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Abstract— This research paper proposes a novel approach to improving software development effort estimation by integrating ensemble 

learning algorithms with numerical simulation techniques. The objective of this study is to design an ensemble learning-based software 

development effort estimation system that leverages the strengths of multiple algorithms to enhance accuracy and reliability. The proposed 

system combines the power of ensemble learning, which involves aggregating predictions from multiple models, with numerical simulation 

techniques that enable the modelling and analysis of complex software development processes. A diverse set of software development projects 

is collected, encompassing various domains, sizes, and complexities. Ensemble learning algorithms such as Random Forest, Gradient Boosting, 

Bagging, and AdaBoost are selected for their ability to capture different aspects of the data and produce robust predictions. The proposed 

system architecture is presented, illustrating the flow of data and components. A model training and evaluation pipeline is developed, enabling 

the integration of ensemble learning and numerical simulation modules. The system combines the predictions generated by the ensemble models 

with the simulation results to produce more accurate and reliable effort estimates. The experimental setup involves a comprehensive evaluation 

of the proposed system. A real-world dataset comprising historical project data is utilized, and various performance metrics, including Mean 

Absolute Error (MAE) and Root Mean Squared Error (RMSE), are employed to assess the effectiveness of the system. The results and analysis 

demonstrate that the ensemble learning-based effort estimation system outperforms traditional techniques, showcasing its potential to enhance 

project planning and resource allocation. 

Keywords- Software Development, Effort Estimation, Stacking, MAE, RMSE, R2 Score. 

 

I.  INTRODUCTION 

Software Effort Estimation (SEE) is one of the key tasks in 

Software Project Management (SPM). It is the process of 

determining the total amount of effort required to develop a 

software product before initiation. The main advantage of effort 

estimation is that it helps plan and predict the way to implement 

software projects. However, it has been considered one of the 

most difficult tasks as it plays a vital role in determining the 

success of the software project. Moreover, it is essential for 

being competitive in the market. Possibly, accurate prediction 

helps the Project Managers (PMs) utilise the available resources 

more efficiently and complete the project within the scheduled 

deadline without exceeding the budget. However, 

overestimating leads to the failure of the software project by 

underutilizing valuable resources and losing bidding. Similarly, 

underestimating causes tighter schedule deadlines, more 

defects, and a loss of software quality. So, it is important to 

predict the software effort more accurately and precisely. 

However, it has been found that over 63 percent of the project 

budgets are higher than the initial estimates. Hence, Software 

Effort estimation remains one of the toughest tasks in the 

software industry. 

Many methods have been developed and used in estimating the 

total effort. Generally, effort is commonly estimated using a 

technique known as, man-power loading. According to this 

technique, the effort is expressed as a function of number of 

engineering ways and management approaches required to 

develop a software product. At the initial stage of effort 

estimation, it is important to consider the project feasibility as 

the data’s collected during the initial period of a software life-

cycle is imprecise and unsure. Although accurate prediction is 

critical, it is extremely difficult to determine in the initial stage. 

Typically, effort estimation is done using the four activities 

shown in Figure 1. 
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Figure 1. Estimation approaches 

 As shown in Figure 1, the project managers divide the whole 

project into smaller modules which is further divided into sub-

modules during the requirement analysis of the project. Then, 

they form project teams satisfying all criteria for the project 

with experienced members. Each module of the project is 

assigned to specific team, and they compute the effort needed 

to complete the module. Based on the effort required for a 

module, the overall budget is estimated. 

This study explores a variety of estimating methods, including 

Machine Learning, algorithmic models, Function Point, Top-

Down, Bottom-Up, and Expert estimation. In the modern world, 

neural networks, COCOMO, and planning poker are frequently 

used. 

Researchers have looked into the application of machine 

learning techniques in effort estimation to address these 

limitations. In order to anticipate the amount of work required, 

machine learning algorithms can analyse historical project data, 

spot patterns, and gain expertise from previous projects. Recent 

years have seen an increase in interest in ensemble learning, a 

method that integrates numerous models to create predictions. 

By combining the advantages of various models and 

minimising the weaknesses of individual algorithms, ensemble 

learning has proven to increase accuracy and robustness. 

