
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 333 – 337

333
IJRITCC | June 2017, Available @ http://www.ijritcc.org

Exploring the Possibility of using A GPU While Implementing Pipelining to

Reduce the Processing Time in the ETL Process

Dr. Deepshikha Aggarwal

Department of Information Technology

Jagan Institute of Management Studies

Delhi, India

deepshikha.aggarwal@jimsindia.org

Abstract: To accumulate data at one place and to make it suitable for strategic decisions we need a data warehouse system. This

requires an extract, transform and load (ETL) software, which extracts data from various resources, transform it into new data

formats according to required information needs, and then load it into desired data structure(s) such as a data warehouse. Such

softwares take enormous time for the purpose which makes the process very slow. To deal with the problem of time taken by ETL

process, parallel processing is utilised. In this paper we have proposed the use of pipelining for the parallel processing and

explored the possibility of using a GPU for the process. When a computer process does not contain high parallelism it works well

on CPU which contains less number of cores. Whereas the processes that contain high degree of parallelism CPU is less efficient

and each independent code runs on separate core of GPU. This paper gives the basic idea of the parallel computing and also gives

a simple comparison between the usage of GPU vs CPU. By comparison and analysis, we have reached a conclusion that GPU is

suitable for processing large scale data parallel load where high level of parallelism is required to be run on multiple processors ,

however, the CPU is more suitable for processing low level parallel computing applications..

Keywords: ETL, pipelining, GPU, Parallel computing, Data warehousing

__*****___

I. INTRODUCTION

In today’s world businesses demand softwares to process

large data volumes at the lightning speeds. Everybody wants

to have information and reports on a single click. In this fast

changing competitive environment, data volumes are

increasing exponentially and hence there is an increasing

demand on the data warehouses to deliver available

information instantly. Additionally, data warehouses should

generate consistent and accurate results.[1] In data warehouse,

data is extracted from operational databases, ERP

applications, CRM tools, excel spread sheets, flat files etc. It

is then transformed to match the data warehouse schema and

business requirements and loaded into the data warehouse

database in desired structures. Data in the Data warehouse is

added periodically – monthly, daily, hourly depending on the

purpose of the data warehouse and the type of business it

serves [2]. Since the process of loading data into the data

warehouse requires a huge amount of data processing,

different techniques have been proposed to enhance the ETL

process. This paper explores the concept of pipelining and

possibility of using the processing capacity of a GPU for the

purpose.

.

II. OVERVIEW OF ETL PROCESS

ETL is a continuous and frequent part of a data

warehouse process, ETL processes must be automated and a

well-designed. An ETL system is necessary for the

accomplishment of a data warehousing project. ETL is the

process that involves Extraction, Transformation and

Loading.

A. Extraction

The first part of an ETL process is to extract the data

from various source systems. Most data warehousing

projects consolidate data from different sources. These

systems may use a different data organization and format.

The process of data extraction is one of the very important

tasks as it also involves data profiling and data cleaning.

What goes into the data warehouse determines what quality

of results are going to be obtained after data analysis.

B. Transformation

The transform phase applies a set of instructions or

functions to the extracted data so as to convert different data

formats into single format which can be loaded into the data

warehouse. Some common transformations which may be

required in the data are:

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 333 – 337

334
IJRITCC | June 2017, Available @ http://www.ijritcc.org

 Selecting only certain columns to load (Which is

needed in decision or selecting null columns not

to load)

 Translating coded values (e.g., if the source

system stores M for male and F for female, but

the warehouse stores 1 for male and 2 for female)

 Encoding free-form values (e.g., mapping

"Male",”M " and "Mr" onto 1)

 Deriving a new calculated value (e.g.,

Age=CurrentDate-DOB)

 Joining together data from multiple sources (e.g.,

lookup, merge, etc.)

 Summarizing multiple rows of data (e.g., total

sales for each Month)

 Generating surrogate key values

 Transposing or pivoting (turning multiple

columns into multiple rows or vice versa)

 Splitting a column into multiple columns (e.g.,

putting a comma-separated list specified as a

string in one column as individual values in

different columns)

C. Loading

This phase loads the transformed data into data

warehouse. The execution of this phase varies

depending on the need of organization eg. If we are

maintaining the records of sales on yearly bases then

data in the data warehouse will be reloaded after a

year. So the frequency of reloading or updating the

data depends on type of requirements and type of

decisions that we are going to make. This phase

directly interact with the database, the constraints

and the triggers as well, which helps in improving

the overall quality of data and the ETL performance.

III. PARALLEL PROCESSING IN ETL

Parallel computing is the simultaneous use of more than

one CPU or processor core to execute a program or multiple

computational threads. Parallel processing makes programs

run faster because there are more engines (CPU s or Cores)

running it. In order to improve the performance of ETL

software, parallel processing may be implemented. This has

enabled the evolution of a number of methods to improve the

overall performance of ETL processes when dealing with

large volumes of data.

