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 Abstract—People spend most of their time indoors by choice or by need. Carbon dioxide (CO2) accumulation can cause various adverse 

health effects, including vertigo, headache, and fatigue. Therefore, monitoring indoor air quality(IAQ) is necessary for various health reasons. 

The market is flooded with air quality monitoring devices. However, the ordinary public does not make use of them because they are expensive 

and difficult to obtain. Several research studies have been carried out to monitor indoor air quality with the help of the Internet of Things(IoT), 

which has greatly simplified the method for monitoring IAQ. In this research, we offer an improved IoT based IAQ monitoring system with 

AI-powered recommendations. Our suggested system relies on the Message Queuing Telemetry Transport(MQTT) protocol for communication 

between IoT devices. In addition, the gathered CO2 occupancy data is used together with the deep learning approach of Long Short-Term 

Memory and Autoencoder (LSTM-AE) to detect anomalies or outliers in CO2 concentrations.  Due to a close connection between air quality 

and human health and well-being, the detection of anomalies in the data of  IAQ has emerged as an essential topic of study. Anomalies requiring 

the observation of correlations spanning numerous data points (i.e., often referred to as long-term dependencies) were not detectable by 

conventional statistical and basic machine learning (ML) related techniques in the sector of  IAQ.  Hence this research uses the LSTM-AE 

model to address this issue.  In comparison to previous similar models, our experimental results on a generated CO2 occupancy time series 

reveal a robust and powerful accuracy of 99.49%. 

Keywords- IoT; Deep Learning; LSTM; Autoencoder; Anomaly detection; IAQ. 

 

I.  INTRODUCTION 

People spend most of their time inside, thus their health, 

comfort, and overall well-being are significantly impacted by the 

air quality within buildings and other structures. For example, 

allergies, asthma, and other respiratory problems can be brought 

on or worsened by poor indoor air quality (IAQ). Additionally, 

it may result in tiredness, headaches, vertigo, and nausea [1]. 

Gases, particulate matter, mould, bacteria, and other 

contaminants can impact IAQ. Both indoor and outdoor 

environments can suffer from poor indoor air quality (IAQ) due 

to various sources of pollution. Outdoor pollutants, including 

emissions from vehicles and industries, can enter buildings 

through windows and doors [2]. On the other hand, indoor 

pollution can arise from combustion appliances, building 

materials, cleaning products, and office equipment. One widely 

used indicator for assessing IAQ is CO2, which is present in 

abundance [3, 4]. Notably, CO2 is generated whenever an 

individual exhales.  

Emerging research suggests a connection between CO2 

levels and susceptibility to COVID-19 infection [5]. As infected  

Individuals release both pathogens and CO2 through 

exhalation, monitoring indoor CO2 concentrations becomes a 

dependable indicator of potential infection risk. Consequently, 

the measurement of CO2 levels has been proposed as an indirect 

means to assess the likelihood of transmitting infectious 

respiratory diseases [6]. Investigating indoor carbon dioxide 

(CO2) levels also impact occupancy tracking, which can impact 

buildings’ energy usage [7]. The utilization of CO2 sensors to 

determine occupancy has been explored in various studies and 

holds promise [8, 9, 10]. Precise monitoring of building 

occupancy plays a vital role in achieving energy efficiency, with 

potential energy savings ranging from 30% to 40% in certain 

instances [10]. Moreover, comprehending the indoor CO2 levels 

is crucial for safeguarding the well-being and safety of 

occupants, as government regulations and industry guidelines set 

distinct permissible concentration thresholds for indoor spaces. 
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As an example, CO2 concentration is typically restricted to a 

maximum of 1000 ppm in many applications [11]. However, 

European standards set the permissible limit for CO2 in indoor 

IAQ at 1500 ppm [12]. Considering that occupants exhale a 

significant amount of CO2 , it is crucial to design an effective 

anomaly detection system to avoid biased decisions when 

analyzing the dataset. The rise of the Internet of Things has made 

affordable sensors and open-source IoT platforms widely 

accessible, enabling their combination with artificial intelligence 

technologies in IAQ systems. This research therefore provides a 

sophisticated method for detecting anomalies in CO2 

concentrations. There are two major contributions made by this 

paper:   

• The authors of this study used Internet of Things (IoT) 

sensors to create a system for continuously monitoring 

indoor air quality.  

• The authors used LSTM-AE model to predict or forecast 

future CO2 concentration levels based on historical or 

existing data. In order to understand patterns in 

sequences, the model employs a LSTM network made 

up of several LSTM units. To further enhance training 

effectiveness, AE reduces the dimensionality of data. 

• The performance of our proposed model is compared 

with other similar approaches that utilize various aspects 

of LSTM and/or AE. We conducted experiments using 

a comprehensive set of evaluation criteria, and the 

results show that our model is capable of detecting 

anomalies effectively, achieving a detection accuracy of 

over 99%.  

 

The remainder of the paper is divided into five sections: 

Section 2 presents the related works on data prediction and 

anomaly detection in sensor networks. Section 3 presents the 

preliminaries section. The problem formulation for outlier 

detection in IoT is described in Section 4. Section 5 outlines the 

recommended approach and technique. Section 6 presents the 

experimental results and evaluation. Section 7 comes to end with 

conclusion section. 

II. RELATED WORKS 

Kallio et al. [11] compared two different approaches for 

predicting CO2   levels. They found that a decision tree 

outperformed an Artificial Neural Network (ANN)  regarding 

energy consumption and computational efficiency. Additionally, 

they discovered that using a one-minute forward predicting time-

window technique resulted in the accuracy higher than that of  

the accuracy achieved with ten- or fifteen-minute time windows. 

However, the inclusion of additional factors such as humidity 

and temperature did not affect the accuracy of the CO2  forecast. 

Additionally, the researchers developed two neural network-

based systems for predicting CO2  concentration and one system 

for forecasting the comfort conditions during the daytime, 

considering temperature, humidity, and CO2. 

Mumtaz et al. [13] suggested an approach for IAQ 

assessment that provides users access to a web portal and a 

mobile application that visually represents the air quality. They 

determined the IAQ level based on five air quality 

parameters(CO2, CO, NO2, CH4, and PM2.5). The authors ranked 

IAQ conditions using neural networks and achieved a 99.1 

percent accuracy rate. Future CO2 concentrations were also 

predicted using Long-Short-Term Memory (LSTM). However, 

the achieved IAQ classification relied on the data collected at 

outdoors, which is affected by numerous other factors and may 

need to be revised for an indoor environment. In addition, sensor 

lifetime and calibration factors may be complex for their 

technique. 

In contrast, Ahn et al. [14] developed an IAQ prediction 

system using LSTM and its variant Gated Recurrent Unit 

(GRU). They found that GRU outperformed LSTM with an 

accuracy rate of up to 84.69 percent. However, the optimization 

of the time step size for this model took approximately 38 hours. 

Furthermore, Tagliabue et al. [15] proposed a data collection 

architecture using the IoT network and introduced two 

prediction models. One model forecasted the comfortable 

conditions of temperature, humidity, and CO2 for a day, while 

the other model predicted CO2 concentration using neural 

networks. Their research revealed that the Mean Square Error 

(MSE) for the test period was approximately 75 ppm (10.6%) 

compared to the average CO2  content. 

