1, T3}, {T2,

T4}, {T2, T4}, {T2, T5}, {T4, T6}, and {T5, T6}}.

The Pegasus project offers various scientific workflows,

including Montage, Inspiral, Epigenomics, and Sipht, to

facilitate tasks such as disaster modeling and prediction,

gravitational waveform analysis, custom mosaic creation, and

bioinformatics research. These workflows serve as benchmark

models for comparing scheduling algorithms and provide

behavioral insights on the real-world applications. Workflow

scheduling is viewed as a problem to map the tasks to VMs,

where tasks are assigned to available virtual machines to

optimize specific objectives.

Figure 1. A Sample Workflow

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7744

Article Received: 19 May 2023 Revised: 20 July 2023 Accepted: 07 August 2023

 719

IJRITCC | August 2023, Available @ http://www.ijritcc.org

To address this problem, various optimization techniques have

been proposed, including meta-heuristic algorithms such as

Particle Swarm Optimization (PSO), Round Robin,

Heterogeneous Earliest Deadline First, Grey Wolf Optimization

(GWO), and Ant Colony Optimization (ACO) in literature [1].

Each of these algorithms have shown optimizing workflow

scheduling in cloud computing on specific set of objectives.

In this context, this work proposes a workflow scheduling

algorithm that optimizes makespan, cost and improves load

balance on resources using GWO [2] and PSO [3] algorithms in

cloud computing. The algorithm is evaluated using a

simulation-based approach, where a set of scientific workflows

with varying task sizes and inter-task communication

requirements are executed on a cloud platform.

The remaining part of this paper is organized as follows: Section

II provides a review of related work on workflow scheduling in

cloud computing. Section III describes the proposed workflow

scheduling algorithm using PSO and GWO. Section IV presents

the results of the experimentation and analysis of the proposed

algorithm. Finally, Section V provides conclusion of the and the

scope for future work.

II. TYPE STYLE AND FONTS

The problem of workflow scheduling in cloud computing has

received significant attention in the literature. Various

techniques have been proposed to optimize workflow

scheduling, including heuristics, meta-heuristics, and machine

learning approaches.

PSO is a meta-heuristic optimization algorithm that is

inspired by the social behavior of bird flocking. PSO has been

applied to various optimization problems, including workflow

scheduling in cloud computing. For example, in a study by Maria

A. Rodriguez [4], PSO was used to optimize workflow

scheduling in cloud computing while considering total execution

cost and deadline constraints. The results show improvement in

meeting the deadlines to execute workflows.

Authors in [5] proposed a novel PSO algorithm that employs

a chaotic search mechanism to improve global convergence is

demonstrated. They have applied the technique on various test

functions to evaluate the performance.

Dynamic Non-Linear PSO [6] proposes a new inertia weight

that solves the local optima problem and effectively reduce the

energy consumption without considering other parameters.

GWO is another meta-heuristic optimization algorithm that

is inspired by the social behavior of grey wolves. GWO has been

applied to various optimization problems, including workflow

scheduling in cloud computing. For example, in a study in [7],

authors proposed Distributed GWO to schedule to optimize

computation time and computation cost. The results showed that

DGWO outperformed other meta-heuristic algorithms in terms

of makespan and cost.

In [8] they proposed GWO with modification to fitness that

considers makespan and cost. The algorithm is not tested on

workflows with dependent tasks.

Junlong Zhou et. al. [9] proposed algorithm that considers

the characteristics of different tasks and dynamically assigns

them to appropriate cloud resources, resulting in improved

performance and cost efficiency on hybrid cloud. There is a

significant improvement in makespan and cost but load balance

is not considered.

Jafar [10] proposed a hybrid optimization technique using

GWO and Whale Optimization algorithms to schedule

independent tasks to optimize cost, energy consumption and

makespan. The makespan improvement is compared against

GWO and WO. The algorithm is not compared against PSO and

not tested on workflows.

HWACOA scheduler [11] applied Ant colony optimization

with the concept of weight is employed to map the VMs with

tasks to improve makespan and cost. The

A Adaptive PSO was proposed by [12] by considering

heterogeneity in Cloud to schedule workflows to reduce the cost

and makespan of execution of tasks. The authors employed

adapative intertia weight to improve the global search.

Clustering based technique was employed by [13] to choose

based on the execution time and availability of the resource to

improve the cost of the workflow.

Kalka et. Al. (2021) [14] proposed multi-objective variant of

particle swarm optimization (PSO) called Constriction

Coefficient-based Multi-objective PSO (CCMOPSO) to solve

the task scheduling problem. Constriction coefficient to control

the velocity of the particles was used to improve the makespan

and resource utilization.

