
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7618

Article Received: 01 June 2023 Revised: 27 July 2023 Accepted: 11 August 2023

 182

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Fusing Long Short-Term Memory and Autoencoder

Models for Robust Anomaly Detection in Indoor Air

Quality Time-Series Data

M.Veera Brahmam1, S.Gopikrishnan2
1School of Computer Science and Engineering

VIT-AP University

Amaravati, AP, India

veerabrahmam.20phd7156@vitap.ac.in
2School of Computer Science and Engineering

VIT-AP University

Amaravati, AP, India

gopikrishnan.s@vitap.ac.in

 Abstract—People spend most of their time indoors by choice or by need. Carbon dioxide (CO2) accumulation can cause various adverse

health effects, including vertigo, headache, and fatigue. Therefore, monitoring indoor air quality(IAQ) is necessary for various health reasons.

The market is flooded with air quality monitoring devices. However, the ordinary public does not make use of them because they are expensive

and difficult to obtain. Several research studies have been carried out to monitor indoor air quality with the help of the Internet of Things(IoT),

which has greatly simplified the method for monitoring IAQ. In this research, we offer an improved IoT based IAQ monitoring system with

AI-powered recommendations. Our suggested system relies on the Message Queuing Telemetry Transport(MQTT) protocol for communication

between IoT devices. In addition, the gathered CO2 occupancy data is used together with the deep learning approach of Long Short-Term

Memory and Autoencoder (LSTM-AE) to detect anomalies or outliers in CO2 concentrations. Due to a close connection between air quality

and human health and well-being, the detection of anomalies in the data of IAQ has emerged as an essential topic of study. Anomalies requiring

the observation of correlations spanning numerous data points (i.e., often referred to as long-term dependencies) were not detectable by

conventional statistical and basic machine learning (ML) related techniques in the sector of IAQ. Hence this research uses the LSTM-AE

model to address this issue. In comparison to previous similar models, our experimental results on a generated CO2 occupancy time series

reveal a robust and powerful accuracy of 99.49%.

Keywords- IoT; Deep Learning; LSTM; Autoencoder; Anomaly detection; IAQ.

I. INTRODUCTION

People spend most of their time inside, thus their health,

comfort, and overall well-being are significantly impacted by the

air quality within buildings and other structures. For example,

allergies, asthma, and other respiratory problems can be brought

on or worsened by poor indoor air quality (IAQ). Additionally,

it may result in tiredness, headaches, vertigo, and nausea [1].

Gases, particulate matter, mould, bacteria, and other

contaminants can impact IAQ. Both indoor and outdoor

environments can suffer from poor indoor air quality (IAQ) due

to various sources of pollution. Outdoor pollutants, including

emissions from vehicles and industries, can enter buildings

through windows and doors [2]. On the other hand, indoor

pollution can arise from combustion appliances, building

materials, cleaning products, and office equipment. One widely

used indicator for assessing IAQ is CO2, which is present in

abundance [3, 4]. Notably, CO2 is generated whenever an

individual exhales.

Emerging research suggests a connection between CO2

levels and susceptibility to COVID-19 infection [5]. As infected

Individuals release both pathogens and CO2 through

exhalation, monitoring indoor CO2 concentrations becomes a

dependable indicator of potential infection risk. Consequently,

the measurement of CO2 levels has been proposed as an indirect

means to assess the likelihood of transmitting infectious

respiratory diseases [6]. Investigating indoor carbon dioxide

(CO2) levels also impact occupancy tracking, which can impact

buildings’ energy usage [7]. The utilization of CO2 sensors to

determine occupancy has been explored in various studies and

holds promise [8, 9, 10]. Precise monitoring of building

occupancy plays a vital role in achieving energy efficiency, with

potential energy savings ranging from 30% to 40% in certain

instances [10]. Moreover, comprehending the indoor CO2 levels

is crucial for safeguarding the well-being and safety of

occupants, as government regulations and industry guidelines set

distinct permissible concentration thresholds for indoor spaces.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7618

Article Received: 01 June 2023 Revised: 27 July 2023 Accepted: 11 August 2023

 183

IJRITCC | September 2023, Available @ http://www.ijritcc.org

As an example, CO2 concentration is typically restricted to a

maximum of 1000 ppm in many applications [11]. However,

European standards set the permissible limit for CO2 in indoor

IAQ at 1500 ppm [12]. Considering that occupants exhale a

significant amount of CO2 , it is crucial to design an effective

anomaly detection system to avoid biased decisions when

analyzing the dataset. The rise of the Internet of Things has made

affordable sensors and open-source IoT platforms widely

accessible, enabling their combination with artificial intelligence

technologies in IAQ systems. This research therefore provides a

sophisticated method for detecting anomalies in CO2

concentrations. There are two major contributions made by this

paper:

• The authors of this study used Internet of Things (IoT)

sensors to create a system for continuously monitoring

indoor air quality.

• The authors used LSTM-AE model to predict or forecast

future CO2 concentration levels based on historical or

existing data. In order to understand patterns in

sequences, the model employs a LSTM network made

up of several LSTM units. To further enhance training

effectiveness, AE reduces the dimensionality of data.

• The performance of our proposed model is compared

with other similar approaches that utilize various aspects

of LSTM and/or AE. We conducted experiments using

a comprehensive set of evaluation criteria, and the

results show that our model is capable of detecting

anomalies effectively, achieving a detection accuracy of

over 99%.

The remainder of the paper is divided into five sections:

Section 2 presents the related works on data prediction and

anomaly detection in sensor networks. Section 3 presents the

preliminaries section. The problem formulation for outlier

detection in IoT is described in Section 4. Section 5 outlines the

recommended approach and technique. Section 6 presents the

experimental results and evaluation. Section 7 comes to end with

conclusion section.