Using a deep neural network, Wambura et al. [16] proposed 

the One Sketch Fits All Time (OFAT) technique for solving the 

problem of accurate long-range forecasts inside high-

dimensional feature-evolving time series. The suggested 

approach addresses the difficulty caused by the non-stationary 

nature of feature-evolving time series, which causes the length 

of the input sequence (rows) to fluctuate as new data points are 

added, and their feature values (columns) evolve. Experiments 

conducted on real-world data sets and a stringent evaluation 

demonstrated that OFAT has a quick processing time, 

dependable performance, and precise recognition. However, one 

of the shortcomings of this method is that it needs to account for 

interactive real-time forecasting in data streams. 

Sharma et.al [17] introduced a cost-effective framework, 

IndoAirSense, to predict and forecast indoor air quality (IAQ) in 

specific classrooms at a university. To estimate real-time indoor 

air quality (IAQ), the researchers employed a combination of 

multilayer perceptron (MLP) and extreme Gradient Boosting 

Regression (XGBR). Additionally, they utilized a modified 

version of the long short-term memory (LSTM) model, known 

as LSTM without a forget gate (LSTM-wF), to simplify the 

prediction of indoor air pollutants. However, due to the absence 

of the forget gate in this model, which is responsible for 
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maintaining long-term memory, it was unable to effectively 

identify anomalies in the time-series dataset.  

 Xu et al. [18] presented an LSTM model with an integrated 

error correction model (ECM) to improve the accuracy of indoor 

temperature predictions specifically in public buildings. When 

re-predicting the testing data set, they construct an ECM by co-

integrating the data from predictions and actual measurements in 

the same sequence. Also, Jung et al. [19] applied LSTM for 

indoor environment prediction in facility management. They 

collected data on interior temperature, humidity, and lighting 

from three different Internet of Things (IoT) sensors and trained 

LSTM to identify instances in which those readings departed 

from a threshold. 

Hossain et al. [20] introduced a dual prediction approach for 

forecasting the daily air quality index (AQI) in two major cities 

of Bangladesh, Dhaka, and Chattogram. The first and second 

hidden layers of the resulting prediction model were respectively 

a gated recurrent unit (GRU) and a long short-term memory 

(LSTM) variant of the recurrent neural network (RNN) model. 

The results showed that when compared to utilising either a 

GRU or LSTM model, their hybrid model performed better 

overall and more closely captured the AQI patterns in both 

locations. 

Ottosen and Kumar [21] presented a method for detecting 

anomalies in a low-cost air quality dataset. They proposed two 

techniques: one using K-nearest neighbors (KNN) and the other 

utilizing autoregressive integrated moving average (ARIMA). 

The KNN approach focused on identifying point anomalies by 

computing the average Euclidean distance between each point 

and the points that remained, assigning a  score to indicate the 

level of anomaly for each point. On the other hand, ARIMA was 

employed for identifying contextual anomalies by comparing the 

model and measurement data points and Anomaly scores were 

calculated based on the absolute value of the difference between 

the observed data and the model predictions. By applying K-

means clustering, the dataset was divided into two clusters, 

distinguishing between normal points and contextual anomalies. 

 Li et al. [22] suggested a technique using fuzzy C-means 

clustering. Their methodology involved utilizing a 

reconstruction criterion to reconstruct the optimal cluster centers 

and partition matrix. This reconstruction was performed using 

multivariate subsequences of the data. To establish a threshold 

for identifying outliers in the multivariate data, they employed a 

fitness function based on the reconstruction error in conjunction 

with the particle swarm optimization (PSO) algorithm. 

However, it should be noted that their proposed algorithm faced 

challenges in uncovering the underlying structure of high-

dimensional multivariate time series, as the PSO algorithm 

tended to become trapped in local optima. 

It is our contention that the current studies in this area have a 

number of shortcomings. One of these is that traditional time-

series techniques, like ARIMA, and machine learning methods 

that rely on regression (e.g., K-means or KNN) frequently 

depend on human experts to extract features from the data, which 

can be time-consuming and costly. Furthermore, these 

approaches are often affected by outliers and have difficulty 

dealing with large data sets and unknown probability 

distributions, leading to poor performance. 

Leveraging LSTM in time-series prediction models allows 

for the anticipation of future values by leveraging patterns 

inherent in sequential data., leading to more accurate predictions 

and better decision-making capabilities such as anomaly 

detection. In contrast to current approaches, our proposed model 

incorporates AE and can deliver significantly improved results 

when handling complex auto-correlation sequences with large 

datasets, even when dealing with unpredictable data 

distributions. 

III. PRELIMINARIES 

A. LSTM 

Building upon RNNs, LSTM architecture offers the capacity 

for "long-term memory," allowing the current neural node to 

access a comprehensive list of all past information, rather than 

just a single point in time. 

• Figure 1 presents an illustration of an LSTM unit, which 

comprises four essential components: a cell, an input 

gate, an output gate, and a forget gate. These 

components work together to regulate the flow of 

information within the cell across different time 

intervals. The cell serves as a storage unit, preserving.  

• Values over time, while the input gate, output gate, and 

forget gate control the movement of information into 

and out of the cell.. 

• The Cell State represents the network's current long-

term memory, holding a collection of past information.  

• The preceding Hidden State corresponds to the output 

generated by the LSTM unit in the previous time step 

and can be seen as short-term memory.   

• Lastly, the input data represents the value received at the 

current time step. 

 

Figure 1.  LSTM working mechanism 

http://www.ijritcc.org/
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1) Forget gate: 

In an LSTM neural network architecture, the forget gate is a 

key component that controls the flow of information through the 

memory cell, allowing the LSTM to selectively retain or discard 

information from previous time steps. The forget gate is 

responsible for determining how much of the previous memory 

cell state should be forgotten or erased, based on the input at the 

current time step and the internal state of the LSTM. 

Mathematically, the forget gate in an LSTM is typically 

implemented as a sigmoid activation function applied element-

wise to the weighted sum of the input at the current time step and 

the output from the previous time step. The sigmoid function 

maps the weighted sum to a value between 0 and 1, where 0 

indicates complete forgetfulness and 1 indicates complete 

retention. This allows the LSTM to control the amount of 

information to retain or forget from the previous memory cell 

state. 

The forget gate is defined by the following equations in an 

LSTM: 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)            (1) 

 Where: 𝑓𝑡  is the forget gate at time step t. 𝜎  is sigmoid 

activation function 𝑊𝑓 is the weighted matrix for the forget gate. 

ℎ𝑡−1 is the output from the previous time step t. 𝑥𝑡 is the input at 

current time step. 𝑏𝑓 is the bias for bias term for the forget gate.  

The output gate from the forget gate is then used to modulate 

the previous memory cell state 𝐶𝑡−1  element-wise, effectively 

erasing the information that needs to be forgotten. 

