
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7624

Article Received: 01 June 2023 Revised: 29 July 2023 Accepted: 09 August 2023

 238

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Numerical Simulation and Design of Ensemble

Learning Based Improved Software Development

Effort Estimation System

Rajani Kumari Gora1, Ripu Ranjan Sinha2
1Research Scholar, Computer Science, S. S. Jain Subodh P.G. College

Rajasthan Technical University, Kota

rajanigora@gmail.com
2Professor, Computer Science, S. S. Jain Subodh P.G. College

Rajasthan Technical University, Kota

drsinhacs@gmail.com

Abstract— This research paper proposes a novel approach to improving software development effort estimation by integrating ensemble

learning algorithms with numerical simulation techniques. The objective of this study is to design an ensemble learning-based software

development effort estimation system that leverages the strengths of multiple algorithms to enhance accuracy and reliability. The proposed

system combines the power of ensemble learning, which involves aggregating predictions from multiple models, with numerical simulation

techniques that enable the modelling and analysis of complex software development processes. A diverse set of software development projects

is collected, encompassing various domains, sizes, and complexities. Ensemble learning algorithms such as Random Forest, Gradient Boosting,

Bagging, and AdaBoost are selected for their ability to capture different aspects of the data and produce robust predictions. The proposed

system architecture is presented, illustrating the flow of data and components. A model training and evaluation pipeline is developed, enabling

the integration of ensemble learning and numerical simulation modules. The system combines the predictions generated by the ensemble models

with the simulation results to produce more accurate and reliable effort estimates. The experimental setup involves a comprehensive evaluation

of the proposed system. A real-world dataset comprising historical project data is utilized, and various performance metrics, including Mean

Absolute Error (MAE) and Root Mean Squared Error (RMSE), are employed to assess the effectiveness of the system. The results and analysis

demonstrate that the ensemble learning-based effort estimation system outperforms traditional techniques, showcasing its potential to enhance

project planning and resource allocation.

Keywords- Software Development, Effort Estimation, Stacking, MAE, RMSE, R2 Score.

I. INTRODUCTION

Software Effort Estimation (SEE) is one of the key tasks in

Software Project Management (SPM). It is the process of

determining the total amount of effort required to develop a

software product before initiation. The main advantage of effort

estimation is that it helps plan and predict the way to implement

software projects. However, it has been considered one of the

most difficult tasks as it plays a vital role in determining the

success of the software project. Moreover, it is essential for

being competitive in the market. Possibly, accurate prediction

helps the Project Managers (PMs) utilise the available resources

more efficiently and complete the project within the scheduled

deadline without exceeding the budget. However,

overestimating leads to the failure of the software project by

underutilizing valuable resources and losing bidding. Similarly,

underestimating causes tighter schedule deadlines, more

defects, and a loss of software quality. So, it is important to

predict the software effort more accurately and precisely.

However, it has been found that over 63 percent of the project

budgets are higher than the initial estimates. Hence, Software

Effort estimation remains one of the toughest tasks in the

software industry.

Many methods have been developed and used in estimating the

total effort. Generally, effort is commonly estimated using a

technique known as, man-power loading. According to this

technique, the effort is expressed as a function of number of

engineering ways and management approaches required to

develop a software product. At the initial stage of effort

estimation, it is important to consider the project feasibility as

the data’s collected during the initial period of a software life-

cycle is imprecise and unsure. Although accurate prediction is

critical, it is extremely difficult to determine in the initial stage.

Typically, effort estimation is done using the four activities

shown in Figure 1.

http://www.ijritcc.org/
mailto:rajanigora@gmail.com

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7624

Article Received: 01 June 2023 Revised: 29 July 2023 Accepted: 09 August 2023

 239

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Figure 1. Estimation approaches

 As shown in Figure 1, the project managers divide the whole

project into smaller modules which is further divided into sub-

modules during the requirement analysis of the project. Then,

they form project teams satisfying all criteria for the project

with experienced members. Each module of the project is

assigned to specific team, and they compute the effort needed

to complete the module. Based on the effort required for a

module, the overall budget is estimated.

This study explores a variety of estimating methods, including

Machine Learning, algorithmic models, Function Point, Top-

Down, Bottom-Up, and Expert estimation. In the modern world,

neural networks, COCOMO, and planning poker are frequently

used.

Researchers have looked into the application of machine

learning techniques in effort estimation to address these

limitations. In order to anticipate the amount of work required,

machine learning algorithms can analyse historical project data,

spot patterns, and gain expertise from previous projects. Recent

years have seen an increase in interest in ensemble learning, a

method that integrates numerous models to create predictions.

By combining the advantages of various models and

minimising the weaknesses of individual algorithms, ensemble

learning has proven to increase accuracy and robustness.

In addition to machine learning, numerical simulation

techniques have shown promise in modeling and analyzing

complex systems. Simulation allows for the representation of

real-world processes, considering uncertainties and variations

that occur during project execution. By simulating the software

development process, it becomes possible to generate insights

into the potential outcomes, identify bottlenecks, and evaluate

different scenarios.