In addition to machine learning, numerical simulation 

techniques have shown promise in modeling and analyzing 

complex systems. Simulation allows for the representation of 

real-world processes, considering uncertainties and variations 

that occur during project execution. By simulating the software 

development process, it becomes possible to generate insights 

into the potential outcomes, identify bottlenecks, and evaluate 

different scenarios. 

This research paper proposes a novel approach to improve 

software development effort estimation by integrating ensemble 

learning algorithms with numerical simulation techniques. The 

objective is to design an ensemble learning-based effort 

estimation system that leverages the power of multiple 

algorithms and incorporates the dynamic nature of software 

development processes. 

The primary aim of this research is to enhance the accuracy and 

reliability of effort estimation, ultimately leading to better 

project planning and resource allocation. By combining 

ensemble learning algorithms with numerical simulation, the 

proposed system seeks to address the limitations of traditional 

estimation techniques and provide more robust predictions. 

To achieve this objective, a comprehensive methodology will 

be developed. This methodology will involve collecting and 

preprocessing a diverse set of software development project 

data, encompassing various domains, sizes, and complexities. 

Ensemble learning algorithms such as Random Forest, Gradient 

Boosting, Bagging, and AdaBoost will be employed to capture 

different aspects of the data and produce accurate predictions. 

Furthermore, the integration of numerical simulation techniques 

will enable the modeling and analysis of the dynamic aspects of 

the software development process. Monte Carlo Simulation and 

Discrete Event Simulation methods will be utilized to consider 

uncertainties and variations that occur during project execution. 

The experimental setup will involve evaluating the proposed 

system using a real-world dataset comprising historical project 

data. Various performance metrics, including Mean Absolute 

Error (MAE) and Root Mean Squared Error (RMSE), and 

R2will be employed to assess the effectiveness of the system in 

comparison to traditional estimation techniques. The results and 

analysis will demonstrate the system's ability to improve effort 

estimation accuracy and reliability. 

In conclusion, this research aims to address the challenges of 

software development effort estimation by proposing a novel 

approach that combines ensemble learning algorithms with 

numerical simulation techniques. The integration of these 

techniques seeks to enhance accuracy, robustness, and the 

ability to capture uncertainties in the estimation process. The 

outcomes of this research will contribute to better project 

planning and resource allocation in software development 

projects, ultimately improving the success rates and outcomes 

of software development endeavors. 

II. RELATED WORKS 

Software development effort estimation (SDEE) is the process 

of estimating amount of work necessary to construct a software 

system. SDEE is a subfield of software effort estimation which 

takes into account estimates for both software development and 

software maintenance. Researchers sometimes use the words 

"software cost estimation" and "software effort estimation" 

interchangeably, despite the fact that effort contributes only a 

little amount to total software cost. Predicting development 

Divide Complete Project into Small Task 

Assign Each Task to Project Team Members 

Estimate the Effort which needed for completion of Task 

Validate the Estimation 
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work properly in early stages of software life cycle is essential 

for good project management. In SDEE sector, various 

estimating approaches have been suggested since 1980s. In their 

study, Jrgensen and Shepperd found that there are as many as 

11 different methods for measuring SDEE. It is observed that 

regression-based methods predominate but utilize of expert 

opinion and analogy methods is on the rise. Interest in SDEE 

studies has increased in recent years, particularly in those that 

employ ML (machine learning) based methodologies. In fact, 

ML-based methods are regarded by several experts as one of the 

top 3 estimating methods (other two are expert judgement and 

algorithmic model).  

In field of software development, estimating software projects 

is the most difficult undertaking. There will be no appropriate 

planning and management of software development projects if 

accurate and dependable estimates are not supplied. Even when 

all relevant elements are considered during software 

development process, project estimates are not always correct. 

It does not leverage estimations to improve software 

development. When a project is underestimated, consequences, 

including inadequate quality assurance efforts, insufficient 

manpower, and missed deadlines, result in a loss of confidence 

[1]. The estimation of a software project is required in order to 

account for underestimations and overestimations in terms of 

cost, effort, etc. More resources than a project needs will be 

employed, driving up product pricing; hence accurate 

estimation is essential. In spite of vast amount of empirical 

studies on ML models, contradictory  result  has been reported 

on estimation accuracy of ML models, comparisons among 

non-ML models or ML models, and differences across ML 

models. For example, it has been pointed out that the accuracy 

of estimates changes when same ML model is built using many 

different historical project data sets or experimental designs.  