 

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1                 (2) 

 

By using the forget gate, an LSTM can selectively retain or 

discard information from previous time steps, allowing it to 

capture long-term dependencies in sequential data and mitigate 

the vanishing or exploding gradient problem often encountered 

in recurrent neural networks.  

 

2) Input gate: 

The input gate is responsible for determining how much new 

input information should be added to the cell state. It takes the 

current input data and the previous hidden state as inputs and 

passes them through a sigmoid activation function to generate a 

gate output vector with values between 0 and 1. This gate output 

vector determines the amount of new input information that 

should be allowed to enter the cell state. 

Mathematically, the computation of the input gate in an 

LSTM cell can be represented as follows: 

 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ 𝑥𝑡 + 𝑈𝑖 ⋅ ℎ𝑡−1 + 𝑏𝑖)             (3) 

 Where, 

𝑖𝑡 is the input gate output at time step t 

𝑥𝑡 is the input data at time step t 

ℎ𝑡−1 is the hidden state from previous time step (t-1) 

𝑊𝑖,𝑈𝑖 and 𝑏𝑖 are the learnable weights and biases associated 

with the input gate 

The equation below illustrates the process of determining the 

proportion of new information, denoted as " 𝐶̃𝑡 ", among the 

presented information. 

 

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐[ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑐)             (4) 

Where, 

𝑊𝑐 is the weight matrix of the input gate 

The bias of the input gate is denoted as 𝑏𝑐 

tanh is the activation function utilized in the range of [-1,1]      

where the negative values are used to reduce the impact. 

To control the amount of the additional information, these 

 Two processes () are multiplied point wise. 

 

3) Outpiut gate: 

The output gate in LSTM (Long Short-Term Memory) is one 

of the key components that regulates the flow of information 

within the LSTM unit. Its primary function is to control the 

output produced by the LSTM cell at a particular time step. 

The output gate takes into account the current input, the 

previous hidden state, and the current cell state. It computes a 

sigmoid activation function on a combination of these inputs. 

The sigmoid function outputs values between 0 and 1, 

representing the extent to which the information should be 

allowed to pass through the output gate. 

Mathematically, the output gate can be represented as 

follows:  

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)             (5) 

 Where, 

𝑜𝑡=output gate activation at time step t. 

𝜎=sigmoid activation function. 

𝑊𝑜= weight matrix associated with the output gate. 

ℎ𝑡−1=previous hidden state 

𝑥𝑡=current input 

𝑏𝑜=bias term associated with the output gate 

The output gate determines which parts of the current cell 

state should be exposed as the output. It applies an element-wise 

multiplication (also known as a Hadamard product) between the 

output gate activation and the cell state. This selectively controls 

the information flow and filters out irrelevant or less important 

details, allowing the LSTM unit to focus on the most relevant 

information. Mathematically, the output of the LSTM cell is 

computed as follows:  

ℎ𝑡 = 𝑜𝑡 ⋅ 𝑡𝑎𝑛ℎ(𝐶𝑡)              (6) 

 Where, 

ℎ𝑡 =output of the LSTM cell at time step t. 

𝐶𝑡=current cell state. 

By adjusting the output gate activation, the LSTM can 

control the trade-off between preserving long-term memory and 

http://www.ijritcc.org/
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producing the most relevant output for the current task. The 

output gate mechanism allows the LSTM to selectively expose 

important information to subsequent layers or use it for 

prediction purposes while suppressing irrelevant or noisy details. 

 

B. Autoencoder 

An AE, short for autoencoder, is an unsupervised neural 

network and is designed to discover useful representations of 

unlabeled data. Its purpose is to train the neural network to filter 

out irrelevant or insignificant data, often referred to as "noise," 

and generate an efficient encoding of the input data set. A typical 

AE consists of input and output layers, as well as multiple hidden 

layers. Encoding, latent space representation, decoding, and 

reconstruction loss are the four main functions of an AE, as 

shown in Figure 2. 

 

Figure 2.  AE Working mechanism 

1) Encoding:  

The input data is fed into the encoder, typically a series of 

fully connected layers. Each layer applies linear transformations 

followed by non-linear activation functions to extract and 

capture important features of the input data. The encoder 

gradually reduces the dimensionality of the input and maps it to 

the lower-dimensional latent space. 

 

2)  Latent space representation:  

The latent space representation is a compressed version of 

the input data, capturing the most relevant and essential features. 

It acts as a bottleneck layer, forcing the network to learn a more 

compact representation. 

 

3) Decoding:  

The decoder takes the latent space representation and aims to 

reconstruct the original input data. Like the encoder, it typically 

consists of fully connected layers with non-linear activations. 

The decoder’s purpose is to learn to generate an output that 

closely resembles the input. 

 

4)  Reconstruction loss:  

During training, the auto encoder compares the reconstructed 

output from the decoder with the original input and calculates a 

reconstruction loss, which quantifies the dissimilarity between 

them. Common loss functions used for reconstruction include 

mean squared error (MSE), mean absolute error(MAE), or 

binary cross-entropy, depending on the nature of the input data. 

To minimize the gap between the original and reconstructed 

inputs, a standard AE model, as shown in equation 7, will 

compute a reconstruction loss (L). This reconstruction loss is 

often used for the job of spotting outliers. 

 

𝐿(𝑥 − 𝑥̂) =
1

𝑛
∑𝑛

𝑡=1 |𝑥𝑡 − 𝑥̂𝑡|                  (7) 

 Where, 

x= input 

𝑥̂=output 

n=number of training data set samples. 

However, in our model, the approach has been broadened to 

calculate a reconstruction loss as shown in equation 8.  

 

𝑥𝑖 =
1

𝑛
∑𝑛

𝑛=1 |𝑥𝑖 − 𝑥̂𝑖|              (8) 

 

𝑛 = {
𝑖 ≤

𝑁+1

2

𝑁 − 𝑖 + 1 𝑛 >
𝑁+1

2

             (9) 

 

 Where, 

N= total number of samples 

𝑛 = 𝑛𝑡ℎ Sample 

 𝑋𝑖 = 𝑥1, . . . . . , 𝑥𝑖 

The authors use the formula10 to get the reconstruction loss  

 For all-time series samples:  

 

𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑙𝑜𝑠𝑠 =
1

𝑁
∑1

𝑁=𝑖 𝑥𝑖          (10) 

 Where, 

  N= number of samples 

   x= reconstruction loss calculated for every sample  

IV. PROBLEM FORMULATION 

Using IoT sensors, this study aims to monitor IAQ and CO2 

concentration. The authors also measured the change in 

Particulate Matter (PM) in the presence of a room occupant, but 

the PM level remained virtually unchanged. Using Pearson's r = 

0.01, and a significance level of p = 0.91, the experiment's 

findings [23] showed a moderate correlation between indoor and 

outdoor PM levels. A person's PM levels can fluctuate due to 

routine indoor activities like desk work or leisure whereas CO2  

is the most prevalent indoor pollutant associated with high 

population density. According to the data collected, the rate of 

change of CO2 is substantially higher than that of PM. 

Therefore, the authors utilize CO2 as an indicator of IAQ in this 

study. Our model’s LSTM networks consist of numerous LSTM 

units that can preserve significant feature values in a sequence. 