This research paper proposes a novel approach to improve

software development effort estimation by integrating ensemble

learning algorithms with numerical simulation techniques. The

objective is to design an ensemble learning-based effort

estimation system that leverages the power of multiple

algorithms and incorporates the dynamic nature of software

development processes.

The primary aim of this research is to enhance the accuracy and

reliability of effort estimation, ultimately leading to better

project planning and resource allocation. By combining

ensemble learning algorithms with numerical simulation, the

proposed system seeks to address the limitations of traditional

estimation techniques and provide more robust predictions.

To achieve this objective, a comprehensive methodology will

be developed. This methodology will involve collecting and

preprocessing a diverse set of software development project

data, encompassing various domains, sizes, and complexities.

Ensemble learning algorithms such as Random Forest, Gradient

Boosting, Bagging, and AdaBoost will be employed to capture

different aspects of the data and produce accurate predictions.

Furthermore, the integration of numerical simulation techniques

will enable the modeling and analysis of the dynamic aspects of

the software development process. Monte Carlo Simulation and

Discrete Event Simulation methods will be utilized to consider

uncertainties and variations that occur during project execution.

The experimental setup will involve evaluating the proposed

system using a real-world dataset comprising historical project

data. Various performance metrics, including Mean Absolute

Error (MAE) and Root Mean Squared Error (RMSE), and

R2will be employed to assess the effectiveness of the system in

comparison to traditional estimation techniques. The results and

analysis will demonstrate the system's ability to improve effort

estimation accuracy and reliability.

In conclusion, this research aims to address the challenges of

software development effort estimation by proposing a novel

approach that combines ensemble learning algorithms with

numerical simulation techniques. The integration of these

techniques seeks to enhance accuracy, robustness, and the

ability to capture uncertainties in the estimation process. The

outcomes of this research will contribute to better project

planning and resource allocation in software development

projects, ultimately improving the success rates and outcomes

of software development endeavors.

II. RELATED WORKS

Software development effort estimation (SDEE) is the process

of estimating amount of work necessary to construct a software

system. SDEE is a subfield of software effort estimation which

takes into account estimates for both software development and

software maintenance. Researchers sometimes use the words

"software cost estimation" and "software effort estimation"

interchangeably, despite the fact that effort contributes only a

little amount to total software cost. Predicting development

Divide Complete Project into Small Task

Assign Each Task to Project Team Members

Estimate the Effort which needed for completion of Task

Validate the Estimation

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7624

Article Received: 01 June 2023 Revised: 29 July 2023 Accepted: 09 August 2023

 240

IJRITCC | September 2023, Available @ http://www.ijritcc.org

work properly in early stages of software life cycle is essential

for good project management. In SDEE sector, various

estimating approaches have been suggested since 1980s. In their

study, Jrgensen and Shepperd found that there are as many as

11 different methods for measuring SDEE. It is observed that

regression-based methods predominate but utilize of expert

opinion and analogy methods is on the rise. Interest in SDEE

studies has increased in recent years, particularly in those that

employ ML (machine learning) based methodologies. In fact,

ML-based methods are regarded by several experts as one of the

top 3 estimating methods (other two are expert judgement and

algorithmic model).

In field of software development, estimating software projects

is the most difficult undertaking. There will be no appropriate

planning and management of software development projects if

accurate and dependable estimates are not supplied. Even when

all relevant elements are considered during software

development process, project estimates are not always correct.

It does not leverage estimations to improve software

development. When a project is underestimated, consequences,

including inadequate quality assurance efforts, insufficient

manpower, and missed deadlines, result in a loss of confidence

[1]. The estimation of a software project is required in order to

account for underestimations and overestimations in terms of

cost, effort, etc. More resources than a project needs will be

employed, driving up product pricing; hence accurate

estimation is essential. In spite of vast amount of empirical

studies on ML models, contradictory result has been reported

on estimation accuracy of ML models, comparisons among

non-ML models or ML models, and differences across ML

models. For example, it has been pointed out that the accuracy

of estimates changes when same ML model is built using many

different historical project data sets or experimental designs.

Research published claims that the ML model is more

effective than regression model, whereas research published

concludes that regression approach is more successful.

Comparing various ML models (such as ANN and case-based

reasoning), research indicated which former outperformed

latter, whilst a study found opposite conclusions [2]. The time

and energy spent by developers is the most valuable asset for

most software projects, and how that asset is divided may have

a considerable impact on the project's timeframe and budget. In

order to successfully complete a single instance of a project, it

is crucial to be able to estimate necessary developer effort in

advance and alter these estimates during project's life cycle.

Inaccurate (often overoptimistic) work estimates are a common

reason for projects to fail [3] have clear ramifications for the

organization's overall performance. As a consequence, effort

estimating has been subjected to many studies over past few

decades, with the aim of evaluating and improving existing

estimation methods, as well as developing wholly new ones [4].

