The Sum-Eccentricity Energy Of A Graph

Mohammad Issa Sowaity and B. Sharada
Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysuru - 570 006, INDIA
E-mail address: mohammad_d2007@hotmail.com
Department of Studies in Computer Scince, University of Mysore, Manasagangotri, Mysuru - 570 006, INDIA
E-mail address: sharadab21@gmail.com

Abstract

In this paper, we introduce the concept of the sum-eccentricity matrix $S_{e}(G)$ of a graph G and obtain some coefficients of the characteristic polynomial $P(G, \lambda)$ of the sum-eccentricity matrix of G. We also introduce the sum-eccentricity energy $E S_{e}(G)$ of a graph G. Sum-eccentricity energies of some well-known graphs are obtained. Upper and lower bounds for $E S_{e}(G)$ are estblished. It is shown that if the sum-eccentricity energy of a graph is rational then it must be an even.

Key words and phrases. Distance in graphs, Sum-eccentricity matrix, Sumeccentricity eigenvalues, Sum-eccentricity energy of a graph.

1. Introduction

In this paper, all graphs are assumed to be finite connected simple graphs. A graph $G=(V, E)$ is a simple graph, that is, having no loops, no multiple and directed edges. As usual, we denote n to be the order and m to be the size of the graph G. For a vertex $v \in V$, the open neighborhood of v in a graph G, denoted $N(v)$, is the set of all vertecies that are adjacent to v and the closed neighborhood of v is $N[v]=N(v) \cup\{v\}$. The degree of a vertex v in G is $d(v)=|N(v)|$. The distance $d(u, v)$ between any two vertices u and v in a graph G is the length of the shortest
path connecting them. The eccevtricity of a vertex $v \in G$ is $e(v)=\max \{d(u, v): u \in V(G)\}$. The radius of G is $r(G)=\min \{e(v): v \in V(G)\}$ and the diameter of G is $D(G)=\max \{e(v): v \in V(G)\}$. Hence $r(G) \leq e(v)(\leq D(G)$, for every $v \in V(G)$. A vertex v in a connected graph G is central if $e(v)=r(G)$, while a vertex v in a connected graph G is peripheral vertex if $e(v)=D(G)$. A graph G is called self centered graph if $e(v)=r(G)=D(G)$. The girth of a graph G is the length of the shortest cycle contained in the graph and denoted by $g(G)$. All the defnitions and terminologies about the graph in this paragraph available in [9].

The concept energy of a graph introduced by I. Gutman [8], in (1978). Let G be a graph with n vertices and m edges and let $A(G)=\left(a_{i j}\right)$ be the adjacency matrix of G, where

$$
a_{i j}=\left\{\begin{array}{l}
1, \text { if } v_{i} v_{j} \in E, \\
0, \text { otherwise }
\end{array}\right.
$$

The eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of a matrix $A(G)$ assumed in a non-increasing order, are the eigenvalues of a graph G [10]. Let $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{t}$, for $t \leq n$ be the distinct eigenvalues of G with multiplicities $m_{1}, m_{2}, \ldots, m_{t}$, respectively, the multiset of eigenvalues of $A(G)$ is called the spectrum of G and denoted by

$$
S p(G)=\left[\begin{array}{llll}
\lambda_{1} & \lambda_{2} & \ldots & \lambda_{t} \\
m_{1} & m_{2} & \ldots & m_{t}
\end{array}\right]
$$

As A is real symmetric with zero trace, the eigenvalues of G are real with sum equal to zero [3]. The energy $E(G)$ of a graph G is defined to be the sum of the absolute values of the eigenvalues of G [8], i.e.,

$$
E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right| .
$$

For more details on the mathematical aspects of the theory of graph energy we refer to $[5,7,10]$ and the references therein.
C. Adiga et. al. [2], have defined the maximum degree energy $E_{M}(G)$ of a graph G which depends on the maximum degree matrix $M(G)$ of G. Let G be a simple graph with n vertices $v_{1}, v_{2}, \ldots, v_{n}$. Then the maximum degree matrix $M(G)=\left(d_{i j}\right)$ of a graph G defined as

$$
d_{i j}=\left\{\begin{array}{l}
\max \left\{d\left(v_{i}\right), d\left(v_{j}\right)\right\}, \text { if } v_{i} v_{j} \in E, \\
0, \text { otherwise } .
\end{array}\right.
$$

As $M(G)$ is real symmetric with zero trace, then the eigenvalues of G being real with sm equal to zero.