The LSTM units work together to understand each sequence’s 
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pattern. Additionally, AE decreases data dimensions to make 

training more efficient. 

V. PROPOSED METHOD 

This section presents our suggested approach that utilizes a 

novel approach for predicting future sensor data in IoT network 

with the LSTM-AE model. The authors begin by outlining their 

approach, which involves creating the input sequence, and 

LSTM encoder, LSTM decoder. Then they elaborate on the 

training and testing phases of their model’s algorithm. 

Figure 3 provides an overview of our proposed model, which 

combines an LSTM neural network and an AE to create an 

LSTM-AE hybrid model. In the first step, we transform the 

original data set into a high-dimensional input vector of fixed 

size. 

 

Figure 3.  Proposed LSTM-AE architecture 

In order to map the high-dimensional input vector 

representation to the low-dimensional latent space 

representation, the LSTM encoder uses several LSTM units to 

analyze the time-series sequence and discover patterns in the 

features. In order to recover the initial fixed-length input 

sequence, the LSTM decoder uses this compressed 

representation in latent space. Finally, the rate of reconstruction 

error is computed by comparing the output with the input. 

 The time series data is created as a sequence 

[𝑋1, 𝑋2, 𝑋3, . . . , 𝑋𝑛] , where each X is a fixed T-length time 

window data. This means that the data is divided into multiple 

windows, and each window has a fixed length of T time units. 

Within each time window X, the data is represented as a 

sequence[𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑡], where 𝑥𝑡 is an m-dimensional input 

at time instance t. This means that the data captures m features 

at each time point. 

The data is then reshaped into a 2-D array, where the first 

dimension represents the number of samples, and the second 

dimension represents the number of time steps. This is done to 

convert the time series data into a format that can be used for 

training a machine learning model. 

For example, if the sequence represents 𝐶𝑂2  data, the 

reshaped 2-D array will have the list of samples at ten time steps, 

with each time step representing the m-features captured at that 

point in time. This format allows the machine learning model to 

learn the patterns and relationships in the data across time and 

make predictions for future time points. 

A. Encoder 

 The LSTM encoder functions as a layer that compresses 

features into batches of time-based sequences, similar to a 

folding process. This involves independent convolution 

operations on the different timesteps of the feature sequences. In 

order to identify the most important features in the input 

sequence, the AE encoder interacts with a series of LSTM unit 

cells, as depicted in figure4. 

 

Figure 4.  LSTM-Encoder 

The 𝑋𝑖 time series consists of ten samples collected over ten 

1-minute intervals. To prepare the data for the encoder, the 1-

dimensional data set is transformed into a 2-dimensional data 

set. This is accomplished by representing the input data set as a 

2D vector, where one dimension represents the ten time steps 

and the other dimension represents the feature, i.e., the 𝐶𝑂2 

readings. This results in a vector of 10x1, which is fed to the 

encoder. The encoder’s first layer includes an LSTM network 

comprising ten LSTM cell units, with each unit processing one 

sample. The ten LSTM cells operate sequentially, with the first 

unit passing its result to the second. The second unit determines 

whether to retain or forget the previous result from the first 

LSTM. If it decides to keep it, the second unit stores it in the 

long-term memory and passes the information of the first sample 

along with the feature information from the current sample to the 

third LSTM unit. This process continues in a similar manner for 

the remaining LSTM units. 

In our model, the final LSTM unit receives all the significant 

information from the nine preceding units. It processes all the 

valuable samples and produces an output that contains 

information about all relevant samples. This output is 

represented as a 1x16 vector and is considered as the encoded 

features. It should be noted that in our model, we have included 

a Repeat Vector as the second layer to generate multiple copies 

of the 1x16 encoded feature vectors, equal to the number of time 
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steps. In our case, the number of time steps is ten, so the Repeat 

Vector layer creates ten copies of the encoded features as a 2-

dimensional vector, which is 10x16 in size. 

B. Decoder 

The LSTM decoder serves the primary function of behaving 

as a layer that unfolds a sequence and restores its structure after 

the sequence has been folded on time steps. Figure 5 depicts in 

detail how the decoder interacts with LSTM cells to replicate the 

outputs. 

 

Figure 5.  LSTM-Decoder 

Each 1x16 set provided to the decoder represents a single 

characteristic from the original time series. This information is 

passed on to a layer 3 network made up of ten LSTM cell units. 

The number of features in the sequence (here, ten data points) is 

reflected in the number of LSTM cells. Each LSTM cell unit 

takes in an encoded feature in 1x16 form as input and outputs a 

learned representation of that feature in the same vector size 

(1x16). The time distributed layer generates a 1x16 output 

vector, which is used in a matrix multiplication with the 10x16 

output vector. This algorithm yields a 10x1 vector representing 

the final findings. 

C. Anomaly Detection 

An anomaly or outlier is an observation that doesn’t fit with 

the rest of the data. A certain threshold can be used as a criterion 

when a finding is out of the ordinary. Outliers in a data set are 

called anomalies since they don't fit the typical distribution. 

Our model is trained on a data set with 𝐶𝑂2 values within the 

typical range by applying this threshold-based anomaly 

detection method. This is necessary for calculating the 

percentages of inaccuracy in reconstruction error for the normal 

𝐶𝑂2   values. After complete training, the maximum 

reconstruction error rate is chosen, and the various 

reconstruction errors have been computed across all samples. 

Once a threshold is established, the entire range of 𝐶𝑂2 values is 

included in the testing data set. For every sample within the test 

set, the reconstruction error rate is computed for each 𝐶𝑂2 value. 

An anomaly sample is one in which the rate of reconstruction 

error exceeds a threshold.  

The proposed model's method is described in detail in 

Algorithm 1. There are essentially two goals to train for. The 

primary goal is to lessen the amount of distortion introduced 

during reconstruction, making it so that the output created from 

the simplified input representation is a close approximation of 

the original. 

 

Algorithm1 

INPUT: Time series data from 𝐶𝑂2 occupancy data 

               Set 

OUTPUT: Reconstruction loss or errors loss  

1: Begin 

1:Training set (𝑋i)={𝑥0, 𝑥1, … … … , 𝑥n} 

2:Test set(𝑋i′)  ={𝑥0′, 𝑥1′, … … , 𝑥m′} 

3: Time steps=t 

4: 𝑋i = {𝑥i, … … . . , 𝑥i+t} based on ‘t’ time steps(t=10) , where 

      i=0 to (n-t), ‘n’ is the total training samples. 

5:  𝑋i′={𝑥i
′, … … … , 𝑥′i+t} based on ‘t’ time steps(t=10) , where  

     i=0 to (m-t), ‘m’ is total testing samples. 

      /*  Training of LSTM-AE */ 

6:  𝑋î =LSTM-AE(𝑋i)  // LSTM-AE model is applied on 𝑋i ,    

        where i=0 to (n-t) 

 7:  error or reconstruction loss=∑ |𝑋î − 𝑋i|   

     /*  Calculation of  reconstruction error for 𝑋i  */ 

    Assuming ’arr’ is the 2D matrix  

 8:   errorloss arr= errorloss arr[i, i:i+t]= |𝑋î − 𝑋i|     

      

/* Calculation of reconstruction error for all trained data */ 

  9:   errorloss[i]=
∑(errorloss arr[:,i]

∑(error loss arr[:,i]!=0)
  ,  

       Where, 

            i=0 to n,. 

