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Abstract: To accumulate data at one place and to make it suitable for strategic decisions we need a data warehouse system. This 

requires an extract, transform and load (ETL) software, which extracts data from various resources, transform it into new data 

formats according to required information needs, and then load it into desired data structure(s) such as a data warehouse. Such 

softwares take enormous time for the purpose which makes the process very slow. To deal with the problem of time taken by ETL 

process, parallel processing is utilised. In this paper we have proposed the use of pipelining for the parallel processing and 

explored the possibility of using a GPU for the process. When a computer process does not contain high parallelism it works well 

on CPU which contains less number of cores. Whereas the processes that contain high degree of parallelism CPU is less efficient 

and each independent code runs on separate core of GPU. This paper gives the basic idea of the parallel computing and also gives 

a simple comparison between the usage of GPU vs CPU. By comparison and analysis, we have reached a conclusion that GPU is 

suitable for processing large scale data parallel load where high level of parallelism is required to be run on multiple processors , 

however, the CPU is more suitable for processing low level parallel computing applications.. 
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I. INTRODUCTION  

In today’s world businesses demand softwares to process 

large data volumes at the lightning speeds. Everybody wants 

to have information and reports on a single click. In this fast 

changing competitive environment, data volumes are 

increasing exponentially and hence there is an increasing 

demand on the data warehouses to deliver available 

information instantly. Additionally, data warehouses should 

generate consistent and accurate results.[1] In data warehouse, 

data is extracted from operational databases, ERP 

applications, CRM tools, excel spread sheets, flat files etc. It 

is then transformed to match the data warehouse schema and 

business requirements and loaded into the data warehouse 

database in desired structures. Data in the Data warehouse is 

added periodically – monthly, daily, hourly depending on the 

purpose of the data warehouse and the type of business it 

serves [2]. Since the process of loading data into the data 

warehouse requires a huge amount of data processing, 

different techniques have been proposed to enhance the ETL 

process. This paper explores the concept of pipelining and 

possibility of using the processing capacity of a GPU for the 

purpose. 

. 

II. OVERVIEW OF ETL PROCESS 

ETL is a continuous and frequent part of a data 

warehouse process, ETL processes must be automated and a 

well-designed. An ETL system is necessary for the 

accomplishment of a data warehousing project. ETL is the 

process that involves Extraction, Transformation and 

Loading.  

 

A. Extraction  

The first part of an ETL process is to extract the data 

from various source systems. Most data warehousing 

projects consolidate data from different sources. These 

systems may use a different data organization and format. 

The process of data extraction is one of the very important 

tasks as it also involves data profiling and data cleaning. 

What goes into the data warehouse determines what quality 

of results are going to be obtained after data analysis. 

 

B. Transformation 

The transform phase applies a set of instructions or 

functions to the extracted data so as to convert different data 

formats into single format which can be loaded into the data 

warehouse. Some common transformations which may be 

required in the data are:  
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 Selecting only certain columns to load (Which is 

needed in decision or selecting null columns not 

to load)  

 Translating coded values (e.g., if the source 

system stores M for male and F for female, but 

the warehouse stores 1 for male and 2 for female)  

 Encoding free-form values (e.g., mapping 

"Male",”M " and "Mr" onto 1)  

 Deriving a new calculated value (e.g., 

Age=CurrentDate-DOB)  

 Joining together data from multiple sources (e.g., 

lookup, merge, etc.)  

 Summarizing multiple rows of data (e.g., total 

sales for each Month)  

 Generating surrogate key values  

 Transposing or pivoting (turning multiple 

columns into multiple rows or vice versa)  

 Splitting a column into multiple columns (e.g., 

putting a comma-separated list specified as a 

string in one column as individual values in 

different columns)  

 

C. Loading 

This phase loads the transformed data into data 

warehouse. The execution of this phase varies 

depending on the need of organization eg. If we are 

maintaining the records of sales on yearly bases then 

data in the data warehouse will be reloaded after a 

year. So the frequency of reloading or updating the 

data depends on type of requirements and type of 

decisions that we are going to make. This phase 

directly interact with the database, the constraints 

and the triggers as well, which helps in improving 

the overall quality of data and the ETL performance. 

