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Abstract . In this paper, we introduce the concept of the sum-eccentricity 
matrix )(GSe  of a graph G  and obtain some coefficients of the characteristic 
polynomial ),( GP  of the sum-eccentricity matrix of G . We also introduce the 
sum-eccentricity energy )(GESe  of a graph G . Sum-eccentricity energies of 
some well-known graphs are obtained. Upper and lower bounds for )(GESe  are 
estblished. It is shown that if the sum-eccentricity energy of a graph is 
rational then it must be an even. 
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           1. Introduction 

      In this paper, all graphs are assumed to be finite connected simple graphs. 
A graph ),( EVG   is a simple graph, that is, having no loops, no multiple 
and directed edges. As usual, we denote n  to be the order and m  to 
be the size of the graph G . For a vertex Vv , the open neighborhood 
of v  in a graph ,G  denoted ),(vN  is the set of all vertecies that are 
adjacent to v  and the closed neighborhood of v  is }.{)(][ vvNvN   The 
degree of a vertex v  in G  is .|)(|)( vNvd   The distance ),( vud  between 
any two vertices u  and v  in a graph G  is the length of the shortest 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication                               ISSN: 2321-8169 

Volume: 5 Issue: 6                                                   293 – 304 

_______________________________________________________________________________________________ 

294 
IJRITCC | June 2017, Available @ http://www.ijritcc.org 
_______________________________________________________________________________________ 

path connecting them. The eccevtricity of a vertex Gv  is 
)}.(:),(max{)( GVuvudve   The radius of G  is )}(:)(min{)( GVvveGr   and the 

diameter of G  is  )}.(:)(max{)( GVvveGD   Hence  ),()(()( GDveGr   for 
every  ).(GVv  A vertex v  in a connected graph G  is central if 

),()( Grve   while a vertex v  in a connected graph G  is peripheral vertex 
if ).()( GDve   A graph G  is called self centered graph if ).()()( GDGrve   
The girth of a graph G  is the length of the shortest cycle contained in 
the graph and denoted by ).(Gg  All the defnitions and terminologies 
about the graph in this paragraph available in [9]. 
 
      The concept energy of a graph introduced by I. Gutman [8], in (1978). Let 
G  be a graph with n  vertices and m  edges and let )()( ijaGA   be the 
adjacency matrix of ,G  where  
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The eigenvalues n ,,, 21   of a matrix )(GA  assumed in a non-increasing 
order, are the eigenvalues of a graph G [10]. Let ,21 t    for nt   
be the distinct eigenvalues of G  with multiplicities ,,,, 21 tmmm   
respectively, the multiset of eigenvalues of )(GA  is called the spectrum 
of G  and denoted by 
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As A  is real symmetric with zero trace, the eigenvalues of G  are real 
with sum equal to zero [3]. The energy )(GE  of a graph G  is defined to 
be the sum of the absolute values of the eigenvalues of G [8], i.e., 

.||)(
1





n

i

iGE   

For more details on the mathematical aspects of the theory of graph 
energy we refer to [5, 7, 10] and the references therein. 
 
      C. Adiga et. al. [2], have defined the maximum degree energy )(GEM  of a 
graph G  which depends on the maximum degree matrix )(GM  of .G  Let 
G  be a simple graph with n  vertices .,,, 21 nvvv   Then the maximum 
degree matrix )()( ijdGM   of a graph G  defined as  
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otherwise

Evvifvdvd
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As )(GM  is real symmetric with zero trace, then the eigenvalues of G  
being real with sm equal to zero. 
 
      Ahmed M. Naji et. al. [3], have defined the concept of maximum 
eccentricity matrix )(GM e  of a connected graph .G  They obtained the 
maximum eccentricity energy )(GEM e  of a graph depends on the 
maximum eccentricity matrix. Let G  be a simple connected graph with n  
vertices nvvv ,,, 21   and let )( ive  be the eccentricity of a vetex nivi ...,,2,1,   
The maximum eccentricity matrix of G  defined as ),()( ije eGM   where  



 


.,0

,,)}(),(max{

otherwise

Evvifveve
e

jiji

ij  

Motivated by those papers, we introduce the concept of the sum-
eccentricity matrix )(GSe  of a graph G  and obtain some coefficients of 
the characteristic polynomial ),( GP  of the sum-eccentricity matrix of G . 
We also introduce the sum-eccentricity energy )(GESe  of a graph G . 
Sum-eccentricity energies of some well -known graphs are obtained. 
Upper and lower bounds for )(GESe  are estblished. It is shown that if 
the sum-eccentricity energy of a graph is rational then it must be an 
even. 