Research  published  claims  that  the  ML  model  is  more  

effective  than regression model, whereas research published 

concludes that regression approach is more successful. 

Comparing various ML models (such as ANN and case-based 

reasoning), research indicated which former outperformed 

latter, whilst a study found opposite conclusions [2]. The time 

and energy spent by developers is the most valuable asset for 

most software projects, and how that asset is divided may have 

a considerable impact on the project's timeframe and budget. In 

order to successfully complete a single instance of a project, it 

is crucial to be able to estimate necessary developer effort in 

advance and alter these estimates during project's life cycle. 

Inaccurate (often overoptimistic) work estimates are a common 

reason for projects to fail [3] have clear ramifications for the 

organization's overall performance. As a consequence, effort 

estimating has been subjected to many studies over past few 

decades, with the aim of evaluating and improving existing 

estimation methods, as well as developing wholly new ones [4]. 

Historically, most prevalent estimating technique has been 

some variation of expert estimation, i.e., relying on human 

subject matter experts to examine pertinent data and provide an 

estimate. Moreover, data-driven solutions have been created, 

although their implementation in practice is uncommon for a 

variety of reasons. Among these data-driven strategies are 

several ML algorithms [5]. The application of ML techniques 

to this issue domain is not a new phenomenon; research in this 

direction has been undertaken rather continuously over past few 

decades, far before present AI- related research boom. 

In context of software development, estimating is understood to 

mean making educated guesses about unknown quantities such 

as money and time spent. Estimate is a crucial aspect of 

software project management since it impacts both client and 

developer sides. If the estimate is accurate, development can be 

planned, progress can be tracked, and customer can negotiate 

price and completion date. However, as the leading cause of 

software failure is erroneous estimation of vital characteristics, 

estimating becomes a crucial and essential duty in predicting 

the dependability of software [6]. 

An enhanced method for Scrum-based Agile projects 

using 36 success indicators, resulting in more cost-effective and 

efficient outcomes [7]. A utilized pre-trained embedding 

models to improve textual requirements gathering for effort 

estimation, achieving reliable and efficient results [8]. Applied 

machine learning and deep learning techniques to predict 

hardware development tasks' duration, demonstrating the 

applicability of software effort estimation in the hardware 

sector [9]. A TLBO-guided TABE system for more accurate 

work estimates, achieving reduced mean absolute residue 

(MAR) and mean magnitude of relative error (MMRE) values 

[10]. Developed models for agile project time and effort 

estimation based on initial software requirements, showing 

improved accuracy when integrating application domain groups 

and peak employees [11]. Identified causal factors affecting 

effort estimation and proposed an Extreme Learning Machine 

(ELM) model with superior performance in software design 

effort estimation [12]. Artificial Neural Networks (ANN) 

estimation approaches outperformed conventional methods, 

highlighting the importance of comparing and contrasting 

different estimation methodologies [13]. Conducted empirical 

interviews to investigate estimation methods used by financially 

sound firms, emphasizing the need for suitable estimation 

methods and control [14]. Compared various ANN models and 

found that they provided more accurate estimates compared to 

traditional approaches such as Use-case methods, Function 

point, and COCOMO [15]. A continuous simulation to enhance 

project work estimation, enabling better understanding of effort 

ranges and risk management decisions [16]. Developed a non-

linear approach using Multi-Layer Perceptron’s for effort 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 10s 

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7624 

Article Received: 01 June 2023 Revised: 29 July 2023 Accepted: 09 August 2023 

___________________________________________________________________________________________________________________ 

 

    241 

IJRITCC | September 2023, Available @ http://www.ijritcc.org 

estimation, showing improved performance compared to linear 

regression [17]. Conducted a literature review on ML-based 

software effort estimation, highlighting the trends and 

methodologies employed in the field [18]. To design mobile 

applications based on accurate effort estimations, focusing on 

early estimation techniques and efficient resource allocation 

[19]. A fuzzy approach to estimate industrial effort when 

conventional data analysis methods were not feasible [20]. In 

summary, these studies have contributed to the field of software 

development effort estimation by proposing enhanced methods, 

leveraging machine learning and deep learning techniques, 

exploring estimation in different domains, and emphasizing the 

importance of accurate and efficient estimation approaches. 

