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Abstract— Speech emotion recognition (SER) is the technology that recognizes psychological characteristics and feelings from the speech 

signals through techniques and methodologies. SER is challenging because of more considerable variations in different languages arousal and 

valence levels. Various technical developments in artificial intelligence and signal processing methods have encouraged and made it possible to 

interpret emotions.SER plays a vital role in remote communication. This paper offers a recent survey of SER using machine learning (ML) and 

deep learning (DL)-based techniques. It focuses on the various feature representation and classification techniques used for SER. Further, it 

describes details about databases and evaluation metrics used for speech emotion recognition. 
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I. INTRODUCTION 

     Speech is the most natural and straightforward interaction 

that consists of information and emotion[1]. Emotion helps to 

understand the human being best. Speech is an essential 

medium in which expression communicates feelings and 

attitudes. The researcher's significant task is to find a speech 

signal's emotional content and classify the speech utterance's 

emotions. Over the last decade, SER has been regarded as an 

important research field. Automatic SER deals with the 

recognition of emotions from the speech signal [2][3]. SER is 

widely used in human-machine interaction [4], lie detection in 

psychiatric diagnosis [5], behavioral analysis in call center 

conversation [6], understanding the criminal behavior [7], 

robotics [8], etc.   

      The speech signal is often characterized by two main 

dimensions: valence and arousal [9][10]. Arousal is an autonic 

activation level created by events that lie in calmness (low) 

and excitation (high). Valence represents the pleasantness that 

lies in negative and positive. Valence and arousal level slightly 

dependent on several factors such as gender, region, language, 

and race[11][12][13].Fig. 1 shows the two-dimensional 

valence and arousal space.  

      Happy, delighted, and excitement lie inside the first 

quadrant of arousal-valence space with high arousal and 

positive valence. The second quadrant represents the tense, 

anger, and frustrating emotions. Quadrant three includes the 

emotions having low arousal and negative valences such as 

depression, boredom, and tiredness.  The fourth quadrant of 

arousal valence space consists of emotions related to 

relaxation, calmness, and content. 

 
Fig. 1 Two dimensional valence-arousal space of emotion 

 

            The generalized framework of SER system 

encompasses speech pre-processing, feature representation, 

and classification stages, as shown in Fig. 2. The pre-

processing stage deals with framing, normalization, cropping 

of speech signal, appending of speech signal, speech 

enhancement, noise removal, windowing, speech separation, 

voice activity detection, etc. [14]. Feature extraction captures 
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the spectral ,prosodic, Teager energy operator (TEO) or voice 

quality features of the speech signal to improve the raw 

signal's discriminative power [15]. The speech signal can be 

classified into various emotions using ML or DL classifiers. 

The DL-based SER systems consider one-dimensional raw 

speech or two-dimensional representation of the raw speech 

signal as the input to deep network [16][17].  

This paper offers a literature survey of recent machine learning 

and deep learning techniques for SER. It focuses on the 

various pre-processing methods, feature extraction algorithms, 

speech datasets, and performance assessment metrics.  This 

paper summarizes the findings of recent literature on the SER 

and creates the background for the future improvement in the 

SER systems for potential researchers. 

 

 
Fig. 2 Generalized framework of SER 

The rest of the paper is structured as follow: Section II 

provides an ephemeral depiction of various feature extraction 

schemes utilized for SER. Section III provides a survey of 

SER based on machine learning. Next, section IV describes 

the recent survey of emotion recognition based on deep 

learning. Section V gives concise information related to 

different SER datasets. Further, section VI provides a detailed 

discussion about finding from a literature survey. Finally, 

section VII offers a conclusion and future direction for SER 

systems 

II. FEATURE EXTRACTION TECHNIQUES  

        Speech emotion signal is continuous time-

domain information and emotion. Speech characteristics might 

be local or global based on feature extraction. Local 

characteristics are segmental or short-term signal fluctuations. 