Ahmed M. Naji et. al. [3], have defined the concept of maximum eccentricity matrix $M_{e}(G)$ of a connected graph G. They obtained the maximum eccentricity energy $E M_{e}(G)$ of a graph depends on the maximum eccentricity matrix. Let G be a simple connected graph with n vertices $v_{1}, v_{2}, \ldots, v_{n}$ and let $e\left(v_{i}\right)$ be the eccentricity of a vetex $v_{i}, i=1,2, \ldots, n$ The maximum eccentricity matrix of G defined as $M_{e}(G)=\left(e_{i j}\right)$, where

$$
e_{i j}=\left\{\begin{array}{l}
\max \left\{e\left(v_{i}\right), e\left(v_{j}\right)\right\}, \text { if } v_{i} v_{j} \in E, \\
0, \text { otherwise } .
\end{array}\right.
$$

Motivated by those papers, we introduce the concept of the sumeccentricity matrix $S_{e}(G)$ of a graph G and obtain some coefficients of the characteristic polynomial $P(G, \lambda)$ of the sum-eccentricity matrix of G. We also introduce the sum-eccentricity energy $E S_{e}(G)$ of a graph G. Sum-eccentricity energies of some well-known graphs are obtained. Upper and lower bounds for $E S_{e}(G)$ are estblished. It is shown that if the sum-eccentricity energy of a graph is rational then it must be an even.

2. THE SUM-ECCENTRICITY ENERGY OF GRAPHS

Definition 2.1. Let G be a graph with n vertices. Then the sumeccentricty matrix of a graph G denoted by $S_{e}(G)$, is defined as $S_{e}(G)=\left(s_{i j}\right)$, where

$$
s_{i j}=\left\{\begin{array}{l}
e\left(v_{i}\right)+e\left(v_{j}\right), \text { if } v_{i} v_{j} \in E, \\
0, \text { otherwise } .
\end{array}\right.
$$

The characteristic polynomial of the sum-eccentricity matrix $S_{e}(G)$ is defined by

$$
P(G, \lambda)=\operatorname{det}\left(\lambda I-S_{e}(G)\right),
$$

Where I is the unt matrix of order n The eigenvalues of the sumeccentricity matrix $S_{e}(G)$ are the roots of the charecteristic polynomial of
G.

Since $S_{e}(G)$ is real symmetric with zero trace, its eigenvalues must be realwith sum equal to zero, i.e., $\operatorname{trace}\left(S_{e}(G)\right)=0$. We lable the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ in a non-increasing manner $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$. The sum-eccentrcity energy of a graph G is denoted by $E S_{e}(G)$ and is defined as the summation of the absolute value of the eigenvalues

$$
E S_{e}(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

The following examples explain the concept.
Example 2.2.Let G_{1} be the graph as in figure 1.

Then the sum-eccentricity matrix of G_{1} is

$$
S_{e}\left(G_{1}\right)=\left[\begin{array}{llllll}
0 & 6 & 0 & 0 & 5 & 0 \\
6 & 0 & 5 & 0 & 5 & 0 \\
0 & 5 & 0 & 4 & 0 & 0 \\
0 & 0 & 4 & 0 & 4 & 5 \\
5 & 5 & 0 & 4 & 0 & 0 \\
0 & 0 & 0 & 5 & 0 & 0
\end{array}\right]
$$

The charracteristic polynomial of $S_{e}\left(G_{1}\right)$ is

$$
P\left(G_{1}, \lambda\right)=\lambda^{6}-168 \lambda^{4}-300 \lambda^{3}+4952 \lambda^{2}+7500 \lambda-15625 .
$$

The sum-eccentricity eigenvalues of G_{1} are

$$
\lambda_{1}=12.54, \lambda_{2}=5.4884, \lambda_{3}=1.2211, \lambda_{4}=-2.8779, \lambda_{5}=-6.6336, \lambda_{6}=-9.7383 .
$$

The sum-eccentricity energy of G_{1} is

$$
E S_{e}\left(G_{1}\right)=38.499
$$

Example 2.3. Let G_{2} be the K_{5} graph.