 
2. THE SUM-ECCENTRICITY ENERGY OF GRAPHS 

 
Definition 2.1.      Let G  be a graph with n  vertices. Then the sum-
eccentricty matrix of a graph G  denoted by ),(GSe is defined as 

),()( ije sGS   where  



 


.,0

,,)()(

otherwise

Evvifveve
s

jiji

ij  

The characteristic polynomial of the sum-eccentricity matrix )(GSe  is 
defined by 

)),(det(),( GSIGP e   
Where I  is the unt matrix of order n  The eigenvalues of the sum-
eccentricity matrix )(GSe  are the roots of the charecteristic polynomial of 
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.G  
Since )(GSe  is real symmetric with zero trace, its eigenvalues must be 
realwith sum equal to zero, i.e., .0))(( GStrace e  We lable the eigenvalues 

n ,,, 21   in a non-increasing manner .21 n    The sum-eccentrcity 
energy of a graph G  is denoted by )(GESe  and is defined as the 
summation of the absolute value of the eigenvalues 





n

i

ie GES
1

.||)(   

The following examples explain the concept. 
Example 2.2.Let 1G  be the graph as in figure 1. 

 
Then the sum-eccentricity matrix of 1G  is  
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540400

004050

050506

050060

)( 1GSe  

The charracteristic polynomial of )( 1GSe  is 
.1562575004952300168),( 2346

1  GP  
The sum-eccentricity eigenvalues of 1G  are 

.7383.9,6336.6,8779.2,2211.1,4884.5,54.12 654321    
The sum-eccentricity energy of 1G  is 

.499.38)( 1 GESe  
Example 2.3.      Let 2G  be the 5K graph. 

 
Then the sum-eccentricity matrix of 2G  is  
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)( 2GSe  
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The charracteristic polynomial of )( 2GSe  is 
).8()2(1282401640),( 4235

2  GP  
The sum-eccentricity eigenvalues of 2G  are 

.2,2,2,2,8 54321    
The sum-eccentricity energy of 2G  is 

.16)( 2 GESe  
3.    BOUNDS FOR SUM-ECCENTRICITY ENERGY AND SUM-
ECCENTRICITY EIGENVALUES 
      We now give the explicit expression for the coefficient ic  of 

)3,2,1,0( nandiin   in the characteristic polynomial of the sum-eccentricity 
matrix ).(GSe  
 
Theorem 3.1.   Let G  be a graph of order n  and let  

,...),( 2

2

1

10 n

nnn ccccGP     
be the charracteristic polynomial of ).(GSe  Then  
1. .10 c  
2. .01 c  

3. 
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5. For 1n we have )).((det)1( GSc e

n
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Proof.   The proof of parts (1) and (2) are similar to the proof in [2]. 
3.   Since  
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4.   We have  
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5.   We have 
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hence )).((det)1( GSc e

n

n   
 

Example 3.2.In the graph 1G  in figure 1, the coefficient 2c  of 4  in the 
characteristic polynomialof )( 1GSe

 is equal to 
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168])32()22()22()23()23()23()33[( 2222222   

Remark 3.3.    a.The number of terms in 
3c in the above theorem is equal to 

the number of triangles in the graph. 

b.     If ,3)( Gg then .03 c  

Theorem 3.4.If ,,,, 21 n   are the sum-eccentricity eigenvalues of a graph 
,G  then  
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Theorem 3.5.     Let ,nKG   a complete graph of order ,1, nn  then 
).1(22  nnc  

 Proof.   We have ,,))()((
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Example 3.6.     In the graph 2G , the coefficient 2c  of 3  in the 
characteristic polynomialof )( 2GSe

 is .40)4)(5(2   
  

Corollary 3.7.     For the complete graph ,nK  we have 
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Theorem 3.8.     If G  is a graph of order ,n  then for any sum-
eccentricity eigenvalue ,j  we have  
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Proof.   We have 

)1(4))(( 2  nnKStrace ne  
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by Cauchy-Schwartz inequality, we have  
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Using theorem 3.4., we get 
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Theorem 3.9.     We have 
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Using the last inequality in theorem 3.1 and Arithmatic mean, Geometric 
mean inequality we get  
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On the other hand, using the previous theorem we have  
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Theorem 3.10.     If the  sum-eccentricity energy of a graph G  is 
retional, then it must be an even integer. 

Proof.   Let n ,,, 21   be the  sum-eccentricity eigenvalues of a graphG  

with order n . Then we have .0
1




n

i

i  Let r ,,, 21   be positive, and 

nrr  ,,, 21   arenon-positive. Then, 
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).(2)( 21 re GES     

Since 
r ,,, 21   are algebraic numbers, so is there sum, and hence 

must be integer if )(GESe  is retional. Thus )(GESe  is an even positive 
integer if it is rational. 

 

4.    THE SUM-ECCENTRICITY ENERGY FOR SOME STANDARD 
GRAPHS 
     In this section we investigate the exact values of the sum-eccentricity 
energy of some well-known graphs. 

 Theorem 4.1.     For the cycle ,3, nCn  is we have 
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Theorem 4.1.     The sum-eccentricity eigenvalues for the complete graph 

nK  are 2  and )1(2 n  with multiplicities )1( n  and 1 respectively, and the sum-
eccentricity energy for nK  is ).1(4 n  

Proof.   We have 
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The sum-eccentricity eigenvalues of nK  are ,2...,,2,2),1(2 321  nn   
i.e., 2 with multiplicity 1n  and )1(2 n  with multiplicity .1  

Hence ).1(4)(  nKES ne  
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