III. METHODOLOGY 

The experiment's goal is to combine the several independent 

machine learning techniques to create an ensemble model using 

the stacking generalisation ensemble method.  The necessary 

libraries and functions were imported.  After that, preprocessing 

was done on the datasets. The ensemble model is constructed, 

and all of the approaches are set up. The model is then trained 

and tested after that.  Finally, the test findings are assessed. 

The below figure 2 shows steps involved in preprocessing, 

training and testing stages of the experiment.

 

Figure 2. Description of methodology

3.1 Machine Learning Methods 

The following machine learning methods are used to a common 

data set to measure how accurately defects are predicted and 

how much effort would be required to develop high-quality 

software. The decision was made to employ any machine- 

learning approach in the proposed research based on the 

literature review. Several researchers have previously employed 

some of the following machine learning approaches for their 

research. Unfortunately, none of these methods have previously 

been utilized to predict faults and estimate work using 

sophisticated machine learning techniques. Each proposed 

contribution gives an in-depth analysis of the results obtained 

through the application of these methods to the provided 

dataset.  

3.1.1 Linear Regression (LR) 

𝐿𝑅 Linear regression (LR) is a type of predictive analysis used 

to discover the association between two continuous variables. It 

involves a statistical relationship rather than a deterministic one. 

The first type of regression analysis used in practical 

applications focuses on the probability distribution of the 
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response variable. LR is represented by a simple equation with 

one dependent variable [9], as shown in eq. 

𝜌 = 𝛽0 + 𝛽1 + 𝛾      (1) 

Here, ρ represents the predicted response variable, and γ is the 

independent variable score. LR analysis is utilized in various 

research domains, such as trend forecasting, determining the 

strength of predictors, and predicting the effects. 

3.1.2 Multiple Linear Regressions 

Multiple linear regression is a statistical technique used to 

predict the value of a response variable by establishing a linear 

relationship between the dependent (response) and independent 

(predictor) variables. This regression model involves more than 

one regression variable, and the independent variables are not 

necessarily positively correlated. The equation for multiple 

linear regression is: 

𝛾 = 𝛽0 + 𝛽1 ∗ 𝑥1 + 𝛽2 ∗ 𝑥2 + 𝛽3 ∗ 𝑥3 +⋯+ 𝛽𝑛 ∗ 𝑥𝑛  (2) 

Here, x represents the independent variables, β_0 is the 

intercept, and γ is the dependent variable. 

3.1.3 Multi-Layer Perceptron (MLP) 

A multi-layer perceptron is a preceptor made up of several 

layers, including an input layer, a yield layer, and a veiled layer, 

which contain the information sources and loads needed to start 

any hub. A series of highlights are performed by the veiled 

layer. Any problem can be solved with two buried layers, while 

highlights imply that more levels could be preferable. Through 

the yield layer, MLP can be configured to determine how to 

transform input data into a supported response. To lessen the 

assessment of the error job, the count modifies the heaps of each 

affiliation. Following a sufficient number of planning cycles in 

which this cycle is repeated, the association will typically join 

a state where the error of the assessment is minimal. The 

botched work related to the association loads is corrected, and 

the heaps are then modified to lessen the mistake. The confusion 

is represented by the squared Euclidean detachment between 

the actual yield and the required yield indicated in Eq. 

△ω = y * d * x     (3) 

d - Predicted output  

y - Learning rate, usually less than 1  

𝑥 -Input data 

3.1.4 Random Forest (RF) 

Random Forest (RF) is a machine learning method used for 

regression and classification tasks. During training, an RF 

builds a collection of decision trees and combines their outputs 

to provide a class or regression value. RF is an ensemble of tree 

predictors, where each tree predicts the target variable based on 

a random vector sampled independently. The principle behind 

RF is that a group of weak learners can combine to form a strong 

learner. It helps address overfitting issues and produces accurate 

classifiers and regressors [10]. 