Then the sum-eccentricity matrix of G_{2} is

$$
S_{e}\left(G_{2}\right)=\left[\begin{array}{lllll}
0 & 2 & 2 & 2 & 2 \\
2 & 0 & 2 & 2 & 2 \\
2 & 2 & 0 & 2 & 2 \\
2 & 2 & 2 & 0 & 2 \\
2 & 2 & 2 & 2 & 0
\end{array}\right]
$$

The charracteristic polynomial of $S_{e}\left(G_{2}\right)$ is

$$
P\left(G_{2}, \lambda\right)=\lambda^{5}-40 \lambda^{3}-16 \lambda^{2}-240 \lambda-128=(\lambda+2)^{4}(\lambda-8) .
$$

The sum-eccentricity eigenvalues of G_{2} are

$$
\lambda_{1}=8, \lambda_{2}=-2, \lambda_{3}=-2, \lambda_{4}=-2, \lambda_{5}=-2 .
$$

The sum-eccentricity energy of G_{2} is

$$
E S_{e}\left(G_{2}\right)=16 .
$$

3. BOUNDS FOR SUM-ECCENTRICITY ENERGY AND SUMECCENTRICITY EIGENVALUES

We now give the explicit expression for the coefficient c_{i} of $\lambda^{n-i}(i=0,1,2,3$ and $n)$ in the characteristic polynomial of the sum-eccentricity matrix $S_{e}(G)$.

Theorem 3.1. Let G be a graph of order n and let

$$
P(G, \lambda)=c_{0} \lambda^{n}+c_{1} \lambda^{n-1}+c_{2} \lambda^{n-2}+\ldots+c_{n},
$$

be the charracteristic polynomial of $S_{e}(G)$. Then

1. $c_{0}=1$.
2. $c_{1}=0$.
3. $c_{2}=-\sum_{i=1, i<j}^{n}\left(e\left(v_{i}\right)+e\left(v_{j}\right)\right)^{2}$, where $v_{i} v_{j} \in E$.
4. $c_{3}=-2 \sum_{\Delta v_{i} v_{j} v_{k}, 1 \leq i<j<k \leq n}^{n}\left(2 e\left(v_{i}\right) e\left(v_{j}\right) e\left(v_{k}\right)+e\left(v_{i}\right)^{2} e\left(v_{j}\right)+e\left(v_{i}\right)^{2} e\left(v_{k}\right)+e\left(v_{j}\right)^{2} e\left(v_{i}\right)+\right.$

$$
\left.e\left(v_{j}\right)^{2} e\left(v_{k}\right)+e\left(v_{k}\right)^{2} e\left(v_{i}\right)+e\left(v_{k}\right)^{2} e\left(v_{j}\right)\right) .
$$

5. For $n>1$ we have $c_{n}=(-1)^{n} \operatorname{det}\left(S_{e}(G)\right)$.

Proof. The proof of parts (1) and (2) are similar to the proof in [2].
3. Since

$$
c_{2}=\sum_{1 \leq i<j \leq n}\left|\begin{array}{cc}
0 & s_{i j} \\
s_{j i} & 0
\end{array}\right|=\sum_{1 \leq i<j \leq n} 0-\left(s_{i j} s_{j i}\right)=-\sum_{1 \leq i<j \leq n} s_{i j}{ }^{2}
$$

and since

$$
s_{i j}=\left\{\begin{array}{l}
e\left(v_{i}\right)+e\left(v_{j}\right), \text { if } v_{i} v_{j} \in E, \\
0, \text { otherwise } .
\end{array}\right.
$$

Thus $c_{2}=-\sum_{i=1, i<j}^{n}\left(e\left(v_{i}\right)+e\left(v_{j}\right)\right)^{2}$, where $v_{i} v_{j} \in E$.
4. We have

$$
\begin{gathered}
c_{2}=\sum_{1 \leq i<j<k \leq n}^{n}\left|\begin{array}{ccc}
s_{i i} & s_{i j} & s_{i k} \\
S_{j i} & s_{j j} & s_{j k} \\
s_{k i} & s_{k j} & s_{k k}
\end{array}\right| \\
=-2 \sum_{1 \leq i<j<k \leq n}^{n}\left(s_{i j} s_{i k} s_{j k}\right) \\
=-2 \sum_{\Delta v_{i} v_{j} v_{k}, 1 \leq i<j<k \leq n}^{n}\left[\left(e\left(v_{i}\right)+e\left(v_{j}\right)\right)\left(e\left(v_{i}\right)+e\left(v_{k}\right)\right)\left(e\left(v_{j}\right) e\left(v_{k}\right)\right)\right] \\
=-2 \sum_{\Delta v_{i} v_{j} v_{k}, 1 \leq i<j<k \leq n}^{n}\left(2 e\left(v_{i}\right) e\left(v_{j}\right) e\left(v_{k}\right)+e\left(v_{i}\right)^{2} e\left(v_{j}\right)+e\left(v_{i}\right)^{2} e\left(v_{k}\right)+e\left(v_{j}\right)^{2} e\left(v_{i}\right)+\right. \\
\left.e\left(v_{j}\right)^{2} e\left(v_{k}\right)+e\left(v_{k}\right)^{2} e\left(v_{i}\right)+e\left(v_{k}\right)^{2} e\left(v_{j}\right)\right) .
\end{gathered}
$$