        ∑(errorloss arr[: , i] =  sum of all the data from column i 

        ∑(errorloss arr[: , i]!=0)= sum of non-zero elements of  

       Column i. 

10: End 

 

Second, our model learns from training data that includes the 

normal reconstruction error rate of CO2 points. 

To begin the training phase, the original data set needs to be 

transformed into time-series sequences. Training data set is 

represented by data set Xi. In our model, each sequence consists 

of ten CO2samples on ten-time steps. The model's training i.e., 

LSTM-AE training begins by inputting each sequence to the 

encoder. During this process, a single LSTM is trained 

sequentially on each sample in the sequence. when each 

sequence training is finished, the encoder’s latent space 

rearranges the combined data points into an encoded feature 

representation in 1-D. The encoded feature is duplicated using 

the Repeat Vector layer to create multiple copies. 
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The decoder uses LSTM cells, where the number of LSTM 

cells is proportional to the number of time steps and encoded 

features, to produce the output. Each LSTM cell processes a 

single encoded feature, resulting in a set of vectors. At the Time 

Distributed Dense Layer, the output is created as a single-

dimensional vector based on what comes out of processing by 

all LSTM cells. 

The steps from 7-9 in algorithm1 show the reconstruction 

error loss between output and input. The model’s weights and 

parameters are modified using back propagation approach. 

The reconstruction error loss employed in this research is the 

mean absolute error (MAE) method as shown in the equation11. 

𝑒𝑟𝑟𝑜𝑟𝑙𝑜𝑠𝑠(𝑀𝐴𝐸) =
∑𝑛

𝑖=1 ||𝑥𝑖−𝑥𝑖||

𝑛
          (11) 

 Where, 

n= total number of samples 

𝑥𝑖=original input 

𝑥̂𝑖=output produced by the encoder 

 

In order to minimize the reconstruction error loss, the model 

is trained on all sequence data. The activation function "tanh" 

was employed in the tenth long short-term memory (LSTM) cell, 

and its output was captured by a network of 16 neurons in the 

encoder's latent space. There are two dropout layers (rate = 0.2) 

in both the encoder and the decoder. A Repeat vector layer is 

utilized between the encoder and decoder, and a Time 

Distributed dense layer is used as the final intermediate step 

before the output layer. 

The time series input to the LSTM encoder consists of ten 

data points, each representing ten time steps. This time, all ten 

data points span the whole range of CO2values, which was not 

the case earlier. The LSTM decoder takes an input sample and 

outputs a time series consisting of 10 data points at ten-time steps 

after encoding and decreasing the feature representation of the 

sample. 

For every data point, a reconstruction error rate is computed 

and subsequently compared to a threshold value (Thr). The 

calculation of the reconstruction loss follows the same 

methodology as described during the training process.. A data 

point is regarded as an anomaly if the value of the resulting 

reconstruction loss is greater than a predetermined threshold 

(Thr), and normal otherwise. Equation 12 illustrates this 

classification procedure. 

 

𝑋′ = {
𝑋′𝑖𝑠  𝑎𝑛𝑜𝑚𝑎𝑙𝑦, 𝑖𝑓𝑡𝑒𝑠𝑡𝑎𝑟𝑟[𝑖] > 𝑇ℎ𝑟

𝑋′𝑖𝑠  𝑛𝑜𝑟𝑚𝑎𝑙, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                       (12) 

 

Here Thr=μ + 2σ and μ is nothing but reconstruction loss or 

errorloss[i] in Algorithm1. If any test data testarr[i]) >Thr, then 

it is called as anomaly. 

D. Hardware and software components 

1) Hardware components:  

SCD30, CO2 sensor, BME 680 IAQ sensor, ESP 8266 Wi-fi 

module and Raspberry Pi 3B single-board are the hardware 

components used in this study.  

a) SDC30 𝐶𝑂2 sensor: 

The SCD30 is a very precise nondispersive infrared (NDIR) 

sensor for measuring CO2 characteristics.  

b) BME 680 IAQ sensor: 

The BME680 sensor is a popular environmental sensor that 

is capable of measuring multiple parameters such as 

temperature, humidity, pressure, and volatile organic 

compounds (VOCs) in the air. It is manufactured by Bosch 

Sensortec and is often used in various applications including 

indoor air quality monitoring, weather stations, and Internet of 

Things (IoT) devices.  

c)  ESP 8266:  

The ESP 8266 is a widely used and popular Wi-Fi module 

that is designed for Internet of Things (IoT) applications. It is 

manufactured by Espressif Systems and has gained popularity 

due to its low cost, ease of use, and extensive community 

support. The ESP8266 module is capable of providing wireless 

connectivity to micro controllers or other embedded systems, 

enabling them to connect to Wi-Fi networks and communicate 

with other devices or servers. 

2) Software: 

a) Message Queuing Telemetry Transport (MQTT):  

It is a reliable machine-to-machine (M2M) protocol designed 

for Internet of Things applications. TT follows a client-server 

model, where MQTT clients connect to an MQTT broker to 

exchange messages. Clients can be sensors, devices, or 

applications, while the broker acts as a message broker or 

intermediary that routes messages between clients. MQTT uses 

a publish-subscribe model, where clients can publish messages 

to topics and subscribe to receive messages from topics of 

interest. 

b)  Node-Red: 

It is an open-source utility for connecting hardware devices, 

APIs, and other IoT services using a flow-based architecture. 

The MQTT node of Node-Red can subscribe to MQTT and 

cloud data and store it in a database. Using the powers of visual 

programming, Node-Red can identify system faults such 

as sensor failure.  

c) Influxdb: 

InfluxDB, developed by the Influx Data organization, is a 

time series database chosen for this design due to its 

compatibility with the Node-RED tool and its capability to 

handle timestamped data collection. 

d) Grafana: 

 It is a dashboard that helps you exhibit our data and a tool 

for viewing and analysing time series.  
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All the simulations are carried out using matlab.it is possible 

to load data from an InfluxDB database into MATLAB and then 

display it on a Grafana dashboard. Here’s a general outline of the 

process:   

• Connect to the InfluxDB database in MATLAB: 

MATLAB provides the "Database Toolbox" that 

supports connecting to various databases, including 

InfluxDB. We can use the database function to establish 

a connection to our InfluxDB database.  

• Query data from InfluxDB: Once connected, we can use 

SQL-like queries (InfluxQL) or the InfluxDB Query 

Language (Flux) to retrieve data from our database. 

MATLAB provides functions such as fetch or fetch2 to 

execute queries and retrieve the data as a MATLAB 

table or structure.  

• Manipulate and analyze data in MATLAB: MATLAB 

offers a wide range of data analysis and manipulation 

capabilities. We can process the retrieved data, perform 

calculations, apply algorithms, and generate 

visualizations using MATLAB’s built-in functions or 

toolboxes.  