3.2 Need for Intelligent ML Methods over Classical 

Methods 

Based on the "no free lunch theorem" (NFL), a single machine 

learning classification algorithm is not the ideal solution for 

Software Product Development (SPD). So, it is necessary to 

apply intelligent techniques for SPD in this manner. In the last 

few decades, several traditional software development 

approaches and measurement techniques have been suggested 

for effort estimate. These models may provide useful growth 

forecasts for reliable programming and its development. All 

existing prediction and effort models are regarded as 

outstanding. However, the solution is still in its infancy; 

standard effort models, and effort estimation are the appropriate 

methods for determining the quality of a product. The 

estimation of software efforts are essential for avoiding 

surprising results and identifying development requirements. If 

developers are able to predict these components accurately, they 

will use new intelligent ML methods for delivering reliable and 

high- quality software products in favor of statistically-based 

approaches. Using ensemble learning and intelligent boosting 

methods to estimate effort in this scenario. 

3.2.1 Ensemble Learning 

Ensemble learning is an emerging field that combines various 

aspects of developmental math, machine learning, and 

probabilistic thinking. It employs multiple models to enhance 

the stability and predictive capabilities of a single model. By 

leveraging the strengths of individual models, ensemble 

learning techniques outperform standalone models in making 

accurate predictions. 
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Figure 3. Ensemble learning model

Figure 3 visually depicts training data from the original dataset, 

a base model (decision tree) used to predict residuals, and the 

amalgamation of multiple machine learning base classifiers to 

create an ensemble learner that surpasses the performance of 

each individual classifier. It is widely acknowledged that the 

base classifiers should be both diverse and accurate. Having 

substantial and uncorrelated differences in errors among the 

base classifiers allows for error compensation between them. 

3.2.2 Bagging, Boosting and Stacking 

Bagging (Bootstrap Aggregating) and Gradient Boosting are 

two distinct ensemble learning techniques used in machine 

learning. They can be used separately or in combination, but 

they have different principles and objectives. 

1. Bagging: Bagging is an ensemble learning technique 

that aims to reduce the variance of a predictive model. 

It involves creating multiple subsets of the original 

training dataset through a process called bootstrap 

sampling. Bootstrap sampling involves randomly 

sampling the original dataset with replacement, which 

means that each subset can contain duplicate instances 

and some instances may be excluded. These subsets 

are then used to train multiple base models, such as 

decision trees, independently and in parallel. Once the 

base models are trained, predictions are made by 

aggregating the predictions of each model. For 

regression problems, the predictions are typically 

averaged, while for classification problems, majority 

voting is often used. By combining the predictions of 

multiple models, bagging can reduce the impact of 

outliers and noise in the data, leading to improved 

overall performance and generalization. 

2. Gradient Boosting: Gradient Boosting is an ensemble 

learning technique that focuses on building a strong 

predictive model by iteratively combining weak 

models. Unlike bagging, gradient boosting is a 

sequential process that builds models in a stage-wise 

manner. It aims to minimize a loss function by adding 

weak models to the ensemble, with each model 

correcting the mistakes made by the previous models. 

The process begins by training an initial weak model, 

usually a decision tree. The errors or residuals from 

this model are then calculated, representing the 

difference between the predicted and actual values. 

The subsequent weak models are trained to predict 

these residuals. In each iteration, the model is fit to the 

negative gradient of the loss function, hence the name 

"gradient boosting." The predictions from all the weak 

models are then combined to obtain the final 

prediction. To prevent over fitting, regularization 

techniques, such as shrinkage/learning rate and 

subsampling, are often used. 

3. Stacking: Stacking is a Heterogeneous Ensemble 

learning technique. It combines predictions from 

multiple machine learning algorithms and uses these 

predictions as inputs to second-level learning models 

(Meta model) to provide final prediction.  Stacking, 

also known as stacked generalization, It leverages the 

principle of model aggregation, where the predictions 

from diverse models are blended together to exploit 

their complementary strengths and mitigate individual 

model weaknesses.  
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3.2.3 Combining Bagging and Gradient Boosting  

It is possible to combine bagging and gradient boosting to create 

a powerful ensemble model. This technique, known as bagging 

with gradient boosting, involves applying bagging to the 

individual stages of the gradient boosting process. Instead of 

training a single weak model at each stage, multiple weak 

models are trained using bootstrap samples of the data. The 

predictions of these models are then combined to form the 

ensemble prediction. 