Shahin et al. (2019) [15] proposed a workflow scheduling

algorithm that uses a cuckoo search (CS) algorithm to optimize

cost and load balance in cloud computing. They showed that the

algorithm outperformed other algorithms in terms of makespan

and load balance but did not consider cost.

Prerit chawda and Partha Sarathi [16] proposed a load

balancing technique to increase resource utilization and

minimize makespan using Min-Min algorithm for the

independent task scheduling problem. The authors have not

considered cost of the tasks and not implemented for workflow

tasks.

The proposed study aims to contribute to this field by

proposing a workflow scheduling algorithm that minimizes

makespan, cost, and improves load balance on resources using

PSO and GWO algorithms in cloud computing.

III. PROPOSED METHODOLOGY

A. Problem Formulation

The workflow scheduling problem can be represented

mathematically as a mapping function [17].

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7744

Article Received: 19 May 2023 Revised: 20 July 2023 Accepted: 07 August 2023

 720

IJRITCC | August 2023, Available @ http://www.ijritcc.org

Mf (Resource, T): T → Resource

where Resource refers to set of virtual machines, and T is a

set of tasks, each with its unique characteristics. Scheduling

algorithms are designed using these characteristics to generate

mappings that optimize the targeted objectives. The objectives

considered are Makespan, Cost and Load balance.

Makespan refers to the total execution time to complete all

the tasks from the start task to last task in a workflow given by

eq. (1). Makespan helps to ensure timely completion of the entire

workflow.

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚{𝐹𝑖𝑛𝑖𝑠ℎ𝑇𝑖𝑚𝑒(𝑡1, 𝑡2… 𝑡𝑛)} (1)

Cost of workflow execution given in eq. (c) is computed

based on execution time of tasks run on VMs times the price of

a VM and data transfer cost. Data transfer time is dependent on

the bandwidth of the channel. Execution time of tasks is given in

eq. (2).

𝑒𝑡𝑖 =
𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝑖𝑛 𝑀𝐼𝑃𝑆

𝑉𝑀 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑖𝑛 𝑀𝐼𝑃𝑆
 (2)

𝐶𝑜𝑠𝑡 = ∑ ((𝑒𝑡𝑖 × 𝑃𝑣𝑚𝑗) + (
𝑑𝑡𝑖

𝐵𝑊
× 𝑃𝐵𝑊))𝑛

𝑖=1 (3)

Where

𝑒𝑡𝑖 refers to the execution time of task i

𝑃𝑣𝑚𝑗 refers to the Price of a VM j ; 1 ≤ 𝑗 ≤ 𝑀𝑎𝑥.𝑁𝑜. 𝑜𝑓 𝑉𝑀𝑠

𝑑𝑡𝑖 refers to the size of the input data to task i, it is zero if input

data is available on the VM on which ti is running.

𝑃𝐵𝑊 refers to Price for bandwidth

Load balance is one of the important parameters that ensures

all the resources or VMs are utilized to the same extent and avoid

overloading on a particular resource. We have applied the load

balance rate as mentioned in eq. (d) as the measure to determine

the load balance. The load balance rate refers to the measure of

how evenly the workload is distributed across the available

resources. A value of 1 (ideal scenario) indicates perfect load

balance, meaning that all resources are being utilized equally. A

value greater than 1 indicates extent of imbalance, with some

resources being utilized more than others. Value nearer to 1

indicates a good balance.

 𝐿𝑜𝑎𝑑 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑒 = (
𝑀𝑅𝑈

𝐴𝑅𝑈
) (4)

MRU = Max. resource usage across all the resources used in

executing the workflow

ARU = Average resource usage across all the resources used

in executing the workflow.

B. Proposed Algorithm

The proposed approach employs GWO and proposed

Constriction factor based PSO algorithm each for n/2 iterations

respectively, where n is the total number of iterations.

Grey Wolf Optimization (GWO) is an optimization

algorithm (Algorithm.1) that is inspired by the hunting behavior

of grey wolves in the forest or nature. GWO algorithm was

proposed by Mirjalili et al. in 2014. In GWO, a population of

candidate solutions is represented by a pack of grey wolves. The

algorithm imitates the social hierarchy and hunting behavior of

the wolves to update the candidate solutions and find the optimal

solution for a given optimization problem.

The process followed by the GWO algorithm are as follows:

1. Initialization: A population of candidate solutions (wolves)

is randomly generated.

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 = (𝑋1
⃗⃗⃗⃗ , 𝑋2

⃗⃗⃗⃗ , 𝑋3
⃗⃗⃗⃗ ……𝑋𝑁

⃗⃗⃗⃗ ⃗)

2. Hunting behavior: The alpha, beta, and delta wolves the

primary wolves that help or direct the other wolves in the

pack. They are identified based on their fitness values,

which are used to update the position of the other wolves.