II. RELATED WORKS

Kallio et al. [11] compared two different approaches for

predicting CO2 levels. They found that a decision tree

outperformed an Artificial Neural Network (ANN) regarding

energy consumption and computational efficiency. Additionally,

they discovered that using a one-minute forward predicting time-

window technique resulted in the accuracy higher than that of

the accuracy achieved with ten- or fifteen-minute time windows.

However, the inclusion of additional factors such as humidity

and temperature did not affect the accuracy of the CO2 forecast.

Additionally, the researchers developed two neural network-

based systems for predicting CO2 concentration and one system

for forecasting the comfort conditions during the daytime,

considering temperature, humidity, and CO2.

Mumtaz et al. [13] suggested an approach for IAQ

assessment that provides users access to a web portal and a

mobile application that visually represents the air quality. They

determined the IAQ level based on five air quality

parameters(CO2, CO, NO2, CH4, and PM2.5). The authors ranked

IAQ conditions using neural networks and achieved a 99.1

percent accuracy rate. Future CO2 concentrations were also

predicted using Long-Short-Term Memory (LSTM). However,

the achieved IAQ classification relied on the data collected at

outdoors, which is affected by numerous other factors and may

need to be revised for an indoor environment. In addition, sensor

lifetime and calibration factors may be complex for their

technique.

In contrast, Ahn et al. [14] developed an IAQ prediction

system using LSTM and its variant Gated Recurrent Unit

(GRU). They found that GRU outperformed LSTM with an

accuracy rate of up to 84.69 percent. However, the optimization

of the time step size for this model took approximately 38 hours.

Furthermore, Tagliabue et al. [15] proposed a data collection

architecture using the IoT network and introduced two

prediction models. One model forecasted the comfortable

conditions of temperature, humidity, and CO2 for a day, while

the other model predicted CO2 concentration using neural

networks. Their research revealed that the Mean Square Error

(MSE) for the test period was approximately 75 ppm (10.6%)

compared to the average CO2 content.

Using a deep neural network, Wambura et al. [16] proposed

the One Sketch Fits All Time (OFAT) technique for solving the

problem of accurate long-range forecasts inside high-

dimensional feature-evolving time series. The suggested

approach addresses the difficulty caused by the non-stationary

nature of feature-evolving time series, which causes the length

of the input sequence (rows) to fluctuate as new data points are

added, and their feature values (columns) evolve. Experiments

conducted on real-world data sets and a stringent evaluation

demonstrated that OFAT has a quick processing time,

dependable performance, and precise recognition. However, one

of the shortcomings of this method is that it needs to account for

interactive real-time forecasting in data streams.

Sharma et.al [17] introduced a cost-effective framework,

IndoAirSense, to predict and forecast indoor air quality (IAQ) in

specific classrooms at a university. To estimate real-time indoor

air quality (IAQ), the researchers employed a combination of

multilayer perceptron (MLP) and extreme Gradient Boosting

Regression (XGBR). Additionally, they utilized a modified

version of the long short-term memory (LSTM) model, known

as LSTM without a forget gate (LSTM-wF), to simplify the

prediction of indoor air pollutants. However, due to the absence

of the forget gate in this model, which is responsible for

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7618

Article Received: 01 June 2023 Revised: 27 July 2023 Accepted: 11 August 2023

 184

IJRITCC | September 2023, Available @ http://www.ijritcc.org

maintaining long-term memory, it was unable to effectively

identify anomalies in the time-series dataset.

 Xu et al. [18] presented an LSTM model with an integrated

error correction model (ECM) to improve the accuracy of indoor

temperature predictions specifically in public buildings. When

re-predicting the testing data set, they construct an ECM by co-

integrating the data from predictions and actual measurements in

the same sequence. Also, Jung et al. [19] applied LSTM for

indoor environment prediction in facility management. They

collected data on interior temperature, humidity, and lighting

from three different Internet of Things (IoT) sensors and trained

LSTM to identify instances in which those readings departed

from a threshold.

Hossain et al. [20] introduced a dual prediction approach for

forecasting the daily air quality index (AQI) in two major cities

of Bangladesh, Dhaka, and Chattogram. The first and second

hidden layers of the resulting prediction model were respectively

a gated recurrent unit (GRU) and a long short-term memory

(LSTM) variant of the recurrent neural network (RNN) model.

The results showed that when compared to utilising either a

GRU or LSTM model, their hybrid model performed better

overall and more closely captured the AQI patterns in both

locations.

Ottosen and Kumar [21] presented a method for detecting

anomalies in a low-cost air quality dataset. They proposed two

techniques: one using K-nearest neighbors (KNN) and the other

utilizing autoregressive integrated moving average (ARIMA).

The KNN approach focused on identifying point anomalies by

computing the average Euclidean distance between each point

and the points that remained, assigning a score to indicate the

level of anomaly for each point. On the other hand, ARIMA was

employed for identifying contextual anomalies by comparing the

model and measurement data points and Anomaly scores were

calculated based on the absolute value of the difference between

the observed data and the model predictions. By applying K-

means clustering, the dataset was divided into two clusters,

distinguishing between normal points and contextual anomalies.

 Li et al. [22] suggested a technique using fuzzy C-means

clustering. Their methodology involved utilizing a

reconstruction criterion to reconstruct the optimal cluster centers

and partition matrix. This reconstruction was performed using

multivariate subsequences of the data. To establish a threshold

for identifying outliers in the multivariate data, they employed a

fitness function based on the reconstruction error in conjunction

with the particle swarm optimization (PSO) algorithm.

However, it should be noted that their proposed algorithm faced

challenges in uncovering the underlying structure of high-

dimensional multivariate time series, as the PSO algorithm

tended to become trapped in local optima.