Historically, most prevalent estimating technique has been

some variation of expert estimation, i.e., relying on human

subject matter experts to examine pertinent data and provide an

estimate. Moreover, data-driven solutions have been created,

although their implementation in practice is uncommon for a

variety of reasons. Among these data-driven strategies are

several ML algorithms [5]. The application of ML techniques

to this issue domain is not a new phenomenon; research in this

direction has been undertaken rather continuously over past few

decades, far before present AI- related research boom.

In context of software development, estimating is understood to

mean making educated guesses about unknown quantities such

as money and time spent. Estimate is a crucial aspect of

software project management since it impacts both client and

developer sides. If the estimate is accurate, development can be

planned, progress can be tracked, and customer can negotiate

price and completion date. However, as the leading cause of

software failure is erroneous estimation of vital characteristics,

estimating becomes a crucial and essential duty in predicting

the dependability of software [6].

An enhanced method for Scrum-based Agile projects

using 36 success indicators, resulting in more cost-effective and

efficient outcomes [7]. A utilized pre-trained embedding

models to improve textual requirements gathering for effort

estimation, achieving reliable and efficient results [8]. Applied

machine learning and deep learning techniques to predict

hardware development tasks' duration, demonstrating the

applicability of software effort estimation in the hardware

sector [9]. A TLBO-guided TABE system for more accurate

work estimates, achieving reduced mean absolute residue

(MAR) and mean magnitude of relative error (MMRE) values

[10]. Developed models for agile project time and effort

estimation based on initial software requirements, showing

improved accuracy when integrating application domain groups

and peak employees [11]. Identified causal factors affecting

effort estimation and proposed an Extreme Learning Machine

(ELM) model with superior performance in software design

effort estimation [12]. Artificial Neural Networks (ANN)

estimation approaches outperformed conventional methods,

highlighting the importance of comparing and contrasting

different estimation methodologies [13]. Conducted empirical

interviews to investigate estimation methods used by financially

sound firms, emphasizing the need for suitable estimation

methods and control [14]. Compared various ANN models and

found that they provided more accurate estimates compared to

traditional approaches such as Use-case methods, Function

point, and COCOMO [15]. A continuous simulation to enhance

project work estimation, enabling better understanding of effort

ranges and risk management decisions [16]. Developed a non-

linear approach using Multi-Layer Perceptron’s for effort

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7624

Article Received: 01 June 2023 Revised: 29 July 2023 Accepted: 09 August 2023

 241

IJRITCC | September 2023, Available @ http://www.ijritcc.org

estimation, showing improved performance compared to linear

regression [17]. Conducted a literature review on ML-based

software effort estimation, highlighting the trends and

methodologies employed in the field [18]. To design mobile

applications based on accurate effort estimations, focusing on

early estimation techniques and efficient resource allocation

[19]. A fuzzy approach to estimate industrial effort when

conventional data analysis methods were not feasible [20]. In

summary, these studies have contributed to the field of software

development effort estimation by proposing enhanced methods,

leveraging machine learning and deep learning techniques,

exploring estimation in different domains, and emphasizing the

importance of accurate and efficient estimation approaches.

III. METHODOLOGY

The experiment's goal is to combine the several independent

machine learning techniques to create an ensemble model using

the stacking generalisation ensemble method. The necessary

libraries and functions were imported. After that, preprocessing

was done on the datasets. The ensemble model is constructed,

and all of the approaches are set up. The model is then trained

and tested after that. Finally, the test findings are assessed.

The below figure 2 shows steps involved in preprocessing,

training and testing stages of the experiment.

Figure 2. Description of methodology

3.1 Machine Learning Methods

The following machine learning methods are used to a common

data set to measure how accurately defects are predicted and

how much effort would be required to develop high-quality

software. The decision was made to employ any machine-

learning approach in the proposed research based on the

literature review. Several researchers have previously employed

some of the following machine learning approaches for their

research. Unfortunately, none of these methods have previously

been utilized to predict faults and estimate work using

sophisticated machine learning techniques. Each proposed

contribution gives an in-depth analysis of the results obtained

through the application of these methods to the provided

dataset.

3.1.1 Linear Regression (LR)

𝐿𝑅 Linear regression (LR) is a type of predictive analysis used

to discover the association between two continuous variables. It

involves a statistical relationship rather than a deterministic one.

The first type of regression analysis used in practical

applications focuses on the probability distribution of the

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7624

Article Received: 01 June 2023 Revised: 29 July 2023 Accepted: 09 August 2023

 242

IJRITCC | September 2023, Available @ http://www.ijritcc.org

response variable. LR is represented by a simple equation with

one dependent variable [9], as shown in eq.

𝜌 = 𝛽0 + 𝛽1 + 𝛾 (1)

Here, ρ represents the predicted response variable, and γ is the

independent variable score. LR analysis is utilized in various

research domains, such as trend forecasting, determining the

strength of predictors, and predicting the effects.