The alpha wolf has the highest fitness value, followed by

the beta wolf and then the delta wolf. Once the alpha, beta,

and delta wolves are identified, they are used to update the

position of the other wolves in the pack. The position

update equation for each wolf is given by eq. (5), (6) and

(7). The new position is computed using the eq. (8). All the

position, distance and coefficients represent a vector.

𝐷∝
⃗⃗⃗⃗ ⃗ = |𝐶1

⃗⃗⃗⃗ ∗ 𝑋𝛼
⃗⃗ ⃗⃗ − 𝑋 |

𝑋1
⃗⃗⃗⃗ = 𝑋∝

⃗⃗ ⃗⃗ − 𝐴1
⃗⃗⃗⃗ . (𝐷∝

⃗⃗⃗⃗ ⃗) (5)

𝐷𝛽
⃗⃗ ⃗⃗ = |𝐶2

⃗⃗⃗⃗ ∗ 𝑋𝛽
⃗⃗ ⃗⃗ − 𝑋 |

𝑋2
⃗⃗⃗⃗ = 𝑋𝛽

⃗⃗ ⃗⃗ − 𝐴2
⃗⃗ ⃗⃗ . (𝐷𝛽

⃗⃗ ⃗⃗) (6)

𝐷𝛿
⃗⃗ ⃗⃗ = |𝐶3

⃗⃗⃗⃗ ∗ 𝑋𝛿
⃗⃗ ⃗⃗ − 𝑋 |

𝑋3
⃗⃗⃗⃗ = 𝑋𝛿

⃗⃗ ⃗⃗ − 𝐴3
⃗⃗ ⃗⃗ . (𝐷𝛿

⃗⃗ ⃗⃗) (7)

𝑋𝑛𝑒𝑤
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ =

𝑋1⃗⃗⃗⃗ ⃗+𝑋2⃗⃗⃗⃗ ⃗+𝑋3⃗⃗⃗⃗ ⃗

3
 (8)

where X is the current position of the wolf, X_new is the

updated position, A_alpha, A_beta, and A_delta are the

positions of the alpha, beta, and delta wolves, respectively, and

C1 and C2 are constants that control the exploration and

exploitation capabilities of the algorithm.

3. Encircling behavior: The wolves try to encircle the prey

(optimal solution) by updating their positions as shown in eq.

(5).

4. Attacking behavior: The wolves try to attack the prey by

updating their positions towards the optimal solution using

eq. (9) and eq. (10)

𝐴 = (2 × 𝑎 × 𝑟1⃗⃗⃗) − 𝑎 (9)

𝐶 = (2 × 𝑟2⃗⃗ ⃗) (10)

Where 𝑟1⃗⃗⃗ and 𝑟2⃗⃗ ⃗ are random vectors with values ranging

between 0 and 1.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7744

Article Received: 19 May 2023 Revised: 20 July 2023 Accepted: 07 August 2023

 721

IJRITCC | August 2023, Available @ http://www.ijritcc.org

5. Updating the population: The updated positions of the

wolves are used to generate a new population of candidate

solutions. The wolves with the best fitness values are kept as

the new alpha, beta, and delta wolves, and the other wolves

are randomly generated within the search space.

6. Termination: The algorithm terminates when the loop

reaches the maximum number of iterations. The best solution

found i.e. alpha wolf by the pack is returned as the final

solution.

Algorithm1. Grey Wolf Optimization

Input: Workflow Objective function to optimize, population

size (N), total or maximum number of iterations (max_iter), search

space (bounds), and initial alpha, beta, and delta values

Output: Best solution found by the algorithm

// Initialize the population with random solutions

for i = 1 to N do

 solution_i (X) = generate_random_solution(bounds)

 fitness_i = evaluate_fitness(solution_i)

 update_alpha_beta_delta(solution_i)

end for

for iter = 1 to max_iter/2 do

 // Update the positions of the wolves based on the alpha, beta,

and delta values

 for i = 1 to N do

 a = 2 - 2 * iter / max_iter

 r1 = random_number(0, 1)

 r2 = random_number(0, 1)

 A = 2 * a * r1 - a // Calculate the coefficient A

 C = 2 * r2 // Calculate the coefficient C

 X_alpha = alpha.position

 D_alpha = C * (X_alpha - solution_i.position)

 X_beta = beta.position

 D_beta = C * (X_beta - solution_i.position)

 X_delta = delta.position

 D_delta = C * (X_delta - solution_i.position)

 new_position = ((X_alpha - A * D_alpha) +

(X_beta - A * D_beta) + (X_delta - A * D_delta))/3

 new_position = clip(new_position, bounds)

 new_fitness = evaluate_fitness(new_position)

 if new_fitness < fitness_i then

 solution_i.position = new_position

 fitness_i = new_fitness

 update_alpha_beta_delta(solution_i)

 end if

 end for

end for

// Return the best solution or alpha wolf position

return alpha

Particle Swarm Optimization (PSO) is a popular

optimization algorithm that is inspired by the social behavior of

swarms of birds or fish. The algorithm finds the optimal solution

by iterating through the candidate solutions called particles of an

optimization problem. At the start of the algorithm, the

population of particles are initialized randomly within the search

space of the optimization problem. Each particle represents a

candidate solution, and its position in the search space is

determined by a vector of decision variables. Each particle also

has a velocity vector as mentioned in eq. (11) that determines its

direction and speed of movement within the search space.

𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 𝑐1 ∗ 𝑟1 ∗ (𝑝𝑏𝑒𝑠𝑡(𝑖) − 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑖))

𝑠𝑜𝑐𝑖𝑎𝑙_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 𝑐2 ∗ 𝑟2 ∗ (𝑔𝑏𝑒𝑠𝑡 − 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑖))

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (𝑖 + 1) = 𝜔 ∗ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑖) + 𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

+ 𝑠𝑜𝑐𝑖𝑎𝑙_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

 (11)

In each iteration of the algorithm, the particles move through

the search space according to two rules: personal best and global

best. The personal best rule allows each particle to remember the

best solution it has found so far, while the global best rule allows

the particles to learn from the best solution found by the entire

swarm. In the proposed algorithm for calculating the velocity

vector a constriction factor-based inertia weight as mentioned in

eq. (12) is introduced to improve exploratory capability of the

algorithm.

𝜔 =
𝜔𝑚𝑎𝑥−𝜔𝑚𝑖𝑛

𝜑
+ (𝜑 (𝜔𝑛−1 − 𝜔𝑚𝑎𝑥) + 𝜔𝑚𝑎𝑥) (12)

ωmax = Max. Inertia Weight Wight

ωmin = Minimum Inertia Weight

ωn-1 = Previous Inertia Weight

φ = Constriction factor

The proposed constriction factor based PSO algorithm employs

the constriction factor (φ) to update the inertia weight (ω). It is

used to maintain the balance between exploration and

exploitation in the algorithm. Clerc [18] in 1999 introduced

Constriction factor in his study on convergence and stability of

PSO. φ shown in eq. (13) is a parameter that restricts the

velocity of particles during the PSO optimization process. The

motive behind the constriction factor is to ensure that the

particles converge to the global optimum in a stable and

efficient manner, while also preventing them from overshooting

the optimal solution.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7744

Article Received: 19 May 2023 Revised: 20 July 2023 Accepted: 07 August 2023

 722

IJRITCC | August 2023, Available @ http://www.ijritcc.org

φ =
2

|2−𝑐1−𝑐2−√𝑐1
2+𝑐2

2+2𝑐1𝑐2−2𝑐1−2𝑐2+4|
 (13)

where c_1and c_2 are the acceleration coefficients used in the

velocity update equation and ensures the values is in the range

[0,1].

Algorithm2. Proposed Constriction Factor based Particle Swarm

Optimization

Input: Objective function to optimize, population size (N), maximum

number of iterations (max_iter), search space (bounds), and

constriction factor based inertia weight (w), cognitive parameter (c1),

and social parameter (c2)

Output: Best solution found by the algorithm

1. Initialize the gbest with the alpha wolf returned by Algorithm1

2. Initialize the population with random solutions and velocities

 - For each particle i from 1 to N do the following:

 - Generate a random solution within the search space (bounds)

 - Generate a random velocity within the search space (bounds)

 - Evaluate the fitness of the particle's solution

 - Set pbest_i to the particle's solution

 - Set pbest_fitness_i to the particle's fitness

 - If pbest_fitness_i is less than gbest_fitness,

 set gbest to pbest_i and gbest_fitness to pbest_fitness_i

3. For iter from 1 to max_iter/2 do the following:

 - For each particle i from 1 to N do the following:

 - Generate two random numbers r1, r2 between 0 and 1

 - Compute cognitive and social components

 - Compute the new velocity of the particle

 - Compute the new position of the particle:

 - Clip the new_position_i to be within the search

 space (bounds)

 - Evaluate the fitness of the new solution

 - If the new fitness is better than pbest_fitness_i,

 update pbest_i and pbest_fitness_i

 - If pbest_fitness_i is less than gbest_fitness,

 set gbest to pbest_i and gbest_fitness

 to pbest_fitness_i

 - Update the particle's velocity and solution with

 the new values

4. Return the best solution found by the algorithm (gbest)

The proposed Hybrid GWO-CPSO Optimization algorithm

(HGWOCPSO) is designed to schedule the workflows on cloud

to minimize makespan, cost and maximize load balance. Firstly,

the GWO algorithm is applied to promote exploration and later

PSO algorithm to promote exploitation. GWO is initialized with

random particles (the population). Particles represent the

workflow solutions generated randomly. These solutions are

run through GWO algorithm for 50% of the maximum iterations

considered and then PSO is run for the remaining 50% of

iterations.