It is our contention that the current studies in this area have a

number of shortcomings. One of these is that traditional time-

series techniques, like ARIMA, and machine learning methods

that rely on regression (e.g., K-means or KNN) frequently

depend on human experts to extract features from the data, which

can be time-consuming and costly. Furthermore, these

approaches are often affected by outliers and have difficulty

dealing with large data sets and unknown probability

distributions, leading to poor performance.

Leveraging LSTM in time-series prediction models allows

for the anticipation of future values by leveraging patterns

inherent in sequential data., leading to more accurate predictions

and better decision-making capabilities such as anomaly

detection. In contrast to current approaches, our proposed model

incorporates AE and can deliver significantly improved results

when handling complex auto-correlation sequences with large

datasets, even when dealing with unpredictable data

distributions.

III. PRELIMINARIES

A. LSTM

Building upon RNNs, LSTM architecture offers the capacity

for "long-term memory," allowing the current neural node to

access a comprehensive list of all past information, rather than

just a single point in time.

• Figure 1 presents an illustration of an LSTM unit, which

comprises four essential components: a cell, an input

gate, an output gate, and a forget gate. These

components work together to regulate the flow of

information within the cell across different time

intervals. The cell serves as a storage unit, preserving.

• Values over time, while the input gate, output gate, and

forget gate control the movement of information into

and out of the cell..

• The Cell State represents the network's current long-

term memory, holding a collection of past information.

• The preceding Hidden State corresponds to the output

generated by the LSTM unit in the previous time step

and can be seen as short-term memory.

• Lastly, the input data represents the value received at the

current time step.

Figure 1. LSTM working mechanism

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7618

Article Received: 01 June 2023 Revised: 27 July 2023 Accepted: 11 August 2023

 185

IJRITCC | September 2023, Available @ http://www.ijritcc.org

1) Forget gate:

In an LSTM neural network architecture, the forget gate is a

key component that controls the flow of information through the

memory cell, allowing the LSTM to selectively retain or discard

information from previous time steps. The forget gate is

responsible for determining how much of the previous memory

cell state should be forgotten or erased, based on the input at the

current time step and the internal state of the LSTM.

Mathematically, the forget gate in an LSTM is typically

implemented as a sigmoid activation function applied element-

wise to the weighted sum of the input at the current time step and

the output from the previous time step. The sigmoid function

maps the weighted sum to a value between 0 and 1, where 0

indicates complete forgetfulness and 1 indicates complete

retention. This allows the LSTM to control the amount of

information to retain or forget from the previous memory cell

state.

The forget gate is defined by the following equations in an

LSTM:

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1)

 Where: 𝑓𝑡 is the forget gate at time step t. 𝜎 is sigmoid

activation function 𝑊𝑓 is the weighted matrix for the forget gate.

ℎ𝑡−1 is the output from the previous time step t. 𝑥𝑡 is the input at

current time step. 𝑏𝑓 is the bias for bias term for the forget gate.

The output gate from the forget gate is then used to modulate

the previous memory cell state 𝐶𝑡−1 element-wise, effectively

erasing the information that needs to be forgotten.

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 (2)

By using the forget gate, an LSTM can selectively retain or

discard information from previous time steps, allowing it to

capture long-term dependencies in sequential data and mitigate

the vanishing or exploding gradient problem often encountered

in recurrent neural networks.

2) Input gate:

The input gate is responsible for determining how much new

input information should be added to the cell state. It takes the

current input data and the previous hidden state as inputs and

passes them through a sigmoid activation function to generate a

gate output vector with values between 0 and 1. This gate output

vector determines the amount of new input information that

should be allowed to enter the cell state.

Mathematically, the computation of the input gate in an

LSTM cell can be represented as follows:

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ 𝑥𝑡 + 𝑈𝑖 ⋅ ℎ𝑡−1 + 𝑏𝑖) (3)

 Where,

𝑖𝑡 is the input gate output at time step t

𝑥𝑡 is the input data at time step t

ℎ𝑡−1 is the hidden state from previous time step (t-1)

𝑊𝑖,𝑈𝑖 and 𝑏𝑖 are the learnable weights and biases associated

with the input gate

The equation below illustrates the process of determining the

proportion of new information, denoted as " 𝐶̃𝑡 ", among the

presented information.

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐[ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑐) (4)

Where,

𝑊𝑐 is the weight matrix of the input gate

The bias of the input gate is denoted as 𝑏𝑐

tanh is the activation function utilized in the range of [-1,1]

where the negative values are used to reduce the impact.

To control the amount of the additional information, these

 Two processes () are multiplied point wise.

3) Outpiut gate:

The output gate in LSTM (Long Short-Term Memory) is one

of the key components that regulates the flow of information

within the LSTM unit. Its primary function is to control the

output produced by the LSTM cell at a particular time step.

The output gate takes into account the current input, the

previous hidden state, and the current cell state. It computes a

sigmoid activation function on a combination of these inputs.

The sigmoid function outputs values between 0 and 1,

representing the extent to which the information should be

allowed to pass through the output gate.

Mathematically, the output gate can be represented as

follows:

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (5)

 Where,

𝑜𝑡=output gate activation at time step t.

𝜎=sigmoid activation function.

𝑊𝑜= weight matrix associated with the output gate.

ℎ𝑡−1=previous hidden state

𝑥𝑡=current input

𝑏𝑜=bias term associated with the output gate

The output gate determines which parts of the current cell

state should be exposed as the output. It applies an element-wise

multiplication (also known as a Hadamard product) between the

output gate activation and the cell state. This selectively controls

the information flow and filters out irrelevant or less important

details, allowing the LSTM unit to focus on the most relevant

information. Mathematically, the output of the LSTM cell is

computed as follows:

ℎ𝑡 = 𝑜𝑡 ⋅ 𝑡𝑎𝑛ℎ(𝐶𝑡) (6)

 Where,

ℎ𝑡 =output of the LSTM cell at time step t.