Long-term or supra-segmental global qualities reflect the 

signal's gross statistics. SER systems can assess local and 

global speech signals using spectral, prosodic, voice-quality, 

and Teager Energy Operator (TEO) aspects [18]. Intonation 

and rhythm affect prosody. Prosodic traits indicate happiness 

and anger more than fear and sadness. [19].  Alex et al. [20] 

trained deep neural networks using energy, duration, and 

fundamental frequency as speech and syllable prosodic 

characteristics. The Interactive Emotional Dyadic Motion 

Capture (IEMOCAP) database showed 63.83% un-weighted 

average recall (U.A.R.). Prosodic and spectral aspects enhance 

SER. [21]. Converting speech emotion data from time domain 

to frequency domain yields spectral properties. Vocal tract 

characteristics are spectral. Mel Frequency Cepstral 

Coefficients (MFCC) is a popular speech signal feature 

description method. It displays short-term voice signal power 

spectrum and phonemes as vocal tract shapes. Mel frequency 

scale matched perceived and real frequency [22][23] [24]. 

LPCC may approximate the vocal cord. MFCC outperforms 

LPCC in emotion recognition. LPC can efficiently encode low 

bit rate signals [25][26].Voice quality parameters often capture 

vocal tract physical attributes. Harmonics-to-noise ratio, 

shimmer, jitter, etc. Shimmer and Jitter reflect speech signal 

frequency and amplitude fluctuation. Jitter and shimmer assess 

frequency and amplitude instability [27]. 

TEO-based characteristics often recognise rage and stress. A 

non-linear vortex-airflow relationship in the vocal system 

shapes speech, according to Teager. Stress affects muscular 

rigidity and airflow during speaking [28][29]. TEO 

characteristics recognise tense emotions [30]. 

 

III. SER USING MACHINE LEARNING BASED 

TECHNIQUES 

Support vector machine is popular for the SERbecause of its 

eager learning capability and lesser prediction time. Song et al. 

[31] presented SER. using Sparse Coding (S.C.) feature 

representation and transfer PCA-feature reduction. They have 

used Support Vector machine (SVM) classifier that resulted in 

accuracy of 43.97% (test-eNTERFACE, train-Berlin) and 

51.36% (test-Berlin, train-eNTERFACE). It has shown better 

performance for the cross corpus SERbut shown less 

discrimination for unlabelled data. Further, Chen et al. [32] 

investigated technique that is appropriate to model human 

auditory perception based on Teager-Mel and P.L.P. features 

along with SVM classifier. It has shown 79.70% on the 

Chinese discrete emotional speech corpus (CDESC). Seho Lee 

[33] has presented combination of the naïve Bayes (NB) and 

K-Nearest Neighbor (KNN) to construct the NB-KNN that 

helps to minimize the over-fitting and attain fast convergence. 

It has given 69.20% and 68.4% accuracy for SAVEE and 

EMODB dataset respectively. Khan and Roy [34] presented 

SER based on MFCC and pitch features along with NB 

classifier. It has shown an accuracy of 81.00% accuracy but 

shows gender dependency. Sonawane et al. [35] suggested that 

non-linear SVM gives better performance compared to the 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9s 

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7743 

Article Received: 18 May 2023 Revised: 16 July 2023 Accepted: 06 August 2023 

___________________________________________________________________________________________________________________ 

 

    711 

IJRITCC | August 2023, Available @ http://www.ijritcc.org 

linear SVM for the real time SER. The SVM classifier is 

widely utilized for the SER application because of its ability 

totransform the features in multi0dimensional plane to learn 

the distinctiveness of the raw features. 

Feature extraction and feature selection are two main obstacles 

in cross-corpus SER. Feature Selection Based Transfer 

Subspace Learning (FSTSL) can acquiredistinctive low 

dimensional corpus independent features. They have extracted 

features using openSMILE toolkit and FSTSL [36]. 