Algorithm 3. Proposed Hybrid GWO-CPSO Optimization

Input: Workflow tasks, cloud resources, number of iterations (n),

population size (p), and other parameters of GWO and CPSO

Output: Solution that has best makespan, cost, and load rate values

obtained by the hybrid algorithm

// Initialization

Initialize the GWO and PSO populations randomly

Evaluate the fitness of each wolf and particle in the population

Set the global best position and fitness for PSO

// Main loop

for i = 1 to n/2 do

 if i <= n/2 then

 // GWO iterations

 for j = 1 to p do

 Update the positions of the wolves using

 GWO operators

 Evaluate the fitness of each wolf in the population

 Update the alpha, beta, and delta wolves

 end for

 for i = n/2 to n do

 // PSO iterations

 for j = 1 to p do

 Update the positions and velocities of the particles

 for PSO

 Evaluate the fitness of each particle in the population

 Update the local and global best positions and fitness

 end for

 end if

 // Update the best position and fitness values

 Update the global best position and fitness for PSO

 Update the best makespan, cost, and resource utilization values

obtained so far

end for

return the solution that has optimized makespan, cost, and load balance

values

IV. PERFORMANCE EVALUATION

This section presents evaluation of proposed HGWOCPSO

algorithm by performing extensive simulation experiments with

three types of scientific workflows.

A. Experimental Setup

The proposed Hybrid GWO-PSO Optimization algorithm

(HGWOCPSO) The proposed algorithm is implemented on

Workflowsim [19] based on cloudsim and run on four types of

scientific workflows Montage, Epigenomics, and Sipht

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7744

Article Received: 19 May 2023 Revised: 20 July 2023 Accepted: 07 August 2023

 723

IJRITCC | August 2023, Available @ http://www.ijritcc.org

[20–23]. These workflows are available with 30, 50, 100 and

1000 tasks. Experiments were conducted with Workflowsim on

Intel i5 10th gen CPU, 8GB RAM, Windows 10 64-bit OS. The

experimentation utilizes heterogenous VMs and variable costs

for VM instances.

The Fitness function shown in eq. (14) is adopted to optimize

the three parameters makespan, cost and load balance is

represented in eq.

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼 × (
1

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛
) + 𝛽 × (

1

𝐶𝑜𝑠𝑡
) − 𝛾 ×

(
1

𝐿𝑜𝑎𝑑 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑒
) (14)

α, β, γ represent the weights assigned to each parameter. Here

α=0.4, β=0.3 and γ=0.3 are considered

The parameters considered for simulation of the algorithms are

represented in Table 1.

TABLE I. PARAMETERS CONSIDERED FOR ALGORITHM

Parameters Values

Number of Tasks 25-1000

Number of particles 100

Number of iterations

(Max_iter)
500

r1, r2 random(0,1)

c1,c2 2

w
constriction

factor

Number of VMs
5

(heterogenous)

Bandwidth 100

B. Performance Analysis

The results of the proposed algorithm HGWOCPSO are

compared with Particle Swarm Optimization (PSO), Grey Wolf

Optimization (GWO), Chaotic PSO (CPSO), hybrid GWO-PSO

algorithm (GWOPSO). The comparison is made in terms of

Makespan, Cost and Load rate for the three scientific workflows

of different sizes and are presented in Table 2 and Table 3.

TABLE II. MAKESPAN FOR WORKFLOWS

Datase

t
GWO PSO CPSO GWOPSO

HGWOC

PSO

Montag

e 25

182.7 159.88 158.5 156.16 146.97

Montag

e 50

407.7 245.92 284.79 279.37 277.5

Montag

e 100

864.9 623.5 484.41 494 491.12

Montag

e 1000

9117.0 5679.97 5663.61 5642.9 5415.04

Datase

t
GWO PSO CPSO GWOPSO

HGWOC

PSO

Epigen

omics_

24

14235.2 15147.16 9882.78 8835.23 7339.48

Epigen

omics_

46

33184.2 28551.56 22125.68 23912.97 17638.59

Epigen

omics_

100

322937.0 154742 153158.3 160209.2 154308

Epigen

omics_

997

2084102.8 1513756 1500285 1472362 1344813

Sipht_3

0

6664.4 6130.58 6065.01 4464.64 4213

Sipht_6

0

9341.1 10259.01 7408.61 10468.14 9005.57

Sipht_1

00

13910.1 10967.75 10237.62 10503.37 9266.29

Sipht_1

000

104213.1 65610.42 68068.19 64319.2 50756.48

TABLE III. AVERAGE MAKESPAN FOR WORKFLOWS (WF)

Workfl

ows
GWO PSO CPSO GWOPSO

HGWOC

PSO

Montag

e

2643.1 1677.3175 1647.8275 1643.1075 1582.6575

Epigen

omics

613614.8 428049.18 421362.94 416329.85 378524.76

Sipht

33532.158

5
23241.94

22944.857

5
22438.83 18310.335

The Average Makespan of the proposed HGWOCPSO

algorithm shows 4% increase over CPSO & GWOPSO, 6%

increase over PSO and 67% over GWO for Montage workflows.