3.1.2 Multiple Linear Regressions

Multiple linear regression is a statistical technique used to

predict the value of a response variable by establishing a linear

relationship between the dependent (response) and independent

(predictor) variables. This regression model involves more than

one regression variable, and the independent variables are not

necessarily positively correlated. The equation for multiple

linear regression is:

𝛾 = 𝛽0 + 𝛽1 ∗ 𝑥1 + 𝛽2 ∗ 𝑥2 + 𝛽3 ∗ 𝑥3 +⋯+ 𝛽𝑛 ∗ 𝑥𝑛 (2)

Here, x represents the independent variables, β_0 is the

intercept, and γ is the dependent variable.

3.1.3 Multi-Layer Perceptron (MLP)

A multi-layer perceptron is a preceptor made up of several

layers, including an input layer, a yield layer, and a veiled layer,

which contain the information sources and loads needed to start

any hub. A series of highlights are performed by the veiled

layer. Any problem can be solved with two buried layers, while

highlights imply that more levels could be preferable. Through

the yield layer, MLP can be configured to determine how to

transform input data into a supported response. To lessen the

assessment of the error job, the count modifies the heaps of each

affiliation. Following a sufficient number of planning cycles in

which this cycle is repeated, the association will typically join

a state where the error of the assessment is minimal. The

botched work related to the association loads is corrected, and

the heaps are then modified to lessen the mistake. The confusion

is represented by the squared Euclidean detachment between

the actual yield and the required yield indicated in Eq.

△ω = y * d * x (3)

d - Predicted output

y - Learning rate, usually less than 1

𝑥 -Input data

3.1.4 Random Forest (RF)

Random Forest (RF) is a machine learning method used for

regression and classification tasks. During training, an RF

builds a collection of decision trees and combines their outputs

to provide a class or regression value. RF is an ensemble of tree

predictors, where each tree predicts the target variable based on

a random vector sampled independently. The principle behind

RF is that a group of weak learners can combine to form a strong

learner. It helps address overfitting issues and produces accurate

classifiers and regressors [10].

3.2 Need for Intelligent ML Methods over Classical

Methods

Based on the "no free lunch theorem" (NFL), a single machine

learning classification algorithm is not the ideal solution for

Software Product Development (SPD). So, it is necessary to

apply intelligent techniques for SPD in this manner. In the last

few decades, several traditional software development

approaches and measurement techniques have been suggested

for effort estimate. These models may provide useful growth

forecasts for reliable programming and its development. All

existing prediction and effort models are regarded as

outstanding. However, the solution is still in its infancy;

standard effort models, and effort estimation are the appropriate

methods for determining the quality of a product. The

estimation of software efforts are essential for avoiding

surprising results and identifying development requirements. If

developers are able to predict these components accurately, they

will use new intelligent ML methods for delivering reliable and

high- quality software products in favor of statistically-based

approaches. Using ensemble learning and intelligent boosting

methods to estimate effort in this scenario.

3.2.1 Ensemble Learning

Ensemble learning is an emerging field that combines various

aspects of developmental math, machine learning, and

probabilistic thinking. It employs multiple models to enhance

the stability and predictive capabilities of a single model. By

leveraging the strengths of individual models, ensemble

learning techniques outperform standalone models in making

accurate predictions.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7624

Article Received: 01 June 2023 Revised: 29 July 2023 Accepted: 09 August 2023

 243

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Figure 3. Ensemble learning model

Figure 3 visually depicts training data from the original dataset,

a base model (decision tree) used to predict residuals, and the

amalgamation of multiple machine learning base classifiers to

create an ensemble learner that surpasses the performance of

each individual classifier. It is widely acknowledged that the

base classifiers should be both diverse and accurate. Having

substantial and uncorrelated differences in errors among the

base classifiers allows for error compensation between them.

3.2.2 Bagging, Boosting and Stacking

Bagging (Bootstrap Aggregating) and Gradient Boosting are

two distinct ensemble learning techniques used in machine

learning. They can be used separately or in combination, but

they have different principles and objectives.

1. Bagging: Bagging is an ensemble learning technique

that aims to reduce the variance of a predictive model.

It involves creating multiple subsets of the original

training dataset through a process called bootstrap

sampling. Bootstrap sampling involves randomly

sampling the original dataset with replacement, which

means that each subset can contain duplicate instances

and some instances may be excluded. These subsets

are then used to train multiple base models, such as

decision trees, independently and in parallel. Once the

base models are trained, predictions are made by

aggregating the predictions of each model. For

regression problems, the predictions are typically

averaged, while for classification problems, majority

voting is often used. By combining the predictions of

multiple models, bagging can reduce the impact of

outliers and noise in the data, leading to improved

overall performance and generalization.

2. Gradient Boosting: Gradient Boosting is an ensemble

learning technique that focuses on building a strong

predictive model by iteratively combining weak

models. Unlike bagging, gradient boosting is a

sequential process that builds models in a stage-wise

manner. It aims to minimize a loss function by adding

weak models to the ensemble, with each model

correcting the mistakes made by the previous models.

The process begins by training an initial weak model,

usually a decision tree. The errors or residuals from

this model are then calculated, representing the

difference between the predicted and actual values.

The subsequent weak models are trained to predict

these residuals. In each iteration, the model is fit to the

negative gradient of the loss function, hence the name

"gradient boosting." The predictions from all the weak

models are then combined to obtain the final

prediction. To prevent over fitting, regularization

techniques, such as shrinkage/learning rate and

subsampling, are often used.