𝐶𝑡=current cell state.

By adjusting the output gate activation, the LSTM can

control the trade-off between preserving long-term memory and

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7618

Article Received: 01 June 2023 Revised: 27 July 2023 Accepted: 11 August 2023

 186

IJRITCC | September 2023, Available @ http://www.ijritcc.org

producing the most relevant output for the current task. The

output gate mechanism allows the LSTM to selectively expose

important information to subsequent layers or use it for

prediction purposes while suppressing irrelevant or noisy details.

B. Autoencoder

An AE, short for autoencoder, is an unsupervised neural

network and is designed to discover useful representations of

unlabeled data. Its purpose is to train the neural network to filter

out irrelevant or insignificant data, often referred to as "noise,"

and generate an efficient encoding of the input data set. A typical

AE consists of input and output layers, as well as multiple hidden

layers. Encoding, latent space representation, decoding, and

reconstruction loss are the four main functions of an AE, as

shown in Figure 2.

Figure 2. AE Working mechanism

1) Encoding:

The input data is fed into the encoder, typically a series of

fully connected layers. Each layer applies linear transformations

followed by non-linear activation functions to extract and

capture important features of the input data. The encoder

gradually reduces the dimensionality of the input and maps it to

the lower-dimensional latent space.

2) Latent space representation:

The latent space representation is a compressed version of

the input data, capturing the most relevant and essential features.

It acts as a bottleneck layer, forcing the network to learn a more

compact representation.

3) Decoding:

The decoder takes the latent space representation and aims to

reconstruct the original input data. Like the encoder, it typically

consists of fully connected layers with non-linear activations.

The decoder’s purpose is to learn to generate an output that

closely resembles the input.

4) Reconstruction loss:

During training, the auto encoder compares the reconstructed

output from the decoder with the original input and calculates a

reconstruction loss, which quantifies the dissimilarity between

them. Common loss functions used for reconstruction include

mean squared error (MSE), mean absolute error(MAE), or

binary cross-entropy, depending on the nature of the input data.

To minimize the gap between the original and reconstructed

inputs, a standard AE model, as shown in equation 7, will

compute a reconstruction loss (L). This reconstruction loss is

often used for the job of spotting outliers.

𝐿(𝑥 − 𝑥̂) =
1

𝑛
∑𝑛

𝑡=1 |𝑥𝑡 − 𝑥̂𝑡| (7)

 Where,

x= input

𝑥̂=output

n=number of training data set samples.

However, in our model, the approach has been broadened to

calculate a reconstruction loss as shown in equation 8.

𝑥𝑖 =
1

𝑛
∑𝑛

𝑛=1 |𝑥𝑖 − 𝑥̂𝑖| (8)

𝑛 = {
𝑖 ≤

𝑁+1

2

𝑁 − 𝑖 + 1 𝑛 >
𝑁+1

2

 (9)

 Where,

N= total number of samples

𝑛 = 𝑛𝑡ℎ Sample

 𝑋𝑖 = 𝑥1, , 𝑥𝑖

The authors use the formula10 to get the reconstruction loss

 For all-time series samples:

𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑙𝑜𝑠𝑠 =
1

𝑁
∑1

𝑁=𝑖 𝑥𝑖 (10)

 Where,

 N= number of samples

 x= reconstruction loss calculated for every sample

IV. PROBLEM FORMULATION

Using IoT sensors, this study aims to monitor IAQ and CO2

concentration. The authors also measured the change in

Particulate Matter (PM) in the presence of a room occupant, but

the PM level remained virtually unchanged. Using Pearson's r =

0.01, and a significance level of p = 0.91, the experiment's

findings [23] showed a moderate correlation between indoor and

outdoor PM levels. A person's PM levels can fluctuate due to

routine indoor activities like desk work or leisure whereas CO2

is the most prevalent indoor pollutant associated with high

population density. According to the data collected, the rate of

change of CO2 is substantially higher than that of PM.

Therefore, the authors utilize CO2 as an indicator of IAQ in this

study. Our model’s LSTM networks consist of numerous LSTM

units that can preserve significant feature values in a sequence.

The LSTM units work together to understand each sequence’s

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7618

Article Received: 01 June 2023 Revised: 27 July 2023 Accepted: 11 August 2023

 187

IJRITCC | September 2023, Available @ http://www.ijritcc.org

pattern. Additionally, AE decreases data dimensions to make

training more efficient.

V. PROPOSED METHOD

This section presents our suggested approach that utilizes a

novel approach for predicting future sensor data in IoT network

with the LSTM-AE model. The authors begin by outlining their

approach, which involves creating the input sequence, and

LSTM encoder, LSTM decoder. Then they elaborate on the

training and testing phases of their model’s algorithm.

Figure 3 provides an overview of our proposed model, which

combines an LSTM neural network and an AE to create an

LSTM-AE hybrid model. In the first step, we transform the

original data set into a high-dimensional input vector of fixed

size.

Figure 3. Proposed LSTM-AE architecture

In order to map the high-dimensional input vector

representation to the low-dimensional latent space

representation, the LSTM encoder uses several LSTM units to

analyze the time-series sequence and discover patterns in the

features. In order to recover the initial fixed-length input

sequence, the LSTM decoder uses this compressed

representation in latent space. Finally, the rate of reconstruction

error is computed by comparing the output with the input.

 The time series data is created as a sequence

[𝑋1, 𝑋2, 𝑋3, . . . , 𝑋𝑛] , where each X is a fixed T-length time

window data. This means that the data is divided into multiple

windows, and each window has a fixed length of T time units.