• Export data to Grafana: Once We have processed and 

prepared our data in MATLAB, We can export it to 

Grafana. Grafana supports various data sources, 

including InfluxDB. We will need to set up a data source 

in Grafana and configure it to connect to our InfluxDB 

database. Then, we can create a new dashboard in 

Grafana and use the data source to populate the 

visualizations with the data we exported from 

MATLAB.  

Both sensors are linked to Wi-Fi modules, as shown in 

Figure 6 of the system architecture for this design. Using the 

Arduino programming language, the sensors and Wi-Fi modules 

are configured to communicate to the Wi-Fi gateway. Due to its 

flexible and potent processing performance, Raspberry Pi is used 

as a hub that communicates with IoT applications[24]. Node-

Red, influxdb, and Grafana are installed on the Raspberry Pi to 

retrieve, display, and analyze data from the MQTT server. 

 

Figure 6.  Architecture of deployed IAQ monitoring system      

E. 𝐶𝑂2 Occupancy data set 

To investigate the connection between 𝐶𝑂2levels, weather 

conditions, and student performance, we deployed two sensors, 

the BME680 and SCD30, to measure the level of 𝐶𝑂2 , 

temperature, humidity, and 𝐶𝑂2, in different classrooms of our 

VIT-AP University. The sensors were placed on a wall 1.5 

meters above the floor. We collected 𝐶𝑂2  readings for four 

months between February 1st, 2022, and May 30th, 2022, with 

a 1-minute interval. The 𝐶𝑂2 readings are displayed in Fig7. As 

expected, we observed no changes in 𝐶𝑂2  levels during 

University breaks such as in May 2022. However, when students 

were present in the classrooms, we observed fluctuations in 𝐶𝑂2 

levels, some of which were anomalous. The data set contained a 

total of 2,10,105 𝐶𝑂2 readings. 

1) Data preprocessing 

To ensure data cleanliness, we performed several actions on 

the original records. Firstly, we removed any duplicate records 

which had identical timestamps and CO2 readings. Additionally, 

we removed records containing both NaN(Not a number) values 

for the CO2 reading and timestamp. Next, we kept data where no 

CO2 value was recorded, but the time stamp was correct even 

though the value was NaN. For these records, we replaced the 

empty or NaN values with the numerical value of 0. The value 0 

was substituted for any empty or NaNs in these records. 

Following this cleaning process, we had 1,60,008 records 

remaining 

 

2) Training and test data set 

a) Training data set 

According to [25], the normal range for CO2 levels typically 

falls between 0 and 968 parts per million (PPM). Using the 2-

sigma rule of the normal distribution (i.e., around CO2 readings 

968 when the mean of the CO2readings is about 488), we found 

that the vast majority of the readings fell within the permissible 

normal range (as shown in Fig.8). To ensure that our model was 

only trained on CO2  data points within this normal range, we 

separated the first three months of the original data set (from 

02/02/2022 to 31/05/2022). We then used the 2-sigma rule to 

identify any samples that did not fall within the normal range, 

and removed them. This process of creating the training data set 

is illustrated in figure. 7. By doing so, we aimed to train our 

model only on the CO2 data points that were considered normal. 
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Figure 7.  Training data set creation 

b) Test  data set 

For our testing data set, we utilized one month of the original 

data, specifically from 01/05/2022 to 31/05/2022. This data set 

included a range of 𝐶𝑂2 readings, both normal and anomalous. 

To evaluate the performance of our model in detecting 

anomalous data points from normal ones, we added a label of 0 

if the 𝐶𝑂2  reading fell within the normal range(968ppm).  

Conversely, we added a label of 1 if the 𝐶𝑂2 reading was outside 

of this range. These labels were only utilized for model 

evaluation purposes. Figure 8 illustrates how we added these 

labels in the testing data set. 

 

Figure 8.  Test data set creation 

c) Data normalization 

We used a data normalization technique to cut down on 

model training's execution time and computational complexity 

to counteract the influence of varying scales across 𝐶𝑂2  

 

readings. Specifically, we utilized a standard scalar 

normalization technique, which is represented by equation 13:  

 

𝑍𝑖 =
𝑥𝑖−𝜇

𝜎
             (13) 

 In the above equation, 𝑍𝑖  represents the normalized 

numerical values within the range of 0 to 1.  

Where, 

𝑥𝑖 =Specific data point 

𝜇= mean 

𝜎=standard deviation 

TABLE I.  LSTM-AE SIMULATION HYPER PARAMETERS 

Hyper parameter value 

Dropout 0.2 

Learning rate 0.001 

Batch size 64 

Epoch 30 

VI. EXPERIMENTAL SETUP 

The experiments were conducted utilizing the system 

configuration described in Table I. In order to assess how well 

our model performed, we employed various performance 

measures, including the F1- score, precision, recall, and 

classification accuracy. The corresponding confusion matrix can 

be found in Table II 

TABLE II.  CONFUSION MATRIX 

Total Samples 
Predicted Status 

 Normal   Anomaly  

Actual status 

 Normal   TN   FP  

 Anomaly 

Predicted Status 
 FN   TP  

 

• When a data point is correctly detected as anomalous, it 

is referred to as a true positive (TP).  

• If a normal data point is accurately detected as normal, 

it is considered a true negative (TN).  

• A false positive (FP) occurs when a normal data point is 

incorrectly detected as anomalous.  

• When an anomalous data point is incorrectly detected as 

normal, it is referred to as a false negative (FN).  

Using the terms mentioned earlier, the performance metrics 

are computed in the following manner:  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
           (14) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (15) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (16) 

  

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 × (
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
)         (17) 

Figure 9 displays how the loss varies across different epochs. 

The blue line represents the training loss, which gauges the 

model’s error rate during training. It appears that the training loss 
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stabilizes rather rapidly, at around eight epochs. To evaluate our 

model’s performance during training, we reserved 10% of the 

training data set as the validation set. As expected, the validation 

loss does not stabilize until after eight epochs. However, once it 

reaches this point, the validation loss exhibits a loss rate similar 

to that of the training loss, which is approximately 0.07%. This 

suggests that our model is well-suited and performs well, as it 

does not underfit or overfit 

 

 

Figure 9.  Loss variation across different epochs 

We ran experiments to see how our model responded to 

changes in its architecture, specifically the number of hidden 

layers and LSTM cell units. Encoder and decoder models with 

one hidden layer, two hidden layers, and an undefined number 

of hidden layers (referred to as 'n') were evaluated. While all 

models kept the same total number of LSTM units, they varied 

in the number of hidden layers positioned between the encoder 

and decoder. There were some subtle changes in the model's 

performance as a function of the number of hidden layers. An 

F1-score exceeding 95.02% was achieved by utilizing a model 

architecture comprising only one hidden layer as an example.. 

Comparatively, the F1-scores for the two-layer and three-layer 

models were 94.58% and 94.41%. The performance of the model 

was highly sensitive to the output vector size by the various 

designs. As can be seen in Table III, the best F1-score (95.02%) 

was attained by the simplest one-layer model whose output 

vector size was also the shortest. 