It shows 10%, 11%, 13%, 62% increase over GWOPSO, CPSO,

PSO and GWO for Epigenomics workflows respectively. Also

it shows 22%, 25%,27% and 83% improvement over

GWOPSO, CPSO, PSO and GWO for Sipht workflows

respectively.

Makespan improvement is higher for Sipht and Epigenomics

workflows. Figure 2, Figure 3 & Figure 4 shown below indicate

the significant performance improvement by proposed

HGWOCPSO algorithm for makespan.

Figure 2. Makespan improvement for Montage Workflow

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7744

Article Received: 19 May 2023 Revised: 20 July 2023 Accepted: 07 August 2023

 724

IJRITCC | August 2023, Available @ http://www.ijritcc.org

Figure 3. Makespan improvement for Epigenomics Workflow

Figure 4. Makespan improvement for Sipht Workflow

The improvement in terms of cost parameter is shown in Table

4 and Table 5 respectively for the workflows.

TABLE IV. COST OF WORKFLOWS

Datase

t
GWO PSO CPSO GWOPSO

HGWOC

PSO

Montag

e 25

2107.66 870.15 926.27 900.29 831.1

Montag

e 50

4686.31 1938.31 1842.33 1786.56 1742.1

Montag

e 100

9917.37 4114.23 3996.3 3955.94 4105.8

Montag

e 1000

104410.97 44694.06 44575.9 44355.76 42050.7

Epigen

omics_

24

161447.05 57887.29 50400.24 48811.84 45185.1

Epigen

omics_

46

375392.55 144491.48 146306.36 140673.2 122315.5

Epigen

omics_

100

3647501.6

9

1384239.8

4
1436833.7 1306006 1200988.6

Epigen

omics_

997

34829492.

34

13737618.

67
13833360 13202032

13165323.

8

Sipht_3

0

50008.91 18496.56 18336.11 15168.42 18281.8

Sipht_6

0

105132.18 43675.8 43151.55 43829.66 30970.7

Sipht_1

00

156557.46 56230.03 58303.69 55079.54 56697.5

Sipht_1

000

1563797.0

3
606803.62 598374.4 587908.4 585141

TABLE V. AVERAGE COST OF WORKFLOWS (WF)

Workfl

ows
GWO PSO CPSO GWOPSO

HGWOC

PSO

Montag

e

30280.6 12904.19 12835.2 12749.64 12182.41

Epigen

omics

9753458.4 3831059 3866725 3674381 3633453

Sipht

33532.158

5
23241.94

22944.857

5

22438.837

5
18310.335

The Average Cost of the proposed HGWOCPSO algorithm

shows 5%, 2%, 2% increase over GWOPSO , CPSO & GWO

for Montage, Epigenomics and Sipht workflows. There is a

significant cost improvement for Montage and Sipht

workflows.

The cost of executing all the three workflows on HGWOCPSO

algorithm indicates improvement over other algorithms. The

percentage improvement is though minimal the load rate and

makespan show significant improvement. Figure 5, Figure 6

and Figure 7 show the Cost of execution of three workflow

types.

Figure 5: Cost improvement for Montage Workflows

Figure 6: Cost improvement for Epigenomics Workflows

Figure 7: Cost improvement for Sipht Workflows

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7744

Article Received: 19 May 2023 Revised: 20 July 2023 Accepted: 07 August 2023

 725

IJRITCC | August 2023, Available @ http://www.ijritcc.org

The minimum load rate value indicates a good balance of

resources, ideally the load rate should be equal to 1. The average

load rate by proposed algorithm shows 6%, 2% and 3% increase

over the existing algorithms for Montage, Epigenomics and

Sipht workflows. Figure 8 represent the improvement in load

rate which is an indicator of load balance on resources.