Within each time window X, the data is represented as a

sequence[𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑡], where 𝑥𝑡 is an m-dimensional input

at time instance t. This means that the data captures m features

at each time point.

The data is then reshaped into a 2-D array, where the first

dimension represents the number of samples, and the second

dimension represents the number of time steps. This is done to

convert the time series data into a format that can be used for

training a machine learning model.

For example, if the sequence represents 𝐶𝑂2 data, the

reshaped 2-D array will have the list of samples at ten time steps,

with each time step representing the m-features captured at that

point in time. This format allows the machine learning model to

learn the patterns and relationships in the data across time and

make predictions for future time points.

A. Encoder

 The LSTM encoder functions as a layer that compresses

features into batches of time-based sequences, similar to a

folding process. This involves independent convolution

operations on the different timesteps of the feature sequences. In

order to identify the most important features in the input

sequence, the AE encoder interacts with a series of LSTM unit

cells, as depicted in figure4.

Figure 4. LSTM-Encoder

The 𝑋𝑖 time series consists of ten samples collected over ten

1-minute intervals. To prepare the data for the encoder, the 1-

dimensional data set is transformed into a 2-dimensional data

set. This is accomplished by representing the input data set as a

2D vector, where one dimension represents the ten time steps

and the other dimension represents the feature, i.e., the 𝐶𝑂2

readings. This results in a vector of 10x1, which is fed to the

encoder. The encoder’s first layer includes an LSTM network

comprising ten LSTM cell units, with each unit processing one

sample. The ten LSTM cells operate sequentially, with the first

unit passing its result to the second. The second unit determines

whether to retain or forget the previous result from the first

LSTM. If it decides to keep it, the second unit stores it in the

long-term memory and passes the information of the first sample

along with the feature information from the current sample to the

third LSTM unit. This process continues in a similar manner for

the remaining LSTM units.

In our model, the final LSTM unit receives all the significant

information from the nine preceding units. It processes all the

valuable samples and produces an output that contains

information about all relevant samples. This output is

represented as a 1x16 vector and is considered as the encoded

features. It should be noted that in our model, we have included

a Repeat Vector as the second layer to generate multiple copies

of the 1x16 encoded feature vectors, equal to the number of time

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7618

Article Received: 01 June 2023 Revised: 27 July 2023 Accepted: 11 August 2023

 188

IJRITCC | September 2023, Available @ http://www.ijritcc.org

steps. In our case, the number of time steps is ten, so the Repeat

Vector layer creates ten copies of the encoded features as a 2-

dimensional vector, which is 10x16 in size.

B. Decoder

The LSTM decoder serves the primary function of behaving

as a layer that unfolds a sequence and restores its structure after

the sequence has been folded on time steps. Figure 5 depicts in

detail how the decoder interacts with LSTM cells to replicate the

outputs.

Figure 5. LSTM-Decoder

Each 1x16 set provided to the decoder represents a single

characteristic from the original time series. This information is

passed on to a layer 3 network made up of ten LSTM cell units.

The number of features in the sequence (here, ten data points) is

reflected in the number of LSTM cells. Each LSTM cell unit

takes in an encoded feature in 1x16 form as input and outputs a

learned representation of that feature in the same vector size

(1x16). The time distributed layer generates a 1x16 output

vector, which is used in a matrix multiplication with the 10x16

output vector. This algorithm yields a 10x1 vector representing

the final findings.

C. Anomaly Detection

An anomaly or outlier is an observation that doesn’t fit with

the rest of the data. A certain threshold can be used as a criterion

when a finding is out of the ordinary. Outliers in a data set are

called anomalies since they don't fit the typical distribution.

Our model is trained on a data set with 𝐶𝑂2 values within the

typical range by applying this threshold-based anomaly

detection method. This is necessary for calculating the

percentages of inaccuracy in reconstruction error for the normal

𝐶𝑂2 values. After complete training, the maximum

reconstruction error rate is chosen, and the various

reconstruction errors have been computed across all samples.

Once a threshold is established, the entire range of 𝐶𝑂2 values is

included in the testing data set. For every sample within the test

set, the reconstruction error rate is computed for each 𝐶𝑂2 value.

An anomaly sample is one in which the rate of reconstruction

error exceeds a threshold.

The proposed model's method is described in detail in

Algorithm 1. There are essentially two goals to train for. The

primary goal is to lessen the amount of distortion introduced

during reconstruction, making it so that the output created from

the simplified input representation is a close approximation of

the original.

Algorithm1

INPUT: Time series data from 𝐶𝑂2 occupancy data

 Set

OUTPUT: Reconstruction loss or errors loss

1: Begin

1:Training set (𝑋i)={𝑥0, 𝑥1, … … … , 𝑥n}

2:Test set(𝑋i′) ={𝑥0′, 𝑥1′, … … , 𝑥m′}

3: Time steps=t

4: 𝑋i = {𝑥i, … … . . , 𝑥i+t} based on ‘t’ time steps(t=10) , where

 i=0 to (n-t), ‘n’ is the total training samples.

5: 𝑋i′={𝑥i
′, … … … , 𝑥′i+t} based on ‘t’ time steps(t=10) , where

 i=0 to (m-t), ‘m’ is total testing samples.

 /* Training of LSTM-AE */

6: 𝑋î =LSTM-AE(𝑋i) // LSTM-AE model is applied on 𝑋i ,

 where i=0 to (n-t)

 7: error or reconstruction loss=∑ |𝑋î − 𝑋i|

 /* Calculation of reconstruction error for 𝑋i */

 Assuming ’arr’ is the 2D matrix

 8: errorloss arr= errorloss arr[i, i:i+t]= |𝑋î − 𝑋i|

/* Calculation of reconstruction error for all trained data */

 9: errorloss[i]=
∑(errorloss arr[:,i]

∑(error loss arr[:,i]!=0)
 ,

 Where,

 i=0 to n,.