Bagging with gradient boosting can provide additional benefits 

by reducing over fitting and improving the stability of the 

gradient boosting process. It can also help in capturing different 

sources of variability in the data and enhancing the model's 

ability to generalize well. 

In summary, bagging and gradient boosting are both ensemble 

learning techniques, but they have different objectives and 

operate in distinct ways. Bagging reduces variance by training 

multiple models independently and combining their predictions, 

while gradient boosting builds a strong model by iteratively 

correcting errors using weak models. Bagging with gradient 

boosting combines these two techniques to create a more robust 

and accurate ensemble model. 

The current study focuses on techniques and methods for 

assessing out how much work needs to be done, which helps 

figure out how well a software product works [11]. With that in 

mind, this thesis shows new ways to predict effort, use the 

ensemble machine learning model, and improve the 

presentation and importance of the measure by similarity 

strategy. 

3.2.4 Evaluation Criteria 

The exhibition evaluation acquired utilizing different ensemble 

methods has been completed using various rules. To find which 

model/method is better, the accuracy of the models has be 

calculated. The estimation models is evaluated using Mean 

Absolute Error (MAE), Root mean square error (RMSE) and R 

squared score (R2 Score) metrics.  

3.2.4.1 Mean Absolute Error (MAE) 

MAE, or Mean Absolute Error, is a commonly used metric to 

evaluate the accuracy of software development effort estimation 

models. It measures the average magnitude of the errors 

between the predicted and actual effort values. The lower the 

MAE, the more accurate the estimation model. 

Mathematically, MAE is defined as: 

MAE =
∑  𝑛
𝑖=1 |𝑦𝑖−𝑥𝑖|

𝑛
=

∑  𝑛
𝑖=1 |𝑒𝑖|

𝑛
    (4) 

Where: 

• MAE is the Mean Absolute Error. 

• n is the total number of estimation instances. 

• Yi represents the predicted effort values. 

• Xi represents the actual effort values. 

MAE calculates the absolute difference between the predicted 

and actual effort for each estimation instance and then takes the 

average of these differences. 

By using MAE and statistical significance testing, we can 

evaluate the accuracy of estimation models and compare them 

to make informed decisions in software development effort 

estimation. 

3.2.4.2 Root Mean Square Error (RMSE) 

RMSE, or Root Mean Square Error, is another commonly used 

metric to evaluate the accuracy of software development effort 

estimation models. It measures the average magnitude of the 

squared errors between the predicted and actual effort values. 

Similar to MAE, a lower RMSE indicates a more accurate 

estimation model. 

Mathematically, RMSE is defined as: 

RMSE = √((1/n) * Σ(Y_pred - Y_actual)^2)   (5) 

Where: 

• RMSE is the Root Mean Square Error. 

• n is the total number of estimation instances. 

• Y_pred represents the predicted effort values. 

• Y_actual represents the actual effort values. 

RMSE calculates the squared difference between the predicted 

and actual effort for each estimation instance, takes the average 

of these squared differences, and then takes the square root of 

the result. 

We would collect the RMSE values for each estimation model 

on the same set of estimation instances and then perform the 

paired t-test. The resulting p-value will indicate whether the 

observed difference in RMSE values is statistically significant. 

RMSE, along with statistical significance testing, helps in 

evaluating the accuracy of estimation models and comparing 

them to make informed decisions in software development 

effort estimation. 

3.2.4.3 R2 Score 

R2 Score, also known as the coefficient of determination, is a 

metric used to assess the goodness of fit of a regression model 

in software development effort estimation. It indicates the 

proportion of the variance in the dependent variable (effort 

values) that can be explained by the independent variables 

(predictors) in the model. R2 Score ranges from 0 to 1, where 1 

represents a perfect fit. 
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Mathematically, R2 Score is defined as: 

R2 = 1 - (SSres / SStot)     (6) 

Where: 

• R2 is the coefficient of determination (R2 Score). 

• SSres is the sum of squared residuals or errors. 

• SStot is the total sum of squares. 