There are 3 main types of parallelisms as implemented in

ETL applications:

 Data: By splitting a single sequential file into

smaller data files to provide parallel access.

 Pipeline: Allowing the simultaneous running of

several components on the same data stream..

 Component: The simultaneous running of

multiple processes on different data streams in

the same job.

All three types of parallelism are usually combined in a

single job.[2][3]. Parallel processing is one of the most

explored field of research in the area of computer science as

it’s applications can make the processing by computers

faster and faster.

IV. ABOUT GPU (GRAPHICAL PROCESSING UNIT)

GPUs were initially designed to work with images and

graphical databases but due to their parallel processing

capability they can be used for numerous other applications

that require high speed parallelism. GPU-accelerated

computing is the use of a graphics processing unit (GPU)

together with a CPU to accelerate scientific, analytics,

engineering, consumer, and enterprise applications[4]

. The latest generation of GPUs, consisting of hundreds of

stream processing units are capable of supporting thousands

of concurrently executing threads, with zero-cost hardware

controlled context switching between threads.

GPU-accelerated computing offers unprecedented

application performance by offloading compute-intensive

portions of the application to the GPU, while the remainder

of the code still runs on the CPU. From a user's perspective,

applications simply run significantly faster.

Figure 1. Acceleration using GPU

V. DIFFERENCE BETWEEN A CPU AND GPU

A simple way to understand the difference between a

CPU and GPU is to compare how they process tasks. A

CPU consists of a few cores optimized for sequential serial

processing while a GPU has a massively parallel

architecture consisting of thousands of smaller, more

efficient cores designed for handling multiple tasks

simultaneously. GPUs have thousands of cores to process

parallel workloads efficiently.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 333 – 337

335
IJRITCC | June 2017, Available @ http://www.ijritcc.org

Figure 2. GPU vs CPU

VI. THE CURRENT STUDY USING THE CONCEPT OF

PIPELINING

 To perform Extraction, transformation and loading for a Data

warehouse , we are using Pipelining. Pipelining is a technique

where the complete process is divided into various segments

and all these segments can work simultaneously.

Clock

pulse

Seg

1

Seg

2

Seg

3

Seg

4

Seg

5

Seg

6

Seg

7

Seg

8

Seg

9

1 M1

2 M2 M1

3 M3 M2 M1

4 M4 M3 M2 M1

5 M5 M4 M3 M2 M1

6 M6 M5 M4 M3 M2 M1

7 M7 M6 M5 M4 M3 M2 M1

8 M8 M7 M6 M5 M4 M3 M2 M1

9 M9 M8 M7 M6 M5 M4 M3 M2 M1

10 M9 M8 M7 M6 M5 M4 M3 M2

11 M9 M8 M7 M6 M5 M4 M3

12 M9 M8 M7 M6 M5 M4

13 M9 M8 M7 M6 M5

14 M9 M8 M7 M6

15 M9 M8 M7

16 M9 M8

17 M9

Table 1: Pipelining the ETL Process

If we perform the ETL process in such a way where we have

divided the whole process into segments and then run the

segments in a pipelined manner, we will be able to save a lot

of clock cycles and hence will be able to speed up the

complete process. The following calculations show the

speeding. process

Speeding up of the ETL process is given by:

S= (N*tn) / (k+N-1)tp

Where,

N = no. Of tasks

tn= Time to execute a task in case of Non-Pipeline

k = no. of segments.

tp = Time to execute a task in case of Pipeline

Assuming that the time takesn to process a sub operation in

each segment be equal to tp= 20ns. The pipeline has k= 9

segments and execute n= 100 tasks in sequence. The

pipeline system will take (k+n-1)tp = (3+99)*20 = 2040 ns

to complete the task. Assuming that tn= ktp = 9*20 = 180

ns, a non pipeline system requires nktp= 100*180 = 18000

ns to complete 100 tasks. The speed ratio is equal to

18000/2040 = 8.82 .So we can conclude that the speed up of

the process using pipelining is approximate 9 times.

VII. COMPARISON BETWEEN PIPELINING AND

PARALLEL PROCESSING

The current study is about the possibility of using the

concept of pipelining in the process of data cleaning. To

perform data cleaning using pipelining, the entire process

of data cleaning is divided into segments and these

segments run in a pipeline in different clock cycles using

the single processor. We have divided the process into 9

segments and it speeds up the process around 9 times. If

parallel processing is used, we would require 9 processors

to run 9 segments in parallel and it would also speed up the

process 9 times only but by using multiple processors. So

we deduced that the speedup of the process through

pipelining is as effective as parallel processing but using

only one processor which makes it more cost effective. Still

if we want to use parallel processing, we can attain it by

using a single CPU with a multi core processor.