TABLE VI. LOADBALANCE OF WORKFLOWS

Datase

t
GWO PSO CPSO GWOPSO

HGWOC

PSO

Montag

e 25

1.86 1.22 1.25 1.23 1.12

Montag

e 50

1.78 1.16 1.15 1.14 1.08

Montag

e 100

1.78 1.16 1.15 1.14 1.12

Montag

e 1000

1.78 1.16 1.15 1.14 1.08

Epigen

omics_

24

1.57 1.14 1.15 1.11 1.12

Epigen

omics_

46

1.57 1.15 1.14 1.11 1.09

Epigen

omics_

100

1.57 1.14 1.13 1.12 1.09

Epigen

omics_

997

1.57 1.11 1.11 1.11 1.09

Sipht_3

0

1.4 1.11 1.13 1.14 1.08

Sipht_6

0

1.4 1.11 1.13 1.14 1.09

Sipht_1

00

1.4 1.11 1.13 1.09 1.08

Sipht_1

000

1.4 1.11 1.13 1.09 1.09

TABLE VII. AVERAGE LOADBALANCE OF WORKFLOWS (WF)

Workfl

ows
GWO PSO CPSO GWOPSO

HGWOC

PSO

Montag

e

1.8 1.17 1.17 1.16 1.1

Epigen

omics

1.6 1.13 1.13 1.11 1.09

Sipht 1.4 1.11 1.13 1.11 1.08

The result analysis shows that the overall trend of makespan and

load balance is higher for workflows with large number of tasks

and there is an improvement in cost of execution of workflows.

Figure 8: Load balance on resources for workflow execution on existing and

proposed algorithms

V. CONCLUSION AND FUTURE WORK

In conclusion, we proposed a constriction factor inertia weight-

based Particle Swarm optimization (CPSO) and hybrid

algorithm that employs both GWO and CPSO to optimize

makespan, cost, and maximize load balance in scheduling

workflows. The hybrid algorithm leverages the strengths of

both algorithms and balances exploration and exploitation of

the solution space to find near-optimal solutions.

The simulation results show that the proposed hybrid algorithm

achieves better performance compared to GWO, PSO &

Chaotic PSO algorithms alone and hybrid GWO-PSO

algorithms in optimizing makespan, cost, and load balance. The

algorithm also demonstrates good convergence and stability in

the experiments, indicating its robustness and effectiveness in

providing effective solution to the workflow scheduling

problem in cloud computing.

In future research the work can be extended towards further

improving the algorithm's performance by incorporating other

optimization algorithms, considering more complex constraints,

apply machine learning techniques along with hybrid

optimization methods. Overall, the proposed hybrid GWOCPSO

algorithm provides a promising approach to optimize workflow

scheduling in cloud computing while considering multiple

objectives.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

REFERENCES

[1] Mainak Adhikari , T Amgoth , Satish Narayana Srirama, “A

Survey on Scheduling Strategies for Workflows in Cloud

Environment and Emerging Trends”, ACM Computing Surveys

52 (4), pp1-36, 2019.

[2] Kennedy, J. and Eberhart, R.C., "Particle Swarm Optimization",

Proceedings of the IEEE International Conference on Neural

Networks, 1995.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7744

Article Received: 19 May 2023 Revised: 20 July 2023 Accepted: 07 August 2023

 726

IJRITCC | August 2023, Available @ http://www.ijritcc.org

[3] Mirjalili, S., S.M. Mirjalili, and Lewis, A., "Grey Wolf

Optimizer", Advances in Engineering Software, 2014.

[4] A. Maria, Rodriguez, Rajkumar Buyya, “Deadline based resource

provisioning and scheduling algorithm for scientific workflows

on clouds” IEEE Transactions on Cloud Computing, pp. 222-235,

2014.

[5] Chaudhary, A. ., Sharma, A. ., & Gupta, N. . (2023). A Novel

Approach to Blockchain and Deep Learning in the field of

Steganography. International Journal of Intelligent Systems and

Applications in Engineering, 11(2s), 104–115. Retrieved from

https://ijisae.org/index.php/IJISAE/article/view/2514

[6] Chung-Feng Wang, Kui Liu, "A Novel Particle Swarm

Optimization Algorithm for Global Optimization",

Computational Intelligence and Neuroscience, vol. 2016.

[7] Jian Chang, Zhigang Hu, Yong Tao, Zhou, “Task Scheduling

Based on Dynamic Non-Linear PSO in Cloud Environment”

IEEE 9th International Conference on Software Engineering and

Service Science (ICSESS), Beijing, China, 2018.

[8] Dwarkanath Pande, S. ., & Hasane Ahammad, D. S. . (2022).

Cognitive Computing-Based Network Access Control System in

Secure Physical Layer. Research Journal of Computer Systems

and Engineering, 3(1), 14–20. Retrieved from

https://technicaljournals.org/RJCSE/index.php/journal/article/vie

w/36

[9] Bilal Abed-alguni, Noor Aldeen Alawad, "Distributed Grey Wolf

Optimizer for scheduling of workflow applications in cloud

environments", Applied Soft Computing, 2021.