III. PARALLEL PROCESSING IN ETL  

Parallel computing is the simultaneous use of more than 

one CPU or processor core to execute a program or multiple 

computational threads. Parallel processing makes programs 

run faster because there are more engines (CPU s or Cores) 

running it. In order to improve the performance of ETL 

software, parallel processing may be implemented. This has 

enabled the evolution of a number of methods to improve the 

overall performance of ETL processes when dealing with 

large volumes of data.  

There are 3 main types of parallelisms as implemented in 

ETL applications:  

 Data: By splitting a single sequential file into 

smaller data files to provide parallel access.  

 Pipeline: Allowing the simultaneous running of 

several components on the same data stream..  

 Component: The simultaneous running of 

multiple processes on different data streams in 

the same job.  

 

All three types of parallelism are usually combined in a 

single job.[2][3]. Parallel processing is one of the most 

explored field of research in the area of computer science as 

it’s applications can make the processing by computers 

faster and faster. 

 

IV. ABOUT GPU (GRAPHICAL PROCESSING UNIT)   

GPUs were initially designed to work with images and 

graphical databases but due to their parallel processing 

capability they can be used for numerous other applications 

that require high speed parallelism. GPU-accelerated 

computing is the use of a graphics processing unit (GPU) 

together with a CPU to accelerate scientific, analytics, 

engineering, consumer, and enterprise applications[4]               

. The latest generation of GPUs, consisting of hundreds of 

stream processing units are capable of supporting thousands 

of concurrently executing threads, with zero-cost hardware 

controlled context switching between threads. 

GPU-accelerated computing offers unprecedented 

application performance by offloading compute-intensive 

portions of the application to the GPU, while the remainder 

of the code still runs on the CPU. From a user's perspective, 

applications simply run significantly faster. 

 

 
 

Figure 1.  Acceleration using GPU 

V. DIFFERENCE BETWEEN A CPU AND GPU 

A simple way to understand the difference between a 

CPU and GPU is to compare how they process tasks. A 

CPU consists of a few cores optimized for sequential serial 

processing while a GPU has a massively parallel 

architecture consisting of thousands of smaller, more 

efficient cores designed for handling multiple tasks 

simultaneously. GPUs have thousands of cores to process 

parallel workloads efficiently. 
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Figure 2.  GPU vs CPU 

 

VI. THE CURRENT STUDY USING THE CONCEPT OF 

PIPELINING 

  To perform Extraction, transformation and loading for a Data 

warehouse , we are using Pipelining. Pipelining is a technique 

where the complete process is divided into various segments 

and all these segments can work simultaneously. 
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Seg

7 

Seg

8 

Seg
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1 M1         

2 M2 M1        

3 M3 M2 M1       

4 M4 M3 M2 M1      

5 M5 M4 M3 M2 M1     

6 M6 M5 M4 M3 M2 M1    

7 M7 M6 M5 M4 M3 M2 M1   

8 M8 M7 M6 M5 M4 M3 M2 M1  

9 M9 M8 M7 M6 M5 M4 M3 M2 M1 

10  M9 M8 M7 M6 M5 M4 M3 M2 

11   M9 M8 M7 M6 M5 M4 M3 

12    M9 M8 M7 M6 M5 M4 

13     M9 M8 M7 M6 M5 

14      M9 M8 M7 M6 

15       M9 M8 M7 

16        M9 M8 

17         M9 

 

Table 1:  Pipelining the ETL Process 

 

If we perform the ETL process in such a way where we have 

divided the whole process into segments and then run the 

segments in a pipelined manner, we will be able to save a lot 

of clock cycles and hence will be able to speed up the 

complete process. The following calculations show  the 

speeding. process 

Speeding up of the ETL process is given by: 

S=   (N*tn ) / (k+N-1)tp 

Where, 

N = no. Of tasks 

tn=   Time to execute a task in case of Non-Pipeline 

k = no. of segments.          

tp = Time to execute a task in case of Pipeline 

 

Assuming that the time takesn to process a sub operation in 

each segment be equal to tp= 20ns. The pipeline has k= 9 

segments and execute n= 100 tasks in sequence. The 

pipeline system will take (k+n-1)tp = (3+99)*20 = 2040 ns 

to complete the task. Assuming that tn= ktp = 9*20 = 180 

ns, a non pipeline system requires nktp= 100*180 = 18000 

ns to complete 100 tasks. The speed ratio is equal to 

18000/2040 = 8.82 .So we can conclude that the speed up of 

the process using pipelining is approximate 9 times. 