 ∑(errorloss arr[: , i] = sum of all the data from column i

 ∑(errorloss arr[: , i]!=0)= sum of non-zero elements of

 Column i.

10: End

Second, our model learns from training data that includes the

normal reconstruction error rate of CO2 points.

To begin the training phase, the original data set needs to be

transformed into time-series sequences. Training data set is

represented by data set Xi. In our model, each sequence consists

of ten CO2samples on ten-time steps. The model's training i.e.,

LSTM-AE training begins by inputting each sequence to the

encoder. During this process, a single LSTM is trained

sequentially on each sample in the sequence. when each

sequence training is finished, the encoder’s latent space

rearranges the combined data points into an encoded feature

representation in 1-D. The encoded feature is duplicated using

the Repeat Vector layer to create multiple copies.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7618

Article Received: 01 June 2023 Revised: 27 July 2023 Accepted: 11 August 2023

 189

IJRITCC | September 2023, Available @ http://www.ijritcc.org

The decoder uses LSTM cells, where the number of LSTM

cells is proportional to the number of time steps and encoded

features, to produce the output. Each LSTM cell processes a

single encoded feature, resulting in a set of vectors. At the Time

Distributed Dense Layer, the output is created as a single-

dimensional vector based on what comes out of processing by

all LSTM cells.

The steps from 7-9 in algorithm1 show the reconstruction

error loss between output and input. The model’s weights and

parameters are modified using back propagation approach.

The reconstruction error loss employed in this research is the

mean absolute error (MAE) method as shown in the equation11.

𝑒𝑟𝑟𝑜𝑟𝑙𝑜𝑠𝑠(𝑀𝐴𝐸) =
∑𝑛

𝑖=1 ||𝑥𝑖−𝑥𝑖||

𝑛
 (11)

 Where,

n= total number of samples

𝑥𝑖=original input

𝑥̂𝑖=output produced by the encoder

In order to minimize the reconstruction error loss, the model

is trained on all sequence data. The activation function "tanh"

was employed in the tenth long short-term memory (LSTM) cell,

and its output was captured by a network of 16 neurons in the

encoder's latent space. There are two dropout layers (rate = 0.2)

in both the encoder and the decoder. A Repeat vector layer is

utilized between the encoder and decoder, and a Time

Distributed dense layer is used as the final intermediate step

before the output layer.

The time series input to the LSTM encoder consists of ten

data points, each representing ten time steps. This time, all ten

data points span the whole range of CO2values, which was not

the case earlier. The LSTM decoder takes an input sample and

outputs a time series consisting of 10 data points at ten-time steps

after encoding and decreasing the feature representation of the

sample.

For every data point, a reconstruction error rate is computed

and subsequently compared to a threshold value (Thr). The

calculation of the reconstruction loss follows the same

methodology as described during the training process.. A data

point is regarded as an anomaly if the value of the resulting

reconstruction loss is greater than a predetermined threshold

(Thr), and normal otherwise. Equation 12 illustrates this

classification procedure.

𝑋′ = {
𝑋′𝑖𝑠 𝑎𝑛𝑜𝑚𝑎𝑙𝑦, 𝑖𝑓𝑡𝑒𝑠𝑡𝑎𝑟𝑟[𝑖] > 𝑇ℎ𝑟

𝑋′𝑖𝑠 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (12)

Here Thr=μ + 2σ and μ is nothing but reconstruction loss or

errorloss[i] in Algorithm1. If any test data testarr[i]) >Thr, then

it is called as anomaly.

D. Hardware and software components

1) Hardware components:

SCD30, CO2 sensor, BME 680 IAQ sensor, ESP 8266 Wi-fi

module and Raspberry Pi 3B single-board are the hardware

components used in this study.

a) SDC30 𝐶𝑂2 sensor:

The SCD30 is a very precise nondispersive infrared (NDIR)

sensor for measuring CO2 characteristics.

b) BME 680 IAQ sensor:

The BME680 sensor is a popular environmental sensor that

is capable of measuring multiple parameters such as

temperature, humidity, pressure, and volatile organic

compounds (VOCs) in the air. It is manufactured by Bosch

Sensortec and is often used in various applications including

indoor air quality monitoring, weather stations, and Internet of

Things (IoT) devices.

c) ESP 8266:

The ESP 8266 is a widely used and popular Wi-Fi module

that is designed for Internet of Things (IoT) applications. It is

manufactured by Espressif Systems and has gained popularity

due to its low cost, ease of use, and extensive community

support. The ESP8266 module is capable of providing wireless

connectivity to micro controllers or other embedded systems,

enabling them to connect to Wi-Fi networks and communicate

with other devices or servers.

2) Software:

a) Message Queuing Telemetry Transport (MQTT):

It is a reliable machine-to-machine (M2M) protocol designed

for Internet of Things applications. TT follows a client-server

model, where MQTT clients connect to an MQTT broker to

exchange messages. Clients can be sensors, devices, or

applications, while the broker acts as a message broker or

intermediary that routes messages between clients. MQTT uses

a publish-subscribe model, where clients can publish messages

to topics and subscribe to receive messages from topics of

interest.

b) Node-Red:

It is an open-source utility for connecting hardware devices,

APIs, and other IoT services using a flow-based architecture.