5. We have $c_{k}=(-1)^{k} \sum_{k=1}^{n}$ (all $k \times k$ principle min ors)
hence $c_{n}=(-1)^{n} \operatorname{det}\left(S_{e}(G)\right)$.

Example 3.2.In the graph G_{1} in figure 1, the coefficient c_{2} of λ^{4} in the characteristic polynomialof $S_{e}\left(G_{1}\right)$ is equal to

$$
\begin{gathered}
-\sum_{i=1, i<j}^{n}\left(e\left(v_{i}\right)+e\left(v_{j}\right)\right)^{2}, \text { where } v_{i} v_{j} \in E \\
-\left[(3+3)^{2}+(3+2)^{2}+(3+2)^{2}+(3+2)^{2}+(2+2)^{2}+(2+2)^{2}+(2+3)^{2}\right]=-168
\end{gathered}
$$

Remark 3.3. a.The number of terms in c_{3} in the above theorem is equal to the number of triangles in the graph.
b. If $g(G) \neq 3$, then $c_{3}=0$.

Theorem 3.4.If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, are the sum-eccentricity eigenvalues of a graph G, then

$$
\sum_{i=1}^{n} \lambda_{i}^{2}=-2 c_{2} .
$$

Proof. We have

$$
\sum_{i=1}^{n} \lambda_{i}^{2}=\operatorname{trace}\left(S_{e}^{2}(G)\right)=\sum_{i=1}^{n} \sum_{k=1}^{n} s_{i k} s_{k i}=2 \sum_{i=1}^{n} \sum_{i<k}^{n} s_{i k}^{2}=2 \sum_{i=1, i<k}^{n} s_{i k}^{2}
$$

$$
=2 \sum_{i=1, i<k}^{n}\left(e\left(v_{i}\right)+e\left(v_{k}\right)\right)^{2}, \text { where } v_{i} v_{k} \in E
$$

hence

$$
\sum_{i=1}^{n} \lambda_{i}^{2}=-2 c_{2} .
$$

Theorem 3.5. Let $G=K_{n}$, a complete graph of order $n, n>1$, then $c_{2}=-2 n(n-1)$.

Proof. We have $c_{2}=-\sum_{i=1, i<j}^{n}\left(e\left(v_{i}\right)+e\left(v_{j}\right)\right)^{2}$, where $v_{i} v_{j} \in E$,
we also have in K_{n} each $e\left(v_{i}\right)=1$ so

$$
c_{2}=-\sum_{i=1}^{n-1}(2+2)^{2} i=-4 \frac{n(n-1)}{2}=-2 n(n-1) .
$$

Example 3.6. In the graph G_{2}, the coefficient c_{2} of λ^{3} in the characteristic polynomialof $S_{e}\left(G_{2}\right)$ is $-2(5)(4)=-40$.

Corollary 3.7. For the complete graph K_{n}, we have

$$
\sum_{i=1}^{n} \lambda_{i}^{2}=4 n(n-1)
$$

Theorem 3.8. If G is a graph of order n, then for any sumeccentricity eigenvalue λ_{j}, we have

$$
c_{2} \geq \frac{(n-2) \lambda_{j}^{2}}{2}-2 n\left((n-1)^{2} .\right.
$$

Proof. We have

$$
\operatorname{trace}\left(S_{e}^{2}\left(K_{n}\right)\right)=4 n(n-1)
$$

by Cauchy-Schwartz inequality, we have

$$
\sum_{i=1, i \neq j}^{n} \lambda_{i}^{2} \leq(n-1) \sum_{i=1, i \neq j}^{n} \lambda_{i}^{2}=(n-1)\left(4 n(n-1)-\lambda_{j}^{2}\right)
$$

so

$$
\begin{gathered}
\sum_{i=1, i \neq j}^{n} \lambda_{i}^{2} \leq 4 n(n-1)^{2}-\lambda_{j}^{2}(n-1) \\
\text { i.e. } \sum_{i=1}^{n} \lambda_{i}^{2} \leq 4 n(n-1)^{2}-\lambda_{j}^{2}(n-1)+\lambda_{j}^{2}=4 n(n-1)^{2}-\lambda_{j}^{2}(n-2) .
\end{gathered}
$$