 

VII. COMPARISON BETWEEN PIPELINING AND 

PARALLEL PROCESSING 

The current study is about the possibility of using the 

concept of pipelining in the process of data cleaning. To 

perform data cleaning using pipelining, the entire process 

of data cleaning is divided into segments and these 

segments run in a pipeline in different clock cycles using 

the single processor. We have divided the process into 9 

segments and it speeds up the process around 9 times. If 

parallel processing is used, we would require 9 processors 

to run 9 segments in parallel and it would also speed up the 

process 9 times only but by using multiple processors. So 

we deduced that the speedup of the process through 

pipelining is as effective as parallel processing but using 

only one processor which makes it more cost effective. Still 

if we want to use parallel processing, we can attain it by 

using a single CPU with a multi core processor. 

 

Assuming 100 tasks divided into 9 segments 

Pipelining process: 

Number of processors/ cores required = 1 

Execution of multiple segments is done simultaneously 

using different clock cycles 

Segments used in current study = 9 

Speed up using pipelining = >8 times (approx.) 

Parallel processing (for the same 9 segments used in 

current study): 

Number of processors/ cores required = 9 (one for each 

segment) 

Speed up using parallel processing = 9 times (because of 

the 9 processors working in parallel) 

 

The results were compared using different number of 

segments and processes and we concluded that if we 

continue to divide our tasks into segments and compare the 
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results of speed up using pipelining and parallel processing, 

the difference is not substantial. To attain this level of parallel 

processing, multiple processor CPUs can be used. The 

difference between speed up of pipelining and parallel 

processing would arise if we do not divide the tasks into 

segments and execute the 100 tasks taken in the study in 

parallel. In that case, the speed up will be 100 times if we 

could run all the tasks in parallel using 100 processors. But 

this would be possible only if the tasks are not dependent on 

each other and are capable of executing independently. 

 

VIII. POSSIBILITY OF USING GPU 

When we consider the possibility of using a GPU for the 

current scope of this study, we find that the GPU which 

generally consists of hundreds of processors that run 

processes in parallel, is not essential if we do not have a large 

number of processes to run in parallel. We conducted a 

research on the possible implementation of GPU in this study 

and concluded that the high speed parallelism of GPUs is 

most suited for graphics and highly parallel applications. In 

our current study, we are concentrating only on data cleaning 

that can be performed by using a single processor through 

pipelining and therefore, the investment in a GPU is not 

justified.  The CPU works clock by clock and GPU works 

core by core. The individual performance of GPU core is 

lower than that of a CPU core. GPU core is designed to 

handle parallel processing faster. GPUs are designed for 

graphical processes and highly parallel tasks.  A GPU 

consists of hundreds of processors that work in parallel. The 

proposed framework is based on pipelining which uses a 

single processor to perform data cleaning by dividing the 

process into segments and running these segments in 

different clock cycles on a single processor. Since the 

proposed framework divides the process of data cleaning in 9 

segments, the hundreds of processors present in the GPU will 

not be required. In case of not enough data parallelism, GPU 

overhead is higher than the benefit. GPU consists of hundreds 

of processors/ cores and if the processes are few, the cost of 

GPU will not be justified. 