[10] Abdullah Alzaqebah, Rizik Al-Sayyed, Raja Masadeh, "Task

Scheduling based on Modified Grey Wolf Optimizer in Cloud

Computing Environment", 2nd International Conference on new

Trends in Computing Sciences (ICTCS), 2019.

[11] Abdullah Alzaqebah, Rizik Al-Sayyed, Raja Masadeh, "Task

Scheduling based on Modified Grey Wolf Optimizer in Cloud

Computing Environment", 2nd International Conference on new

Trends in Computing Sciences (ICTCS), 2019.

[12] Jafar Ababneh, "A Hybrid Approach Based on Grey Wolf and

Whale Optimization Algorithms for Solving Cloud Task

Scheduling Problem", Journal of Mathematical Problems in

Engineering, 2021.

[13] Chirag Chandrashekar, Pradeep Krishnadoss, Vijaya kumar

Kedalu Poornachary, Balasundaram Ananthakrishnan, and

Kumar Rangasamy , "HWACOA Scheduler: Hybrid Weighted

Ant Colony Optimization Algorithm for Task Scheduling in

Cloud Computing", Cyber–Physical Systems in Real-Time and

Edge Computing for Smart Grids, 2023.

[14] Mwangi, J., Cohen, D., Silva, C., Min-ji, K., & Suzuki, H. Feature

Extraction Techniques for Natural Language Processing Tasks.

Kuwait Journal of Machine Learning, 1(3). Retrieved from

http://kuwaitjournals.com/index.php/kjml/article/view/137

[15] Pengze Guo, Zhi Xue, "An adaptive PSO-based real-time

workflow scheduling algorithm in cloud systems", International

Conference on Communication Technology (ICCT), 2017.

[16] D.A.Prathibha, B.Latha, and G. Sumathi, "Efficient scheduling of

workflow in cloud enviornment using billing model aware task

clustering", Journal of Theoretical and Applied Information

Technology, 2014.

[17] Kalka Dubey, S.C. Sharma, “A novel multi-objective CR-PSO

task scheduling algorithm with deadline constraint in cloud

computing”, Sustainable Computing: Informatics and Systems,

Volume 32, 2021, 100605, ISSN 2210-5379.

[18] Shahin Ghasemi, Ali Hanani,"A Cuckoo-based Workflow

Scheduling Algorithm to Reduce Cost and Increase Load Balance

in the Cloud Environment", International Journal on Informatics

Visualization, Vol.3, 2019.

[19] Prof. Virendra Umale. (2020). Design and Analysis of Low Power

Dual Edge Triggered Mechanism Flip-Flop Employing Power

Gating Methodology. International Journal of New Practices in

Management and Engineering, 6(01), 26 - 31.

https://doi.org/10.17762/ijnpme.v6i01.53

[20] Prerit Chawda, Partha Sarathi Chakraborty, "An Improved Min-

Min Task Scheduling Algorithm for Load Balancing in Cloud

Computing", ", International Journal on Recent and Innovation

Trends in Computing and Communication, 2016.

[21] Sriperambuduri Vinay Kumar, M Nagaratna, Lakshmi Harika

Marrivada, Task scheduling in cloud computing using PSO

algorithm, Smart Intelligent Computing and Applications,

Volume 1: Proceedings of Fifth International Conference on

Smart Computing and Informatics (SCI 2021), Springer Nature,

2021.

[22] Mei Chen, Machine Learning for Energy Optimization in Smart

Grids , Machine Learning Applications Conference Proceedings,

Vol 2 2022.

[23] Clerc M., The swarm and the queen: towards a deterministic and

adaptive particle swarm optimization, Proceedings of the 1999

Congress on Evolutionary Computation, 1999, Vol. 3, pp. 1951-

1957.

[24] Chen, Weiwei & Deelman, Ewa., “WorkflowSim: A toolkit for

simulating scientific workflows in distributed environments”,

IEEE 8th International Conference on E-Science, e-Science 2012.

[25] Singh V, Gupta I, Jana PK, "An energy efficient algorithm for

workflow scheduling in iaas cloud", J Grid Comput:1–20, 2019.

[26] Gao Y, Zhang S, Zhou J, "A hybrid algorithm for multi-objective

scientific workflow scheduling in iaas cloud", IEEE Access

7:125783–125795, 2019.

[27] Dubey K, Shams MY, Sharma S, Alarifi A, Amoon M, Nasr AA,

"A management system for servicing multi-organizations on

community cloud model in secure cloud environment", 2019,

IEEE Access 7:159535–159546.

[28] Xie Y, Zhu Y, Wang Y, Cheng Y, Xu R, Sani AS, Yuan D, Yang

Y, "A novel directional and non-local-convergent particle swarm

optimization based workflow scheduling in cloud–edge

environment. Futur Generation Computer Systems 97:361–378",

2019.

http://www.ijritcc.org/