Using theorem 3.4., we get

$$
c_{2} \geq \frac{(n-2) \lambda_{j}^{2}}{2}-2 n\left((n-1)^{2} .\right.
$$

Theorem 3.9. We have

$$
\sqrt{2 \sum_{i=1, i<j}^{n}\left(e\left(v_{i}\right)+e\left(v_{j}\right)\right)^{2}+n(n-1) L^{\frac{2}{n}}} \leq E S_{e}(G) \leq \sqrt{\frac{2 n^{2} c_{2}+4 n^{3}(n-1)^{2}}{n-2}}
$$

where $v_{i} v_{j} \in E, L=\prod_{i=1}^{n} \lambda_{i}$ and $n>2$ for the left side of the inequality.

Proof. We have

$$
\begin{aligned}
& E^{2} S_{e}(G)=\left(\sum_{i=1}^{n}\left|\lambda_{i}\right|\right)^{2} \\
= & \sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}+\sum_{i \neq j}\left|\lambda_{i} \| \lambda_{j}\right| .
\end{aligned}
$$

Using the last inequality in theorem 3.1 and Arithmatic mean, Geometric mean inequality we get

$$
E^{2} S_{e}(G)=2 \sum_{i=1, i<j}^{n}\left(e\left(v_{i}\right)+e\left(v_{j}\right)\right)^{2}+\sum_{i \neq j}\left|\lambda_{i} \| \lambda_{j}\right|, \text { wherev } v_{i} v_{j} \in E,
$$

but

$$
\begin{gathered}
\sum_{i \neq j}\left|\lambda_{i} \| \lambda_{j}\right|=\left|\lambda_{1}\right|\left(\left|\lambda_{2}\right|+\left|\lambda_{3}\right|+\ldots+\left|\lambda_{n}\right|\right) \\
+\left|\lambda_{2}\right|\left(\left|\lambda_{1}\right|+\left|\lambda_{3}\right|+\ldots+\left|\lambda_{n}\right|\right) \\
\vdots \\
+\left|\lambda_{n}\right|\left(\left|\lambda_{1}\right|+\left|\lambda_{2}\right|+\ldots+\left|\lambda_{n-1}\right|\right) \\
\geq n(n-1)\left(\left|\lambda_{1}\left\|\lambda_{2}\right\| \lambda_{3}\right| \ldots\left|\lambda_{n}\right|\right)^{\frac{1}{n}}\left(\left|\lambda_{1}\right|^{n-1}\left|\lambda_{2}\right|^{n-1}\left|\lambda_{3}\right|^{n-1} \ldots\left|\lambda_{n}\right|^{n-1}\right)^{\frac{1}{n(n-1)}}
\end{gathered}
$$

hence

$$
\sqrt{2 \sum_{i=1, i<j}^{n}\left(e\left(v_{i}\right)+e\left(v_{j}\right)\right)^{2}+n(n-1) L^{\frac{2}{n}}} \leq E S_{e}(G),
$$

where $v_{i} v_{j} \in E$ and $L=\prod_{i=1}^{n} \lambda_{i}$.
On the other hand, using the previous theorem we have

$$
\left|\lambda_{j}\right| \leq \sqrt{\frac{2 c_{2}+4 n(n-1)^{2}}{n-2}}
$$

so

$$
\sum_{j=1}^{n}\left|\lambda_{j}\right| \leq \sqrt{\frac{2 n^{2} c_{2}+4 n^{3}(n-1)^{2}}{n-2}}, \text { where } n>2 \text {. }
$$

Theorem 3.10. If the sum-eccentricity energy of a graph G is retional, then it must be an even integer.

Proof. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the sum-eccentricity eigenvalues of a graph G with order n. Then we have $\sum_{i=1}^{n} \lambda_{i}=0$. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ be positive, and $\lambda_{r+1}, \lambda_{r+2}, \ldots, \lambda_{n}$ arenon-positive. Then,

$$
E S_{e}(G)=2\left(\lambda_{1}+\lambda_{2}+\ldots+\lambda_{r}\right) .
$$

Since $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ are algebraic numbers, so is there sum, and hence must be integer if $E S_{e}(G)$ is retional. Thus $E S_{e}(G)$ is an even positive integer if it is rational.