Assuming 100 tasks divided into 9 segments

Pipelining process:

Number of processors/ cores required = 1

Execution of multiple segments is done simultaneously

using different clock cycles

Segments used in current study = 9

Speed up using pipelining = >8 times (approx.)

Parallel processing (for the same 9 segments used in

current study):

Number of processors/ cores required = 9 (one for each

segment)

Speed up using parallel processing = 9 times (because of

the 9 processors working in parallel)

The results were compared using different number of

segments and processes and we concluded that if we

continue to divide our tasks into segments and compare the

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 333 – 337

336
IJRITCC | June 2017, Available @ http://www.ijritcc.org

results of speed up using pipelining and parallel processing,

the difference is not substantial. To attain this level of parallel

processing, multiple processor CPUs can be used. The

difference between speed up of pipelining and parallel

processing would arise if we do not divide the tasks into

segments and execute the 100 tasks taken in the study in

parallel. In that case, the speed up will be 100 times if we

could run all the tasks in parallel using 100 processors. But

this would be possible only if the tasks are not dependent on

each other and are capable of executing independently.

VIII. POSSIBILITY OF USING GPU

When we consider the possibility of using a GPU for the

current scope of this study, we find that the GPU which

generally consists of hundreds of processors that run

processes in parallel, is not essential if we do not have a large

number of processes to run in parallel. We conducted a

research on the possible implementation of GPU in this study

and concluded that the high speed parallelism of GPUs is

most suited for graphics and highly parallel applications. In

our current study, we are concentrating only on data cleaning

that can be performed by using a single processor through

pipelining and therefore, the investment in a GPU is not

justified. The CPU works clock by clock and GPU works

core by core. The individual performance of GPU core is

lower than that of a CPU core. GPU core is designed to

handle parallel processing faster. GPUs are designed for

graphical processes and highly parallel tasks. A GPU

consists of hundreds of processors that work in parallel. The

proposed framework is based on pipelining which uses a

single processor to perform data cleaning by dividing the

process into segments and running these segments in

different clock cycles on a single processor. Since the

proposed framework divides the process of data cleaning in 9

segments, the hundreds of processors present in the GPU will

not be required. In case of not enough data parallelism, GPU

overhead is higher than the benefit. GPU consists of hundreds

of processors/ cores and if the processes are few, the cost of

GPU will not be justified.

IX. LIMITATIONS OF USING GPU IN THE

CURRENT STUDY

Limitations of GPU in the current scope of our research also

includes the difficulty in programming. The code has to be

converted into the GPU format whereas in pipelining the

traditional coding works. The architecture of GPU is still in

its developmental stage. Data cleaning process can have

different stages that may be dependent on each other where

the output of one task acts as input for the next task. In such a

scenario even the GPU will not speed up the process. In case

of pipelining, we have divided the process of data cleaning

into segments and these segments can work on a single

processor through pipelining. The speedup has been

calculated and it was found that the speedup is proportional

to the number of segments. The speedup is almost equal to

the number of segments created. In case of parallel

processing, the speedup is equal to the number of

processors. So through pipelining also we are able to speed

up the process as much as we could have done using

parallel processing but the advantage with our method is

we are saving the cost of 8 extra processors that would be

needed to attain the same level of speedup in case of

parallel processing where different processors are used to

run different segments.

X. EXPANSION OF SCOPE OF STUDY USING GPU

In case we want to expand the scope of work consider the

data coming from multiple sources, and then each

individual core of the GPU can use pipelining to clean up

the data from each data source. In that case, pipelining will

be done on each different processor and that will be done in

parallel. That time the speed will increase depending on the

number of processors used. We will need as many

processors as the number of data sources and each

processor would perform data cleaning using individual

pipelining as described in our existing study. We can use

as many processors as the number of data sources and each

processor will perform data cleaning on each data source

through pipelining. In this case if we assume data is

coming from 20 data sources and we use 20 processors.

Within each processor pipelining is used for data cleaning.

We assume the same 9 segments for each process as

considered in our study, then each processor will speed up

the data cleaning process by approximately 8 times and we

are using 20 processors so total speedup will be around 160

times. But even in that case a CPU with multicore

processor is enough and the GPU is not required until we

are involving the cleaning for graphical data as the multi-

processor CPU will be able to process multiple data

sources in parallel. Our current study on data cleaning is

limited to nominal and textual data, and therefore we can

perform the data cleaning by using a single processor. In

case of graphical data cleaning, GPUs might be required.

Another possibility of using GPUs for data cleaning can be

by using parallel processing for different data sources as

well as different segments. In this arrangement, more

number of processors will be required and GPU will be a

suitable choice. For example if the data is coming from 20

data sources and we perform data cleaning using the 9

segments per cleaning process as used in the pipelining and

execute these segments parallel using separate cores on the

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 333 – 337

337
IJRITCC | June 2017, Available @ http://www.ijritcc.org

GPU, we would need 20*9=180 processors and it will speed

up the process 180 times.