Mao et al. [37] used LDA for redundancy minimization in 

INTER-SPEECH features for SER. It has shown 84.39% 

accuracy using SVM classifier on the Chinese speech 

database. Huang et al. [38] explored a Long time frame 

Analysis Weighted Wavelet Packet Cepstral Coefficient (LW-

WPCC) to cope up with the issue of the additive noise in SER. 

It collaborates the short and long term frame analysis of the 

speech signal and provides noteworthy results when combined 

audio-visual representation for SER.  

Dey et al. [39] have used LPC and LPCC for feature extraction 

and Golden Ratio based Equilibrium Optimization (G.R.E.O.) 

algorithm for feature selection. XGBoost classifier has given 

97.31% and 98.46% on SAVEE and EmoDB dataset. This 

method has given better results compare with previous 

optimization techniques and deep learning techniques. 

The inconsistency between training and testing samples 

decreases cross corpus emotion recognition rate. Sharing the 

source and target attribute space can lessen the incongruity 

between source and target features. Luo and Han [40] 

presented non-negative matrix factorization based transfer 

subspace learning method (NMFTSL) to improve the 

discrimination capability of features. It gave better 

performance for different language cross corpus SER. Sonmez 

et al. [41] applied Local Binary Pattern (LBP) and Local 

Ternary Pattern (LTP) for the SER. Initially 1-D Symlet 

wavelet filter is applied up to 9 levels to separate the high, 

medium and low level frequency components for speech. For 

each component LBP and LTP are applied. Further, features 

are fused together using min-max normalization algorithm and 

given to polynomial SVM classifier. It has low computational 

complexity but gives poor performance due to noisy data and 

class imbalance problem due to database inequalities.Kawade 

and Bhalke[42] presented wavelet packet coefficient (WPC) 

for the SER to acquire the diversity in the phonetic 

representation of the emotion signal. The WPC features and 

1st and 2nd order differences of WPC shows robustness of the 

features for traditional ML based classifiers. The performance 

of WPC is evaluated for the KNN and SVM using correleation 

based feature selection technique on EMO-DB (80.85%) and 

RAVDESS (93.12%) dataset. Various ML techniques has been 

presented for the cross corpus SER which has shown 

promising results. The cross-corpus SER is still challenging 

due to difficulty in acquiring corpora of various languages, 

language intonation, regional and cultural effect on language. 

The pitch and energy of different language sentiments has 

shown wide variety which limits the effectiveness of cross 

corpus SER [43][44]. The success of traditional ML based 

SER highly rely on the feature extracted using feature 

extraction techniques. Its gives better performance for low 

sized database but gives deprived performance for larger sized 

database. Poor correlation and representation of the features  

degrades the SER accuracy. 

IV. SER USING DEEP LEARNING BASED 

TECHNIQUES 

                 In the recent years deep learning has attracted 

researcher's focus because of representation of highly 

discriminative features. Deep learning algorithms can be used 

for feature extraction as well as classification purpose. Zhang 

et al. [45] have presented Deep Convolutional Neural 

Networks (DCNN) to comprise gap between prejudiced 

emotions and low-level features for SER. The DCNN 

employed for learning MFCC features and SVM provided 

SER classification. The LP-norm pooling method outperforms 

average and maximum pooling. Neuman et al. [46] offered 

alternative CNN-based cross-lingual and multi-lingual SER 

(A.C.N.N.). Fine tuning with fewer parameters improves 

arousal prediction, whereas cross language training improves 

valence prediction. Multilingual training outperforms 

monolingual and cross-lingual training. Fine-tuning cross-

lingual training may boost SER performance. Zhao et al. [47] 

used Merged DNN to analyse 1-D CNN and 2-D CNN speech 

spectrograms for SER. Bayesian optimization fine-tunes. It 

gave IEMOCAP 86.36% and EmoDB 89.77% accuracy. 

Ocquaye et al. [48] employed dual exclusive attentive transfer 

(DEAT) for unsupervised convolutional neural networks to 

adjust source and destination domains. CALLoss and second-

order statistics of target and source attention mappings reduce 

domain discrepancy. 5-layered CNN uses voice spectrogram 

to enhance spectral characteristics and feature discrimination. . 