3. Stacking: Stacking is a Heterogeneous Ensemble

learning technique. It combines predictions from

multiple machine learning algorithms and uses these

predictions as inputs to second-level learning models

(Meta model) to provide final prediction. Stacking,

also known as stacked generalization, It leverages the

principle of model aggregation, where the predictions

from diverse models are blended together to exploit

their complementary strengths and mitigate individual

model weaknesses.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7624

Article Received: 01 June 2023 Revised: 29 July 2023 Accepted: 09 August 2023

 244

IJRITCC | September 2023, Available @ http://www.ijritcc.org

3.2.3 Combining Bagging and Gradient Boosting

It is possible to combine bagging and gradient boosting to create

a powerful ensemble model. This technique, known as bagging

with gradient boosting, involves applying bagging to the

individual stages of the gradient boosting process. Instead of

training a single weak model at each stage, multiple weak

models are trained using bootstrap samples of the data. The

predictions of these models are then combined to form the

ensemble prediction.

Bagging with gradient boosting can provide additional benefits

by reducing over fitting and improving the stability of the

gradient boosting process. It can also help in capturing different

sources of variability in the data and enhancing the model's

ability to generalize well.

In summary, bagging and gradient boosting are both ensemble

learning techniques, but they have different objectives and

operate in distinct ways. Bagging reduces variance by training

multiple models independently and combining their predictions,

while gradient boosting builds a strong model by iteratively

correcting errors using weak models. Bagging with gradient

boosting combines these two techniques to create a more robust

and accurate ensemble model.

The current study focuses on techniques and methods for

assessing out how much work needs to be done, which helps

figure out how well a software product works [11]. With that in

mind, this thesis shows new ways to predict effort, use the

ensemble machine learning model, and improve the

presentation and importance of the measure by similarity

strategy.

3.2.4 Evaluation Criteria

The exhibition evaluation acquired utilizing different ensemble

methods has been completed using various rules. To find which

model/method is better, the accuracy of the models has be

calculated. The estimation models is evaluated using Mean

Absolute Error (MAE), Root mean square error (RMSE) and R

squared score (R2 Score) metrics.

3.2.4.1 Mean Absolute Error (MAE)

MAE, or Mean Absolute Error, is a commonly used metric to

evaluate the accuracy of software development effort estimation

models. It measures the average magnitude of the errors

between the predicted and actual effort values. The lower the

MAE, the more accurate the estimation model.

Mathematically, MAE is defined as:

MAE =
∑  𝑛
𝑖=1 |𝑦𝑖−𝑥𝑖|

𝑛
=

∑  𝑛
𝑖=1 |𝑒𝑖|

𝑛
 (4)

Where:

• MAE is the Mean Absolute Error.

• n is the total number of estimation instances.

• Yi represents the predicted effort values.

• Xi represents the actual effort values.

MAE calculates the absolute difference between the predicted

and actual effort for each estimation instance and then takes the

average of these differences.

By using MAE and statistical significance testing, we can

evaluate the accuracy of estimation models and compare them

to make informed decisions in software development effort

estimation.

3.2.4.2 Root Mean Square Error (RMSE)

RMSE, or Root Mean Square Error, is another commonly used

metric to evaluate the accuracy of software development effort

estimation models. It measures the average magnitude of the

squared errors between the predicted and actual effort values.

Similar to MAE, a lower RMSE indicates a more accurate

estimation model.

Mathematically, RMSE is defined as:

RMSE = √((1/n) * Σ(Y_pred - Y_actual)^2) (5)

Where:

• RMSE is the Root Mean Square Error.

• n is the total number of estimation instances.

• Y_pred represents the predicted effort values.

• Y_actual represents the actual effort values.

RMSE calculates the squared difference between the predicted

and actual effort for each estimation instance, takes the average

of these squared differences, and then takes the square root of

the result.

We would collect the RMSE values for each estimation model

on the same set of estimation instances and then perform the

paired t-test. The resulting p-value will indicate whether the

observed difference in RMSE values is statistically significant.

RMSE, along with statistical significance testing, helps in

evaluating the accuracy of estimation models and comparing

them to make informed decisions in software development

effort estimation.

3.2.4.3 R2 Score

R2 Score, also known as the coefficient of determination, is a

metric used to assess the goodness of fit of a regression model

in software development effort estimation. It indicates the

proportion of the variance in the dependent variable (effort

values) that can be explained by the independent variables

(predictors) in the model. R2 Score ranges from 0 to 1, where 1

represents a perfect fit.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7624

Article Received: 01 June 2023 Revised: 29 July 2023 Accepted: 09 August 2023

 245

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Mathematically, R2 Score is defined as:

R2 = 1 - (SSres / SStot) (6)

Where:

• R2 is the coefficient of determination (R2 Score).

• SSres is the sum of squared residuals or errors.

• SStot is the total sum of squares.