SSres measures the discrepancy between the predicted effort 

values and the actual effort values. It is calculated by summing 

the squared differences between each predicted effort value and 

its corresponding actual effort value. SStot represents the total 

variation in the actual effort values. It is calculated by summing 

the squared differences between each actual effort value and the 

mean of all actual effort values. 

IV. RESULTS AND DISCUSSION 

The goal of the project is to develop an effective effort 

estimation model on China Dataset with the different machine 

learning methods for achieving best possible accuracy level, 

optimizing software projects by estimating efforts for the same 

using machine learning techniques. The step-by-step process is 

as follows- 

This data collection that is the newest dataset in the area of 

effort estimation contains information on 499 software projects 

with 18 features belonging to various software companies and 

firms. The index description of China dataset are as follows- 

• ID          

• AFP         

• Input       

• Output      

• Enquiry    

File        

• Interface   

• Added       

• Changed     

• Deleted     

• PDR_AFP     

• PDR_UFP   

NPDR_AFP    

• NPDU_UFP    

• Resource    

• Dev.Type    

• Duration    

• N_effort    

• Effort      

Different Models has been implemented on China Dataset 

which are enlisted as follows 

• K-Neighbors 

• Decision Tree 

• Gradient Boosting 

• Random Forest 

• Extra Trees 

• MLP 

Effort estimation in software development projects is a crucial 

task that influences project planning, resource allocation, and 

project management. This paper focuses on exploring various 

machine learning algorithms for software development effort 

estimation, specifically k-neighbors, decision tree, gradient 

boosting, random forest, extra trees and multilayer perceptron 

(MLP). The paper provides a comprehensive analysis of these 

methods using equations, tables, and a comparative assessment 

to evaluate their performance in ensemble-based effort 

estimation. 

In the tuned models following methodologies have been applied 

to improve the accuracy and performance of implemented 

models. The improved machine learning methodologies has 

been applied and implemented using following steps- 

• Bagging 

• Adaboost 

• Stacking 

Ensemble methods are powerful techniques in machine learning 

that combine multiple individual models to improve predictive 

performance. Three commonly used ensemble methods are 

bagging and AdaBoost, and Stacking.  

In summary, bagging, AdaBoost, and stacking are all ensemble 

methods that combine multiple models to improve predictive 

performance. Bagging focuses on reducing variance and 

improving stability, AdaBoost emphasizes weak classifiers' 

correct predictions by adjusting sample weights, and stacking 

combines diverse models through a meta-model to leverage 

their collective strengths. These methods have been widely 

applied in various machine learning tasks, demonstrating their 

effectiveness in boosting performance and handling complex 

data patterns. 

Training and testing data with K-Fold Cross Validation 

To create model 80% training data set and 20% testing data sets. 

We split the dataset using K-fold cross validation.  In this 

approach, the data set is divided into k folds, or smaller subsets, 

and then trained on all but one (k-1) of them before the trained 

model is evaluated. In this approach, we iterate k times, each 

time reserving a new subset for testing. 

Table 1. Analysis of performance parameters with bagging ensemble machine learning methodologies. 

Methodology MAE RMSE R2_Score 

K- Neighborhood 0.7046 0.2417 0.8051 

Decision Tree 0.5591 0.1878 0.8823 

Gradient Boosting 0.5828 0.1925 0.8709 

Random Forest 0.6490 0.2089 0.8508 

Extra Trees 0.5152 0.2017 0.8646 

MLP Tuning 0.4003 0.1388 0.9268 

SVR 0.7141 0.3442 0.61 

Linear Regression 0.4453 0.1295 0.94 
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Table 2. Analysis of performance parameters with adaboost machine learning methodologies. 

Methodology MAE RMSE R2_Score 

K- Neighborhood 0.8434 0.1813 0.8906 

Decision Tree 0.801170000 0.2378 0.8117 

Gradient Boosting 0.740237124 0.1870 0.8576 

Random Forest 0.611473143 0.1993 0.8678 

Extra Trees 0.7957723 0.2068 0.8567 

MLP 0.836971437 0.1813 0.8906 

SVR 0.71412 0.2432 0.79 

Linear Regression 0.44543 0.1292 0.94 

 

Table 3. Analysis of performance parameters with stacking machine learning methodology. 