TABLE III.  DIFFERENT ARCHITECTURES PERFORMANCES 

Number of 

layers 

Number 

of units 

F1-

score 

recall precision Accuracy 

1 128 93.31 86.01 100 99.30 

1 16 99.49 90.01 100 99.49 

2 64, 16 99.41 88.77 100 99.41 

3 128,64,16 99.40 88.48 100 99.40 

 

Table IV illustrates the results obtained from various model 

parameters, specifically the impact of different learning rates and 

batch sizes on performance. The experiment kept the dropout 

and epoch values constant throughout. 

A batch size of 64 led to the most favorable outcomes, 

resulting in the highest F1-score (95.02%), accuracy (99.49%), 

and recall (90.01%). In contrast, the smallest batch size of 10 

demonstrated the lowest F1-score (93.67%), accuracy (99.42%), 

and recall (88.08%). This performance discrepancy can be 

attributed to the larger volume of data processed when using the 

larger batch size. While the smaller batch size led to a decrease 

in overall detection accuracy, it offered the advantage of faster 

response times. For instance, when compared to a batch size of 

64, running the proposed model with a batch size of 10 resulted 

in a response time three times faster. 

Likewise, the highest learning rate of 0.001 demonstrated the 

most favorable performance, whereas decreasing the learning 

rate led to a degradation in performance, resulting in a decrease 

in accuracy from 99.49% with the learning rate of 0.001 to 

99.39% with the learning rate of 0.00001. The impact on 

response time, however, was minimal and showed insignificant 

variations in relation to the learning rate. 

The number of time steps in a sequence, which is determined 

by the size of the time-sliding window, can have an effect on our 

model's performance. This choice has an impact on how the 

reconstruction error rate is calculated. Therefore, we conducted 

tests to examine the sensitivity of our model to variations in the 

size of the time-sliding window and its     subsequent effect on 

performance. 

We tested our model with time sliding windows of various 

sizes, including 10, 15, 20, 25, 30, 35, and 40.  The smallest  

window size of 10 demonstrated better performance, achieving 

the higher True Positive Rate (TPR) and F1-score at 95.02%. as 

shown in figure 10. On the other hand, the time sliding window 

size of 15 exhibited the lowest F1-score (90.12%) and accuracy 

(99.20%). The smaller window sizes, such as 15 and 20, resulted 

in increased misclassifications, with a TPR just above 80%. 

Conversely, larger window sizes above 20 demonstrated fewer 

misclassifications and improved TPR rates and F1-scores. 

The total number of test samples was 43,787, consisting of 

41,697 normal samples and 2,200 abnormal samples as per our 

labeling. Our model accurately identified 1,991 anomalies out of 

the 2,200 anomaly points, resulting in an accuracy rate of 

90.01%. It correctly identified all 41,697 normal data points, 

achieving a 100% accuracy rate. Notably, our model did not 

produce any false positives, incorrectly classifying normal 

samples as abnormal, which means it correctly classified all 

normal samples as normal. but it generated 212 false negatives 

by misclassifying abnormal samples as normal. Overall, our 

model achieved an accuracy of 99.49%. 

The precision of our model was 100%, the recall was 

90.01%, and the F1-score was 95.02%. 
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Table V presents a performance evaluation of our model,  on 

the 𝐶𝑂2 occupancy data set, with other models utilizing different 

variations of LSTM-AE. Our approach demonstrates superior 

performance in terms of accuracy (99.49%) and precision 

(100%). Among the comparable models, the one proposed by 

Yin et al. [26] exhibits competitive performance, with 

comparable accuracy and F1-score. Additionally, Nguyen et al. 

[27] introduced a model with a higher F1-score (96.98%), albeit 

at a slightly lower accuracy when compared to our method. 

Further investigation reveals that they employed a one-class 

support vector machine (SVM) as an additional classifier to 

mitigate false positives. 

 

 
(a)  

(b) 

 
(c) 

 
(d) 

 

Figure 10.  LSTM-AE performance under various time window length.(a)accuracy.(b)precision. (c)recall. (d)F1 –score 

TABLE IV.  PARAMETERS COMPARISON 

   Parameters   Performances  

 Learning 

rate:0.001 
Batch size  F1-Score  Recall  Precision  Accuracy  Time(s)/epoch 

  64 95.02 90.01 100 99.49 35.69±1.29  

  32 94.2 89.03 100 99.44 45.18±3.41  

  10 93.67 88.08 100 99.42 99.70±1.52  

 Batch 

size:64  
Learning rate  F1-Score Recall   Precision  Accuracy Time(s)/epoch  

   0.00001 93.56 86.98 100 99.38 35.84±1.14  

   0.0001 93.91 88.53 100 99.42 35.79±1.29  

   0.001 95.02 90.01 100 99.49 35.69±1.29  

TABLE V.  PERFORMANCE COMPARISON 

Model Method F1-score Recall Precision Accuracy 

Kang et al.[28] LSTM-AE 91.45 85.77 97.94 94.44 

Nguyen et al.[27] 
LSTM-AE-

OCSVM 
96.98 99.59 98.45 98.36 

Liu et al.[29] LSTM-AE - 97.55 97.55 98.57 

Yin et al.[26] LSTM-AE 95.97 94.16 97.84 99.25 

Our proposed 
method 

LSTM-AE 95.02 90.01 100 99.49 
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VII. CONCLUSION 

Our proposed approach utilizes a hybrid deep-learning 

technique, specifically combining LSTM-AE, to effectively 

identify contextual anomalies within IAQ data sets. Within our 

model, the LSTM component focuses on learning the common 

patterns found in CO2 time sequence data. Conversely, the AE 

component reduces data dimensionality and calculates the 

optimal reconstruction error for each time sequence. By 

establishing a threshold based on the average reconstruction 

error observed in normal time-series data, we can detect 

contextual anomalies that deviate from the expected pattern. 

Therefore, our approach capitalizes on the complementary 

Strengths of LSTM and AE for anomaly detection in IAQ data 

sets. We also have plans to expand our research in various 

directions. Firstly, we aim to incorporate sensor data from 

additional sources, such as specific matter, temperature, and 

relative humidity, to broaden the scope of our present efforts. 

Additionally, we intend to apply our proposed approach to 

different application domains to evaluate its generalizability and 

practicality. 

REFERENCES 

[1] He, J., Xu, L., Wang, P., Wang, Q., 2017. A high precise e-nose 

for daily indoor air quality monitoring in living environment. 

Integration 58, 286–294.  

[2] Motlagh, N.H., Zaidan, M.A., Lagerspetz, E., Varjonen, S., 

Toivonen, J., Mineraud, J., Rebeiro-Hargrave, A., Siekkinen, 

M., Hussein, T., Nurmi, P., et al., 2019. Indoor air quality 

monitoring using infrastructure-based motion detectors, in: 

2019 IEEE 17th International Conference on Industrial 

Informatics (INDIN), IEEE. pp. 902– 907.  

[3] Wargocki, P., Porras-Salazar, J.A., Contreras-Espinoza, S., 

Bahnfleth, W., 2020. The relationships between classroom air 

quality and children’s performance in school. Building and 

Environment 173, 106749.  