 

IX. LIMITATIONS OF USING GPU IN THE 

CURRENT STUDY 

Limitations of GPU in the current scope of our research also 

includes the difficulty in programming. The code has to be 

converted into the GPU format whereas in pipelining the 

traditional coding works. The architecture of GPU is still in 

its developmental stage. Data cleaning process can have 

different stages that may be dependent on each other where 

the output of one task acts as input for the next task. In such a 

scenario even the GPU will not speed up the process. In case 

of pipelining, we have divided the process of data cleaning 

into segments and these segments can work on a single 

processor through pipelining. The speedup has been 

calculated and it was found that the speedup is proportional 

to the number of segments. The speedup is almost equal to 

the number of segments created. In case of parallel 

processing, the speedup is equal to the number of 

processors. So through pipelining also we are able to speed 

up the process as much as we could have done using 

parallel processing but the advantage with our method is 

we are saving the cost of 8 extra processors that would be 

needed to attain the same level of speedup in case of 

parallel processing where different processors are used to 

run different segments. 

 

X. EXPANSION OF SCOPE OF STUDY USING GPU 

In case we want to expand the scope of work consider the 

data coming from multiple sources, and then each 

individual core of the GPU can use pipelining to clean up 

the data from each data source. In that case, pipelining will 

be done on each different processor and that will be done in 

parallel. That time the speed will increase depending on the 

number of processors used. We will need as many 

processors as the number of data sources and each 

processor would perform data cleaning using individual 

pipelining as described in our existing study.  We can use 

as many processors as the number of data sources and each 

processor will perform data cleaning on each data source 

through pipelining. In this case if we assume data is 

coming from 20 data sources and we use 20 processors. 

Within each processor pipelining is used for data cleaning. 

We assume the same 9 segments for each process as 

considered in our study, then each processor will speed up 

the data cleaning process by approximately 8 times and we 

are using 20 processors so total speedup will be around 160 

times. But even in that case a CPU with multicore 

processor is enough and the GPU is not required until we 

are involving the cleaning for graphical data as the multi-

processor CPU will be able to process multiple data 

sources in parallel. Our current study on data cleaning is 

limited to nominal and textual data, and therefore we can 

perform the data cleaning by using a single processor. In 

case of graphical data cleaning, GPUs might be required.  

Another possibility of using GPUs for data cleaning can be 

by using parallel processing for different data sources as 

well as different segments. In this arrangement, more 

number of processors will be required and GPU will be a 

suitable choice. For example if the data is coming from 20 

data sources and we perform data cleaning using the 9 

segments per cleaning process as used in the pipelining and 

execute these segments parallel using separate cores on the 
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GPU, we would need 20*9=180 processors and it will speed 

up the process 180 times.  

 

XI. TO IMPLEMENT GPU IN THE CURRENT STUDY 

If the number of parallel tasks is considerable, GPU is 

needed.  

Assuming the data coming from multiple sources and data 

cleaning is to be performed on each data. 

Number of data sources = 20 

Number of segments for data cleaning for each data source = 

9 

Total number of segments = 180 

If we use parallel processing on GPU, 

Total number of cores required = 180 (each core would 

perform pipelining individually) 

Speed up of data cleaning = 180 times 

If the same number of segments are executed using 

pipelining, 

The number of processors required = 20 (one for each data 

source) 

Speed up by each processor = >8 times 

Total speed up =>160 times 

In case there were no segments and we had to run 100 tasks 

on each of the 20 data sources for cleaning, 

Number of tasks = 2000 

The number of cores = 2000 

Then we can justify the need of GPU. But if we do not have 

so many independent tasks, the need for GPU is not justified. 

XII. CONCLUSION 

Thus, we have deduced that by using substantially lesser 

number of processors, the processing speeds can be increased 

considerably by using segmentation and pipelining. 

Therefore, the use of GPU cannot be recommended only on 

it’s capability of high level parallel processing but other 

factors need to be considered before investing in it. The 

potential of parallel processing can be utilized only when the 

processes are capable of running independently. Moreover 

we need to justify the cost of using a GPU including the 

hardware and programmers’ cost before recommending it for 

use in a particular application as the main characteristic of 

GPU is not just parallel processing but the presence of 

hundreds of cores that need to be put to effective use and 

justify the cost of a GPU. The best use of GPU is for high 

level parallel processing where hundreds of tasks execute in 

parallel and graphical processes that require large number of 

cores. 
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