SSres measures the discrepancy between the predicted effort

values and the actual effort values. It is calculated by summing

the squared differences between each predicted effort value and

its corresponding actual effort value. SStot represents the total

variation in the actual effort values. It is calculated by summing

the squared differences between each actual effort value and the

mean of all actual effort values.

IV. RESULTS AND DISCUSSION

The goal of the project is to develop an effective effort

estimation model on China Dataset with the different machine

learning methods for achieving best possible accuracy level,

optimizing software projects by estimating efforts for the same

using machine learning techniques. The step-by-step process is

as follows-

This data collection that is the newest dataset in the area of

effort estimation contains information on 499 software projects

with 18 features belonging to various software companies and

firms. The index description of China dataset are as follows-

• ID

• AFP

• Input

• Output

• Enquiry

File

• Interface

• Added

• Changed

• Deleted

• PDR_AFP

• PDR_UFP

NPDR_AFP

• NPDU_UFP

• Resource

• Dev.Type

• Duration

• N_effort

• Effort

Different Models has been implemented on China Dataset

which are enlisted as follows

• K-Neighbors

• Decision Tree

• Gradient Boosting

• Random Forest

• Extra Trees

• MLP

Effort estimation in software development projects is a crucial

task that influences project planning, resource allocation, and

project management. This paper focuses on exploring various

machine learning algorithms for software development effort

estimation, specifically k-neighbors, decision tree, gradient

boosting, random forest, extra trees and multilayer perceptron

(MLP). The paper provides a comprehensive analysis of these

methods using equations, tables, and a comparative assessment

to evaluate their performance in ensemble-based effort

estimation.

In the tuned models following methodologies have been applied

to improve the accuracy and performance of implemented

models. The improved machine learning methodologies has

been applied and implemented using following steps-

• Bagging

• Adaboost

• Stacking

Ensemble methods are powerful techniques in machine learning

that combine multiple individual models to improve predictive

performance. Three commonly used ensemble methods are

bagging and AdaBoost, and Stacking.

In summary, bagging, AdaBoost, and stacking are all ensemble

methods that combine multiple models to improve predictive

performance. Bagging focuses on reducing variance and

improving stability, AdaBoost emphasizes weak classifiers'

correct predictions by adjusting sample weights, and stacking

combines diverse models through a meta-model to leverage

their collective strengths. These methods have been widely

applied in various machine learning tasks, demonstrating their

effectiveness in boosting performance and handling complex

data patterns.

Training and testing data with K-Fold Cross Validation

To create model 80% training data set and 20% testing data sets.

We split the dataset using K-fold cross validation. In this

approach, the data set is divided into k folds, or smaller subsets,

and then trained on all but one (k-1) of them before the trained

model is evaluated. In this approach, we iterate k times, each

time reserving a new subset for testing.

Table 1. Analysis of performance parameters with bagging ensemble machine learning methodologies.

Methodology MAE RMSE R2_Score

K- Neighborhood 0.7046 0.2417 0.8051

Decision Tree 0.5591 0.1878 0.8823

Gradient Boosting 0.5828 0.1925 0.8709

Random Forest 0.6490 0.2089 0.8508

Extra Trees 0.5152 0.2017 0.8646

MLP Tuning 0.4003 0.1388 0.9268

SVR 0.7141 0.3442 0.61

Linear Regression 0.4453 0.1295 0.94

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7624

Article Received: 01 June 2023 Revised: 29 July 2023 Accepted: 09 August 2023

 246

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Table 2. Analysis of performance parameters with adaboost machine learning methodologies.

Methodology MAE RMSE R2_Score

K- Neighborhood 0.8434 0.1813 0.8906

Decision Tree 0.801170000 0.2378 0.8117

Gradient Boosting 0.740237124 0.1870 0.8576

Random Forest 0.611473143 0.1993 0.8678

Extra Trees 0.7957723 0.2068 0.8567

MLP 0.836971437 0.1813 0.8906

SVR 0.71412 0.2432 0.79

Linear Regression 0.44543 0.1292 0.94

Table 3. Analysis of performance parameters with stacking machine learning methodology.

Methodology MAE RMSE R2_Score

Stacking 0.5163 0.1586 0.9163

Table 4. Comparative analysis of ensemble methods on dataset.

Ensemble

Method
Bagging Adaboost Stacking

Methodology MAE RMSE R2_Score MAE RMSE R2_Score MAE RMSE
R2_Sco

re

K-

Neighborhood

0.70463 0.241787 0.8051 0.843409 0.1813536 0.8906

0.51627

0.158620

0.9163

Decision Tree 0.55992 0.187894 0.8823 0.801170 0.2378800750 0.8117

Gradient

Boosting
0.58282 0.192577 0.8709 0.740237 0.1870145038 0.8576

Random Forest 0.64903 0.208941 0.8508 0.611473 0.1993631795 0.8678

Extra Trees 0.51524 0.201757 0.8646 0.795772 0.2068641 0.8567

MLP 0.40037 0.138812 0.9268 0.836971 0.1813673 0.8906

SVR 0.7141 0.3442 0.61 0.71412 0.2432 0.79

Linear

Regression

0.4453 0.1295 0.94 0.44543 0.1292 0.94

The table provided summarizes the performance of different

ensemble methods, namely Bagging and AdaBoost, and

Stacking, on various regression tasks. The table includes

evaluation metrics such as Mean Absolute Error (MAE), Root

Mean Squared Error (RMSE), and R-squared Score (R2_Score)

for each ensemble method and specific models used within

those methods.