4. THE SUM-ECCENTRICITY ENERGY FOR SOME STANDARD GRAPHS

In this section we investigate the exact values of the sum-eccentricity energy of some well-known graphs.
Theorem 4.1. For the cycle $C_{n}, n \geq 3$, is we have

$$
c_{2}=\left\{\begin{array}{l}
-n^{3}, \text { if } n \text { is even, } \\
-n(n-1)^{2}, \text { if nis odd } .
\end{array}\right.
$$

Proof. We have $c_{2}=-\sum_{i=1, i<j}^{n}\left(e\left(v_{i}\right)+e\left(v_{j}\right)\right)^{2}$,
and

$$
e\left(v_{i}\right)=\left\{\begin{array}{l}
\frac{n}{2}, \text { if nis even }, \\
\frac{(n-1)}{2}, \text { if } n \text { is odd },
\end{array}\right.
$$

so if n is even $c_{2}=-\sum_{i=1, i<j}^{n}\left(2 \frac{n}{2}\right)^{2}=-n^{3}$,
and if n is odd $c_{2}=-\sum_{i=1, i<j}^{n}\left(2 \frac{n-1}{2}\right)^{2}=-n(n-1)^{2}$,
thus

$$
c_{2}=\left\{\begin{array}{l}
-n^{3}, \text { if nis even, } \\
-n(n-1)^{2}, \text { if nis odd } .
\end{array}\right.
$$

Theorem 4.1. The sum-eccentricity eigenvalues for the complete graph K_{n} are -2 and $2(n-1)$ with multiplicities ($n-1$) and 1 respectively, and the sumeccentricity energy for K_{n} is $4(n-1)$.

Proof. We have

$$
\begin{aligned}
& \left|\lambda I-S_{e}\left(K_{n}\right)\right|=\left|\begin{array}{ccccc}
\lambda & -2 & -2 & \cdots & -2 \\
-2 & \lambda & -2 & \cdots & -2 \\
-2 & -2 & \lambda & \cdots & -2 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-2 & -2 & -2 & \cdots & \lambda
\end{array}\right| \\
& =(\lambda+2)^{n-1}\left|\begin{array}{ccccc}
\lambda & -2 & -2 & \cdots & -2 \\
-1 & 1 & 0 & \cdots & 0 \\
-1 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-1 & 0 & 0 & \cdots & 1
\end{array}\right| \\
& =(\lambda+2)^{n-1}(\lambda-2(n-1)) .
\end{aligned}
$$

The sum-eccentricity eigenvalues of K_{n} are $\lambda_{1}=2(n-1), \lambda_{2}=-2, \lambda_{3}=-2, \ldots, \lambda_{n}=-2$, i.e., -2 with multiplicity $n-1$ and $2(n-1)$ with multiplicity 1 .

Hence $E S_{e}\left(K_{n}\right)=4(n-1)$.

References

[1] C. Adiga, E. Sampathkumar, M. A. Sriraj and Shrikanth A. S., Color energy of a graph, Jangjeon Math. Society, 16(2013), No. 3, 335-351.
[2] C. Adiga and M. Smitha, On maximum degree energy of a graph, Int. J. Contempt. Math. Sci., 4(2009), 385-396.
[3] M. Ahmed Naji and N. D. Soner, The maximum eccentricity energy of a graph, Int. J. Sci. Engin. Research, 7(2016), 5-13.
[4] R. Balakrishnan, The energy of a graph, Linear Alg. Appl., 387(2004), 287-295.
[5] R. B. Bapat, Graphs and Matricies, Hindustan Book Agency, 2011.
[6] D. Cherny, T. Denton, R. Thomas and Waldron, Linear Algebra, Edited by Katrina

Glaeser and Travis Scrimshaw First Edtion. Davis California, 2013.
[7] I. Gutman, X. Li and J. Zhang, Graph energy, (Ed-s: M. Dehmer, F. Emmert), Streib. Analysis of Complex Networks, From Biology to Linguistics, Wiley-VCH, Weinheim, (2009), 154-174.
[8] I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forsch. Graz, 103(1978), 1-22.
[9] F. Harary, Graph Theory, Addision-Wesley Publishing Co., Reading, Mass. Menlo park, Calif. London, 1969.
[10] X. Li, Y. Shi and I. Gutman, Graph Energy, Springer, 2012.