The MQTT node of Node-Red can subscribe to MQTT and

cloud data and store it in a database. Using the powers of visual

programming, Node-Red can identify system faults such

as sensor failure.

c) Influxdb:

InfluxDB, developed by the Influx Data organization, is a

time series database chosen for this design due to its

compatibility with the Node-RED tool and its capability to

handle timestamped data collection.

d) Grafana:

 It is a dashboard that helps you exhibit our data and a tool

for viewing and analysing time series.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7618

Article Received: 01 June 2023 Revised: 27 July 2023 Accepted: 11 August 2023

 190

IJRITCC | September 2023, Available @ http://www.ijritcc.org

All the simulations are carried out using matlab.it is possible

to load data from an InfluxDB database into MATLAB and then

display it on a Grafana dashboard. Here’s a general outline of the

process:

• Connect to the InfluxDB database in MATLAB:

MATLAB provides the "Database Toolbox" that

supports connecting to various databases, including

InfluxDB. We can use the database function to establish

a connection to our InfluxDB database.

• Query data from InfluxDB: Once connected, we can use

SQL-like queries (InfluxQL) or the InfluxDB Query

Language (Flux) to retrieve data from our database.

MATLAB provides functions such as fetch or fetch2 to

execute queries and retrieve the data as a MATLAB

table or structure.

• Manipulate and analyze data in MATLAB: MATLAB

offers a wide range of data analysis and manipulation

capabilities. We can process the retrieved data, perform

calculations, apply algorithms, and generate

visualizations using MATLAB’s built-in functions or

toolboxes.

• Export data to Grafana: Once We have processed and

prepared our data in MATLAB, We can export it to

Grafana. Grafana supports various data sources,

including InfluxDB. We will need to set up a data source

in Grafana and configure it to connect to our InfluxDB

database. Then, we can create a new dashboard in

Grafana and use the data source to populate the

visualizations with the data we exported from

MATLAB.

Both sensors are linked to Wi-Fi modules, as shown in

Figure 6 of the system architecture for this design. Using the

Arduino programming language, the sensors and Wi-Fi modules

are configured to communicate to the Wi-Fi gateway. Due to its

flexible and potent processing performance, Raspberry Pi is used

as a hub that communicates with IoT applications[24]. Node-

Red, influxdb, and Grafana are installed on the Raspberry Pi to

retrieve, display, and analyze data from the MQTT server.

Figure 6. Architecture of deployed IAQ monitoring system

E. 𝐶𝑂2 Occupancy data set

To investigate the connection between 𝐶𝑂2levels, weather

conditions, and student performance, we deployed two sensors,

the BME680 and SCD30, to measure the level of 𝐶𝑂2 ,

temperature, humidity, and 𝐶𝑂2, in different classrooms of our

VIT-AP University. The sensors were placed on a wall 1.5

meters above the floor. We collected 𝐶𝑂2 readings for four

months between February 1st, 2022, and May 30th, 2022, with

a 1-minute interval. The 𝐶𝑂2 readings are displayed in Fig7. As

expected, we observed no changes in 𝐶𝑂2 levels during

University breaks such as in May 2022. However, when students

were present in the classrooms, we observed fluctuations in 𝐶𝑂2

levels, some of which were anomalous. The data set contained a

total of 2,10,105 𝐶𝑂2 readings.

1) Data preprocessing

To ensure data cleanliness, we performed several actions on

the original records. Firstly, we removed any duplicate records

which had identical timestamps and CO2 readings. Additionally,

we removed records containing both NaN(Not a number) values

for the CO2 reading and timestamp. Next, we kept data where no

CO2 value was recorded, but the time stamp was correct even

though the value was NaN. For these records, we replaced the

empty or NaN values with the numerical value of 0. The value 0

was substituted for any empty or NaNs in these records.

Following this cleaning process, we had 1,60,008 records

remaining

2) Training and test data set

a) Training data set

According to [25], the normal range for CO2 levels typically

falls between 0 and 968 parts per million (PPM). Using the 2-

sigma rule of the normal distribution (i.e., around CO2 readings

968 when the mean of the CO2readings is about 488), we found

that the vast majority of the readings fell within the permissible

normal range (as shown in Fig.8). To ensure that our model was

only trained on CO2 data points within this normal range, we

separated the first three months of the original data set (from

02/02/2022 to 31/05/2022). We then used the 2-sigma rule to

identify any samples that did not fall within the normal range,

and removed them. This process of creating the training data set

is illustrated in figure. 7. By doing so, we aimed to train our

model only on the CO2 data points that were considered normal.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7618

Article Received: 01 June 2023 Revised: 27 July 2023 Accepted: 11 August 2023

 191

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Figure 7. Training data set creation

b) Test data set

For our testing data set, we utilized one month of the original

data, specifically from 01/05/2022 to 31/05/2022. This data set

included a range of 𝐶𝑂2 readings, both normal and anomalous.

To evaluate the performance of our model in detecting

anomalous data points from normal ones, we added a label of 0

if the 𝐶𝑂2 reading fell within the normal range(968ppm).

Conversely, we added a label of 1 if the 𝐶𝑂2 reading was outside

of this range. These labels were only utilized for model

evaluation purposes. Figure 8 illustrates how we added these

labels in the testing data set.

Figure 8. Test data set creation

c) Data normalization

We used a data normalization technique to cut down on

model training's execution time and computational complexity

to counteract the influence of varying scales across 𝐶𝑂2

readings. Specifically, we utilized a standard scalar

normalization technique, which is represented by equation 13:

𝑍𝑖 =
𝑥𝑖−𝜇

𝜎
 (13)

 In the above equation, 𝑍𝑖 represents the normalized

numerical values within the range of 0 to 1.