. Simple samples are taught initially in curriculum learning, 

followed by complicated samples. Fundamental frequency and 

MFCC extract features. It outperforms baseline approaches. 

Tripathi et al. [50] demonstrated SER using speech 

characteristics and transcripts. CNN learns emotion traits from 

MFCC and transcript text. It outperforms benchmarks by 

roughly 7%. Zhao et al. [51] stated that LSTM increases 

temporal feature representation and long-term feature reliance. 

2D-CNN-LSTM outperforms 1D for subject-dependent and 

independent approaches. Peng et al. [52] learned emotion 

dynamics and cognitive continuity using 3D convolution and 

attention-based sliding recurrent neural networks 

(A.S.R.N.N.s). 3D convolution models periodic and local 
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voice signals. A.S.R.N.N. represents local speech signal 

features. Attention outperformed maximum and mean pooling. 

Segment-based attention model outperformed frame-based. 

Data imbalance caused unsatisfactory results for MSP-

IMPROV (Accuracy-55.70%) dataset. Conventional 

approaches cannot generalise and capture latent database 

information. Generalized domain adversarial neural network 

(GDANN) provides domain-invariant and generalised speech 

signal representation, and class-aligned GDANN (CGDANN) 

reduces class alignment issues caused by restricted labelled 

targets [53]. Redagging solves observation duplication and 

augagging full picture deficit. It reduced whole-picture and 

observation duplication issues. Xiaohan et al. [55] suggested 

DNN for temporal segment level low-level speech emotion 

signal characteristics. They employed energy, spectral, 

statistical, and voice-related low-level emotion signals. Aware 

temporal pooling outperformed average pooling. Chen et al. 

[56] introduced first-order attention network to address data 

imbalance and utterance variety. Pre-trained CNN (VGGish) 

network optimises log Mel spectrogram segment level 

characteristics. Bi-LSTM learns discriminative segment-level 

features. It reduced data imbalance and utterance variety. 

Smooth semi-supervised generative adversarial network 

(SSSGAN) was used to capture collaborative structure of 

labelled and unlabelled data for categorization. VSSSGAN 

reduced dependence on tagged data. It handles domain 

mismatch and data disturbances. Smoothing the adversarial 

model needed a bigger dataset [57]. The phase and loudness of 

speech reduce the frame clipping impact in SER. DRP and 

MCMA, based on deep CNN, provide promising results for 

SER on EmoDB and IEMOCAP datasets [58]. Bhangale et al. 

[59] described voice signal spectro-temporal features using 2-

D Mel Frequency Logarithmic Spectrogram (MFLS). MFLS 

eliminates discrete cosine transform loss in the classic MFCC 

(DCT). Subject-dependent and subject-independent SER 

accuracy is 95.68% and 96.07% for the MFLS representation 

with lightweight DCNN. Kwon [60] suggested a lightweight 

1-D dilated CNN-based multi learning technique (MLT) for 

voice signal spatio-temporal analysis. It helps SER blend 

salient and long-term contextual cues. Kwon [61] found that 

extensive feature selection improves SER accuracy. . 2-

channel DCNN takes spectral and spatial features. INCA 

selects appropriate features and reduces severance by 

combining two-channel DCNN output. DL-based cross corpus 

SER approaches outperform ML-based ones because they 

correlate local and global speech signal characteristics better. 

Highly related features that bind the spectral, spatial, and 

temporal components of the emotion signal allow the DL 

algorithms transmit cross-language characteristics for cross-

lingual SER [62-66]. Deep learning-based multiclass voice 

emotion recognition. It can accurately depict raw emotion 

signals. Deep learning outperforms machine learning. Deep 

learning methods are limited by architectural complexity, 

class-imbalance issue, longer training time, hyper-parameter 

tweaking complexity, etc.  