[4] Maduranga, M., Kosgahakumbura, K., Karunarathna, G., 2020. 

Design of an iot based indoor air quality monitoring system 

[5] Peng, Z., Jimenez, J.L., 2021. Exhaled co2 as a covid-19 

infection risk proxy for different indoor environments and 

activities. Environmental Science & Technology Letters 8, 392–

397. 

[6] Zeng, Y., Chen, J., Jin, N., Jin, X., Du, Y., 2022. Air quality 

forecasting with hybrid lstm and extended stationary wavelet 

transform. Building and Environment 213, 108822. 

[7] Franco, A., Leccese, F., 2020. Measurement of co2 

concentration for occupancy estimation in educational buildings 

with energy efficiency purposes. Journal of Building 

Engineering 32, 101714.  

[8] Zhu, Y., Al-Ahmed, S.A., Shakir, M.Z., Olszewska, J.I., 2022. 

Lstm based iot-enabled co2 steady-state forecasting for indoor 

air quality monitoring. Electronics 12, 107.  

[9] Wei, Y., Jang-Jaccard, J., Sabrina, F., Alavizadeh, H., 2020. 

Largescale outlier detection for low-cost pm 1.0 sensors. IEEE 

Access 8, 229033–229042. 

[10] Kumari, S., Singh, S.K., 2022. Machine learning-based time 

series models for effective co2 emission prediction in india. 

Environmental Science and Pollution Research , 1–16.  

[11] Kallio, J., Tervonen, J., Räsänen, P., Mäkynen, R., Koivusaari, 

J., Peltola, J., 2021. Forecasting office indoor co2 concentration 

using machine learning with a one-year dataset. Building and 

Environment 187, 107409.  

[12] Tekler, Z.D., Ono, E., Peng, Y., Zhan, S., Lasternas, B., Chong, 

A., 2022. Robod, room-level occupancy and building operation 

dataset, in: Building Simulation, Springer. pp. 2127–2137.  

[13] Tekler, Z.D., Ono, E., Peng, Y., Zhan, S., Lasternas, B., Chong, 

A., 2022. Robod, room-level occupancy and building operation 

dataset, in: Building Simulation, Springer. pp. 2127–2137.  

[14] Christopher Davies, Matthew Martinez, Catalina Fernández, 

Ana Flores, Anders Pedersen. Applying Recommender Systems 

in Educational Platforms. Kuwait Journal of Machine Learning, 

2(1). Retrieved from 

http://kuwaitjournals.com/index.php/kjml/article/view/171 

[15] Ahn, J., Shin, D., Kim, K., Yang, J., 2017. Indoor air quality 

analysis using deep learning with sensor data. Sensors 17, 2476.  

[16] Tagliabue, L.C., Cecconi, F.R., Rinaldi, S., Ciribini, A.L.C., 

2021. Data driven indoor air quality prediction in educational 

facilities based on iot network. Energy and Buildings 236, 

110782.  

[17] Wambura, S., Huang, J., Li, H., 2020. Long-range forecasting in 

feature-evolving data streams. Knowledge-Based Systems 206, 

106405.  

[18] Sharma, P.K., Mondal, A., Jaiswal, S., Saha, M., Nandi, S., De, 

T., Saha, S., 2021. Indoairsense: A framework for indoor air 

quality estimation and forecasting. Atmospheric Pollution 

Research 12, 10– 22.  

[19] Xu, C., Chen, H., Wang, J., Guo, Y., Yuan, Y., 2019. Improving 

prediction performance for indoor temperature in public 

buildings based on a novel deep learning method. Building and 

Environment 148, 128–135.  

[20] Jung, Y., Kang, T., Chun, C., 2021. Anomaly analysis on indoor 

office spaces for facility management using deep learning 

methods. Journal of Building Engineering 43, 103139. 

[21] Hossain, E., Shariff, M.A.U., Hossain, M.S., Andersson, K., 

2020. A novel deep learning approach to predict air quality 

index, in: Proceedings of International Conference on Trends in 

Computational and Cognitive Engineering: Proceedings of 

TCCE 2020, Springer. pp. 367–381.  

[22] Ottosen, T.B., Kumar, P., 2019. Outlier detection and gap filling 

methodologies for low-cost air quality measurements. 

Environmental Science: Processes & Impacts 21, 701–713. 

[23] Li, J., Izakian, H., Pedrycz, W., Jamal, I., 2021. Clustering-

based anomaly detection in multivariate time series data. 

Applied Soft Computing 100, 106919. 

[24] Zusman, M., Gassett, A.J., Kirwa, K., Barr, R.G., Cooper, C.B., 

Han, M.K., Kanner, R.E., Koehler, K., Ortega, V.E., Paine 3rd, 

R., et al., 2021. Modeling residential indoor concentrations of 

pm2. 5, no2, nox, and secondhand smoke in the subpopulations 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 10s 

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7618 

Article Received: 01 June 2023 Revised: 27 July 2023 Accepted: 11 August 2023 

___________________________________________________________________________________________________________________ 

 

    195 

IJRITCC | September 2023, Available @ http://www.ijritcc.org 

and intermediate outcome measures in copd (spiromics) air 

study. Indoor air 31, 702– 716 

[25] Jolles, J.W., 2021. Broad-scale applications of the raspberry pi: 

A review and guide for biologists. Methods in Ecology and 

Evolution 12, 1562–1579.  

[26] Liu, Y., Pang, Z., Karlsson, M., Gong, S., 2020. Anomaly 

detection based on machine learning in iot-based vertical plant 

wall for indoor climate control. Building and Environment 183, 

107212.  

[27] Dehaq E. Mohsen, Ehsan M. Abbas, Maan M. Abdulwahid. 

(2023). Performance Analysis of OWC System based (S-2-S) 

Connection with Different Modulation Encoding. International 

Journal of Intelligent Systems and Applications in Engineering, 

11(4s), 400–408. Retrieved from 

https://ijisae.org/index.php/IJISAE/article/view/2679 

[28] Yin, C., Zhang, S., Wang, J., Xiong, N.N., 2020. Anomaly 

detection based on convolutional recurrent autoencoder for iot 

time series. IEEE Transactions on Systems, Man, and 

Cybernetics: Systems 52, 112– 122.  

[29] Nguyen, H.D., Tran, K.P., Thomassey, S., Hamad, M., 2021. 

Forecasting and anomaly detection approaches using lstm and 

lstm autoencoder techniques with the applications in supply 

chain management. International Journal of Information 

Management 57, 102282.  

[30] Kang, J., Kim, C.S., Kang, J.W., Gwak, J., 2021. Anomaly 

detection of the brake operating unit on metro vehicles using a 

one-class lstm autoencoder. Applied Sciences 11, 9290. 

[31] Liu, P., Sun, X., Han, Y., He, Z., Zhang, W., Wu, C., 2022. 

Arrhythmia classification of lstm autoencoder based on time 

series anomaly detection. Biomedical Signal Processing and 

Control 71, 103228. 

http://www.ijritcc.org/