V. CONCLUSIONS

Analysing the values in the table, we can observe the

performance of different models within each ensemble method.

For example, within the Bagging ensemble method, the K-

Neighborhood model achieves an MAE of 0.70463, an RMSE

of 0.241787, and an R2_Score of 0.8051. Similarly, other

models such as Decision Tree, Gradient Boosting, Random

Forest, Extra Trees, and MLP Tuning are evaluated within their

respective ensemble methods. Comparing the metrics across

ensemble methods, we can assess their relative performance.

For instance, we can compare the MAE, RMSE, and R2_Score

values of the K-Neighborhood model in Bagging and

AdaBoost, Stacking. Additionally, comparing the performance

of different models within each ensemble method allows us to

understand which models are more effective for the given

regression tasks. Overall, the table provides a comprehensive

overview of the performance of different ensemble methods and

models in terms of MAE, RMSE, and R2_Score. It enables us

to compare and assess the effectiveness of the ensemble

methods and individual models in making accurate predictions

for the given regression tasks. Such analysis can guide the

selection of the most suitable ensemble method or model for

future regression problems and inform decision-making in real-

world applications. The comparative analysis suggests that

ensemble methods improve the performance of machine

learning methods with respect to base models. In this research

different approaches have been presented to improve the

performance of machine learning methodologies for SDEE.

These methodologies include hyper parameter tuning, ensemble

methods such as stacking, adaboost and bagging. The proposed

methodologies have been applied on regressor methods and

tested on datasets. The improved performance parameter

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7624

Article Received: 01 June 2023 Revised: 29 July 2023 Accepted: 09 August 2023

 247

IJRITCC | September 2023, Available @ http://www.ijritcc.org

indicates and validates the effectiveness of ensemble methods.

The obtained R-2 score was over 0.9163 for china dataset which

indicates the improved performance of the proposed

methodologies. The overall analysis and comparative

assessment of the machine learning algorithms, hyperparameter

tuning, and ensemble methods demonstrated the effectiveness

of ensemble-based effort estimation for software development

projects. By leveraging the strengths of different algorithms and

combining their predictions, we achieved higher accuracy and

improved project planning and management. In conclusion, this

project contributed to the field of software development effort

estimation by exploring and comparing various machine

learning algorithms, optimizing their performance through

hyperparameter tuning, and leveraging ensemble methods for

improved accuracy. The findings can assist practitioners in

choosing the most suitable approach based on their project

requirements and data characteristics. Further research can

focus on hybrid approaches, domain-specific features, and

emerging techniques to enhance effort estimation in software

development.

REFERENCES

[1] S. Dragicevic, S. Celar, And M. Turic,-Bayesian Network

Model For Task Effort Estimation In Agile Software

Development, J. Syst. Softw., (2017), Doi:

10.1016/J.Jss.2017.01.027.

[2] J. Wen, S. Li, Z. Lin, Y. Hu, And C. Huang, -Systematic

Literature Review Of Machine Learning Based Software

Development Effort Estimation Models, Information And

Software Technology. (2012). Doi:

10.1016/J.Infsof.2011.09.002.

[3] P. Pospieszny, B. Czarnacka-Chrobot, And A. Kobylinski, -An

Effective Approach For Software Project Effort And Duration

Estimation With Machine Learning Algorithms, J. Syst. Softw.,

(2018), Doi: 10.1016/J.Jss.2017.11.066.

[4] A. Trendowicz, J. Münch, And R. Jeffery, “State Of The

Practice In Software Effort Estimation: A Survey And

Literature Review,” (2011). Doi: 10.1007/978-3-642-22386-

0_18.

[5] M. Vyas And N. Hemrajani, -Predicting Effort Of Agile

Software Projects Using Linear Regression, Ridge Regression

And Logistic Regression, Int. J. Tech. Phys. Probl. Eng., (2021).

[6] P. L. Braga, A. L. I. Oliveira, And S. R. L. Meira, -Software

Effort Estimation Using Machine Learning Techniques With

Robust Confidence Intervals, Pp. 352– 357, (2008), Doi:

10.1109/His.2007.56.

[7] N. Govil And A. Sharma, -Estimation Of Cost And

Development Effort In Scrum-Based Software Projects

Considering Dimensional Success Factors, Adv. Eng. Softw.,

Vol. 172, P. 103209, (2022), Doi:

Https://Doi.Org/10.1016/J.Advengsoft.2022.103209.

[8] E. M. De Bortoli Fávero, D. Casanova, And A. R. Pimentel, -

Se3m: A Model For Software Effort Estimation Using Pre-

Trained Embedding Models, Inf. Softw. Technol., Vol. 147, P.