XI. TO IMPLEMENT GPU IN THE CURRENT STUDY

If the number of parallel tasks is considerable, GPU is

needed.

Assuming the data coming from multiple sources and data

cleaning is to be performed on each data.

Number of data sources = 20

Number of segments for data cleaning for each data source =

9

Total number of segments = 180

If we use parallel processing on GPU,

Total number of cores required = 180 (each core would

perform pipelining individually)

Speed up of data cleaning = 180 times

If the same number of segments are executed using

pipelining,

The number of processors required = 20 (one for each data

source)

Speed up by each processor = >8 times

Total speed up =>160 times

In case there were no segments and we had to run 100 tasks

on each of the 20 data sources for cleaning,

Number of tasks = 2000

The number of cores = 2000

Then we can justify the need of GPU. But if we do not have

so many independent tasks, the need for GPU is not justified.

XII. CONCLUSION

Thus, we have deduced that by using substantially lesser

number of processors, the processing speeds can be increased

considerably by using segmentation and pipelining.

Therefore, the use of GPU cannot be recommended only on

it’s capability of high level parallel processing but other

factors need to be considered before investing in it. The

potential of parallel processing can be utilized only when the

processes are capable of running independently. Moreover

we need to justify the cost of using a GPU including the

hardware and programmers’ cost before recommending it for

use in a particular application as the main characteristic of

GPU is not just parallel processing but the presence of

hundreds of cores that need to be put to effective use and

justify the cost of a GPU. The best use of GPU is for high

level parallel processing where hundreds of tasks execute in

parallel and graphical processes that require large number of

cores.

REFERENCES

[1] Li, B., and Shasha, D., "Free Parallel Data Mining", ACM

SIGMOD Record, Vol.27, No.2, pp.541-543, New York,

USA (1998).

[2] Anand, S. S., Bell, D. A. and Hughes, J.G., "EDM: A

general framework for data mining based on evidence

theory", Data and Knowledge Engineering, Vol.18, No.3,

pp.189-223 (1996).

[3] Agrawal, R., Imielinsk, T. and Swami, A., “Database

Mining: A Performance Perspective”, IEEE Transaction

Knowledge and Data Engineering, vol. 5, no. 6, pp. 914-925

(1993).

[4] K. Fatahalian and M. Houston, “A closer look at GPUs,”

Communications of the ACM, Vol. 51, No. 10, October

2008.

[5] Z. Fan, F. Qiu, A. Kaufman, S. Yoakum-Stove, “GPU

Cluster for High Performance Computing,”, in Proc.

ACM/IEEE conference on Supercomputing, 2004.

[6] D. Tarditi, S. Puri, and J. Oglesby, “Accelerator: Using

data-parallelism to program GPUs for general-purpose

uses”, in Proc. 12th Int. Conf. Architect. Support Program.

Lang. Oper. Syst., pp. 325-335, Oct. 2006.

[7] John D. Owens, Mike Houston, David Luebke and Simon

Green,” GPU Computing Graphics Processing Units-

powerful, programmable, and highly parallel-are

increasingly targeting general-purpose computing

applications”, In the procd. Of IEEE Xplore, Vol. 96, no. 5,

May 2008.

[8] Danilo De Donno, Alessandra Esposito, Luciano Tarricone,

and Luca Catarinucci, “Introduction to GPU Computing and

CUDA Programming: A Case Study on FOlD” In the procd.

Of IEEE Antennas and Propagation Magazine, Vol. 52,

No.3, June 2010.

[9] J. N. William and J. Dally, “The GPU Computing Era,”

IEEE Trans. Image Process, vol. 10, no. 5, pp. 767-782,

May 2010.

[10] K. Korotaev, “Hierarchical CPU Schedulers for

Multiprocessor Systems,Fair CPU Scheduling and

Processes Isolation,” IEEE Trans. Electron Devices, vol.

ED-11, pp. 34-39,Jan 2005.

[11] Q. Hou, X. Sun, and K. Zhou et al., “Memery-Scalable

GPU Spatial Hierarchy Construction,” IEEE

Trans.Computer Engineering, vol. 4, pp. 189-193, Apr

2011.

[12] F. Cui and C. Cheng et al., “Accelerated GPU Computing

Technology for Parallel Management Systems,” IEEE

Trans. Image Process, vol. 10, no. 5, pp. 255-259, May

2010.

[13] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone,

and J. C. Phillips, “GPU Computing,” IEEE Trans. Neural

Networks, vol. 5, pp. 334-339, Oct 2010.

http://www.ijritcc.org/