IV. SPEECH EMOTION DATABASES 

Emotion speech databases play an essential part in SER. 

Low quality, incomplete and faulty databases may degrade the 

SER. performance. Depending upon utterance styles speech 

emotion databases are categorized into acted (simulated), 

elicited (induced) and natural (spontaneous) speech databases. 

Utterances samples in an acted database are recorded by semi-

professional or professional actors in a controlled 

environment. These samples are easy to record but often 

consist of exaggerated emotions that reduce the recognition 

rates for natural emotions. Elicited database samples are 

recorded by persons in a simulated emotional environment. 

Natural speech emotion database samples are collected from 

call center recording, talk show, radio show etc. Most of the 

databases are available in English and Mandarin languages 

only. Therefore, it is challenging to accommodate the existing 

systems for the new language.  

 

V.  EXPERIMENTAL RESULTS 

 We have implemented several machine learning based 

techniques for the SER on standard public EmoDB database. 

We evaluated performance of various classifiers such as 

Dynamic Time Warping (DTW), Hidden Markov Model 

(HMM), Gaussian Mixture Model (GMM), KNN, SVM, 

Naïve Bayes (NB), Linear Discriminant Analysis (LDA), 

Feed-forward Neural Network (FFNN) and Linear Vector 

Quantization (LVQ).We considered baseline spectral, time 

domain and voice quality features for the feature extraction 

without any pre-processing. As every ML classifier needs 

input features of same length, we cropped/ appended original 

EmoDB signals to 4sec. Fig. 3 shows the performance of SER 

for various ML based techniques for spectral features. The 

MFCC+SVM gives better performance for SER compared to 

other schemes without any pre-processing of data. Template 

based classifier like DTW and model based techniques such as 

HMM and GMM has given deprived results for SER. Eager 

learning techniques such as SVM, FFNN, NB, LDA, LVQ 

shows significant improvement in the results but its 

performance is limited because of lower feature correlation, 

lower inter-class variability and higher intra-class variability 

of the features.   
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Fig. 3 Experimental results for spectral features for SER (EmoDB dataset) 

 

It is noted that the MFCC based spectral features provides 

superior accuracy than LPCC and formants. However, 

combining different spectral features helps to improve the 

spectral domain representation of the signal and assists to 

achieve significant improvement in the SER accuracy. The 

ML classifiers performance is further validated for the time 

domain features such as zero crossing rate (ZCR) and pitch 

frequency; and voice quality features such as jitter and 

shimmer. It is observed that the voice quality features depicts 

better affective information provides better results compared 

with time domain features for EmoDB dataset as shown in Fig. 

4. Further, the combination of different spectral, time domain 

and voice quality features are provided to ML classifiers for 

SER. The combination of different features provides improved 

feature representation due to emotional changes on the speech 

and helps to achieve significant improvement in accuracy as 

shown in Fig. 5. 

 
Fig. 4 Experimental results for time domain feature and voice quality features 

for SER (EmoDB dataset) 

 
Fig. 5 Experimental results for time domain feature and voice quality features 

for SER (EmoDB dataset) 

VI. CONCLUSION 

 This paper presents extensive survey of recent SER 

systems based on ML and DL techniques. The feature 

extraction is important stage for the SER based on machine 

learning techniques where performance of classified is greatly 

dependent on type, length and properties of the features. Deep 

learning techniques have improved the feature representation, 

correlation and internal temporal–spectral variations of the 

speech signal. Deep learning based emotion recognition 

systems have given better performance for noisy and larger 

database. Performance of SER system depends upon the size 

of database. Machine learning based techniques has given 

better performance for the small dataset whereas deep learning 

based techniques has provided better performance for the 

larger database. However, availability of large sized natural 

database and multilingual database is challenging. It is 

observed that cross-lingual and cross-corpus SER is still 

perplexing because of phonetic variations in the different 

languages. Most of the SER systems consider the speech 

phonetic parameters and neglects the actual context of the 

spoken content. 
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