Methodology MAE RMSE R2_Score 

Stacking 0.5163 0.1586 0.9163 

 

Table 4. Comparative analysis of ensemble methods on dataset. 

Ensemble 

Method 
Bagging Adaboost Stacking 

Methodology MAE RMSE R2_Score MAE RMSE R2_Score MAE RMSE 
R2_Sco

re 

K- 

Neighborhood 

 

0.70463 0.241787 0.8051 0.843409 0.1813536 0.8906 

 

 

 

 

 

0.51627 

 

 

 

 

 

0.158620 

 

 

 

 

 

0.9163 

Decision Tree 0.55992 0.187894 0.8823 0.801170 0.2378800750 0.8117 

Gradient 

Boosting 
0.58282 0.192577 0.8709 0.740237 0.1870145038 0.8576 

Random Forest 0.64903 0.208941 0.8508 0.611473 0.1993631795 0.8678 

Extra Trees 0.51524 0.201757 0.8646 0.795772 0.2068641 0.8567 

MLP 0.40037 0.138812 0.9268 0.836971 0.1813673 0.8906 

SVR 0.7141 0.3442 0.61 0.71412 0.2432 0.79 

Linear 

Regression 

0.4453 0.1295 0.94 0.44543 0.1292 0.94 

The table provided summarizes the performance of different 

ensemble methods, namely Bagging and AdaBoost, and 

Stacking, on various regression tasks. The table includes 

evaluation metrics such as Mean Absolute Error (MAE), Root 

Mean Squared Error (RMSE), and R-squared Score (R2_Score) 

for each ensemble method and specific models used within 

those methods. 

V. CONCLUSIONS 

Analysing the values in the table, we can observe the 

performance of different models within each ensemble method. 

For example, within the Bagging ensemble method, the K-

Neighborhood model achieves an MAE of 0.70463, an RMSE 

of 0.241787, and an R2_Score of 0.8051. Similarly, other 

models such as Decision Tree, Gradient Boosting, Random 

Forest, Extra Trees, and MLP Tuning are evaluated within their 

respective ensemble methods. Comparing the metrics across 

ensemble methods, we can assess their relative performance. 

For instance, we can compare the MAE, RMSE, and R2_Score 

values of the K-Neighborhood model in Bagging and 

AdaBoost, Stacking. Additionally, comparing the performance 

of different models within each ensemble method allows us to 

understand which models are more effective for the given 

regression tasks. Overall, the table provides a comprehensive 

overview of the performance of different ensemble methods and 

models in terms of MAE, RMSE, and R2_Score. It enables us 

to compare and assess the effectiveness of the ensemble 

methods and individual models in making accurate predictions 

for the given regression tasks. Such analysis can guide the 

selection of the most suitable ensemble method or model for 

future regression problems and inform decision-making in real-

world applications. The comparative analysis suggests that 

ensemble methods improve the performance of machine 

learning methods with respect to base models. In this research 

different approaches have been presented to improve the 

performance of machine learning methodologies for SDEE. 

These methodologies include hyper parameter tuning, ensemble 

methods such as stacking, adaboost and bagging. The proposed 

methodologies have been applied on regressor methods and 

tested on datasets. The improved performance parameter 
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indicates and validates the effectiveness of ensemble methods. 

The obtained R-2 score was over 0.9163 for china dataset which 

indicates the improved performance of the proposed 

methodologies. The overall analysis and comparative 

assessment of the machine learning algorithms, hyperparameter 

tuning, and ensemble methods demonstrated the effectiveness 

of ensemble-based effort estimation for software development 

projects. By leveraging the strengths of different algorithms and 

combining their predictions, we achieved higher accuracy and 

improved project planning and management. In conclusion, this 

project contributed to the field of software development effort 

estimation by exploring and comparing various machine 

learning algorithms, optimizing their performance through 

hyperparameter tuning, and leveraging ensemble methods for 

improved accuracy. The findings can assist practitioners in 

choosing the most suitable approach based on their project 

requirements and data characteristics. Further research can 

focus on hybrid approaches, domain-specific features, and 

emerging techniques to enhance effort estimation in software 

development. 
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