106886, (2022), Doi:

Https://Doi.Org/10.1016/J.Infsof.2022.106886.

[9] H.-C. Jang And S.-C. Wu, -Tracking Of Hardware

Development Schedule Based On Software Effort Estimation,

In 2022 Ieee 13th Annual Information Technology, Electronics

And Mobile Communication Conference (Iemcon), Pp. 305–

310 (2022). Doi: 10.1109/Iemcon56893.2022.9946524.

[10] P. Manchala And M. Bisi, -Ensembling Teaching-Learning-

Based Optimization Algorithmwith Analogy-Based Estimation

To Predict Software Development Effort, In 2022 13th

International Conference On Computing Communication And

Networking Technologies (Icccnt), Pp. 1–7. (2022) Doi:

10.1109/Icccnt54827.2022.9984558.

[11] W. Rosa, B. K. Clark, R. Madachy, And B. W. Boehm, -

Empirical Effort And Schedule Estimation Models For Agile

Processes In The Us Dod, Ieee Trans. Softw. Eng., (2022), Doi:

10.1109/Tse.2021.3080666.

[12] H. D. P. De Carvalho, R. Fagundes, And W. Santos, -Extreme

Learning Machine Applied To Software Development Effort

Estimation, Ieee Access, (2021), Doi:

10.1109/Access.2021.3091313.

[13] L. Lazic, -Artificial Neural Network Architectures And

Orthogonal Arrays In Estimation Of Software Projects Efforts

Estimation : Plenary Talk, In 2021 Ieee 19th International

Symposium On Intelligent Systems And Informatics (Sisy), Pp.

13–14. (2021) Doi: 10.1109/Sisy52375.2021.9582466.

[14] T. Vera, S. F. Ochoa, And D. Perovich, Development Effort

Estimation Practices In Small Software Companies: An

Exploratory Study, (2020). Doi:

10.1109/Sccc51225.2020.9281161.

[15] P. S. Kumar, H. S. Behera, K. Anisha Kumari, J. Nayak, And

B. Naik, -Advancement From Neural Networks To Deep

Learning In Software Effort Estimation: Perspective Of Two

Decades, Computer Science Review. (2020). Doi:

10.1016/J.Cosrev.2020.100288.

[16] J. Z. Gomes, J. L. Montenegro, J. V. Canto Dos Santos, J. L. V.

Barbosa, And C. A. Costa, -A Strategy Using Continuous

Simulation To Mitigate Effort Estimation Risks In Software

Projects, Ieee Lat. Am. Trans., (2019), Doi:

10.1109/Tla.2019.8932373.

[17] S. Goyal And P. K. Bhatia, -A Non-Linear Technique For

Effective Software Effort Estimation Using Multi-Layer

Perceptrons, In 2019 International Conference On Machine

Learning, Big Data, Cloud And Parallel Computing

(Comitcon), Pp. 1–4. (2019) Doi:

10.1109/Comitcon.2019.8862256.

[18] P. Sharma And J. Singh, -Systematic Literature Review On

Software Effort Estimation Using Machine Learning

Approaches, (2018). Doi: 10.1109/Icngcis.2017.33.

[19] G. Catolino, -Effort-Oriented Methods And Tools For Software

Development And Maintenance For Mobile Apps, (2018). Doi:

10.1145/3183440.3183457.

[20] A. Saini, L. Ahuja, And S. K. Khatri, -Effort Estimation Of

Agile Development Using Fuzzy Logic, (2018). Doi:

10.1109/Icrito.2018.8748381.

[21] Bhawana Verma, S. K.A. (2019). Design & Analysis of

Cost Estimation for New Mobile-COCOMO Tool for Mobile

http://www.ijritcc.org/
https://doi.org/10.1016/j.advengsoft.2022.103209
https://doi.org/10.1016/j.infsof.2022.106886

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7624

Article Received: 01 June 2023 Revised: 29 July 2023 Accepted: 09 August 2023

 248

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Application. International Journal on Recent and Innovation

Trends in Computing and Communication, 7(1), 27–34.

https://doi.org/10.17762/ijritcc.v7i1.5222

[22] S. K.A., Raj, A. ., Sharma, V., & Kumar, V. (2022). Simulation

and Analysis of Hand Gesture Recognition for Indian Sign

Language using CNN. International Journal on Recent and

Innovation Trends in Computing and Communication, 10(4),

10–14. https://doi.org/10.17762/ijritcc.v10i4.5556.

[23] Najneen Qureshi, Manish Kumar Mukhija and Satish Kumar,

"RAFI: Parallel Dynamic Test-suite Reduction for Software",

New Frontiers in Communication and Intelligent Systems,

SCRS, India, 2021, pp. 165-176. https://doi.org/10.52458/978-

81-95502-00-4-20.

http://www.ijritcc.org/
https://doi.org/10.17762/ijritcc.v7i1.5222
https://doi.org/10.17762/ijritcc.v10i4.5556
https://doi.org/10.52458/978-81-95502-00-4-20
https://doi.org/10.52458/978-81-95502-00-4-20