Where,

𝑥𝑖 =Specific data point

𝜇= mean

𝜎=standard deviation

TABLE I. LSTM-AE SIMULATION HYPER PARAMETERS

Hyper parameter value

Dropout 0.2

Learning rate 0.001

Batch size 64

Epoch 30

VI. EXPERIMENTAL SETUP

The experiments were conducted utilizing the system

configuration described in Table I. In order to assess how well

our model performed, we employed various performance

measures, including the F1- score, precision, recall, and

classification accuracy. The corresponding confusion matrix can

be found in Table II

TABLE II. CONFUSION MATRIX

Total Samples
Predicted Status

 Normal Anomaly

Actual status

 Normal TN FP

 Anomaly

Predicted Status
 FN TP

• When a data point is correctly detected as anomalous, it

is referred to as a true positive (TP).

• If a normal data point is accurately detected as normal,

it is considered a true negative (TN).

• A false positive (FP) occurs when a normal data point is

incorrectly detected as anomalous.

• When an anomalous data point is incorrectly detected as

normal, it is referred to as a false negative (FN).

Using the terms mentioned earlier, the performance metrics

are computed in the following manner:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (14)

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (15)

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (16)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 × (
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
) (17)

Figure 9 displays how the loss varies across different epochs.

The blue line represents the training loss, which gauges the

model’s error rate during training. It appears that the training loss

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7618

Article Received: 01 June 2023 Revised: 27 July 2023 Accepted: 11 August 2023

 192

IJRITCC | September 2023, Available @ http://www.ijritcc.org

stabilizes rather rapidly, at around eight epochs. To evaluate our

model’s performance during training, we reserved 10% of the

training data set as the validation set. As expected, the validation

loss does not stabilize until after eight epochs. However, once it

reaches this point, the validation loss exhibits a loss rate similar

to that of the training loss, which is approximately 0.07%. This

suggests that our model is well-suited and performs well, as it

does not underfit or overfit

Figure 9. Loss variation across different epochs

We ran experiments to see how our model responded to

changes in its architecture, specifically the number of hidden

layers and LSTM cell units. Encoder and decoder models with

one hidden layer, two hidden layers, and an undefined number

of hidden layers (referred to as 'n') were evaluated. While all

models kept the same total number of LSTM units, they varied

in the number of hidden layers positioned between the encoder

and decoder. There were some subtle changes in the model's

performance as a function of the number of hidden layers. An

F1-score exceeding 95.02% was achieved by utilizing a model

architecture comprising only one hidden layer as an example..

Comparatively, the F1-scores for the two-layer and three-layer

models were 94.58% and 94.41%. The performance of the model

was highly sensitive to the output vector size by the various

designs. As can be seen in Table III, the best F1-score (95.02%)

was attained by the simplest one-layer model whose output

vector size was also the shortest.

TABLE III. DIFFERENT ARCHITECTURES PERFORMANCES

Number of

layers

Number

of units

F1-

score

recall precision Accuracy

1 128 93.31 86.01 100 99.30

1 16 99.49 90.01 100 99.49

2 64, 16 99.41 88.77 100 99.41

3 128,64,16 99.40 88.48 100 99.40

Table IV illustrates the results obtained from various model

parameters, specifically the impact of different learning rates and

batch sizes on performance. The experiment kept the dropout

and epoch values constant throughout.

A batch size of 64 led to the most favorable outcomes,

resulting in the highest F1-score (95.02%), accuracy (99.49%),

and recall (90.01%). In contrast, the smallest batch size of 10

demonstrated the lowest F1-score (93.67%), accuracy (99.42%),

and recall (88.08%). This performance discrepancy can be

attributed to the larger volume of data processed when using the

larger batch size. While the smaller batch size led to a decrease

in overall detection accuracy, it offered the advantage of faster

response times. For instance, when compared to a batch size of

64, running the proposed model with a batch size of 10 resulted

in a response time three times faster.

Likewise, the highest learning rate of 0.001 demonstrated the

most favorable performance, whereas decreasing the learning

rate led to a degradation in performance, resulting in a decrease

in accuracy from 99.49% with the learning rate of 0.001 to

99.39% with the learning rate of 0.00001. The impact on

response time, however, was minimal and showed insignificant

variations in relation to the learning rate.

The number of time steps in a sequence, which is determined

by the size of the time-sliding window, can have an effect on our

model's performance. This choice has an impact on how the

reconstruction error rate is calculated. Therefore, we conducted

tests to examine the sensitivity of our model to variations in the

size of the time-sliding window and its subsequent effect on

performance.

We tested our model with time sliding windows of various

sizes, including 10, 15, 20, 25, 30, 35, and 40. The smallest

window size of 10 demonstrated better performance, achieving

the higher True Positive Rate (TPR) and F1-score at 95.02%. as

shown in figure 10. On the other hand, the time sliding window

size of 15 exhibited the lowest F1-score (90.12%) and accuracy

(99.20%). The smaller window sizes, such as 15 and 20, resulted

in increased misclassifications, with a TPR just above 80%.

Conversely, larger window sizes above 20 demonstrated fewer

misclassifications and improved TPR rates and F1-scores.

The total number of test samples was 43,787, consisting of

41,697 normal samples and 2,200 abnormal samples as per our

labeling. Our model accurately identified 1,991 anomalies out of

the 2,200 anomaly points, resulting in an accuracy rate of

90.01%. It correctly identified all 41,697 normal data points,

achieving a 100% accuracy rate. Notably, our model did not

produce any false positives, incorrectly classifying normal

samples as abnormal, which means it correctly classified all

normal samples as normal. but it generated 212 false negatives

by misclassifying abnormal samples as normal. Overall, our

model achieved an accuracy of 99.49%.

The precision of our model was 100%, the recall was

90.01%, and the F1-score was 95.02%.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7618

Article Received: 01 June 2023 Revised: 27 July 2023 Accepted: 11 August 2023

 193

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Table V presents a performance evaluation of our model, on

the 𝐶𝑂2 occupancy data set, with other models utilizing different

variations of LSTM-AE. Our approach demonstrates superior

performance in terms of accuracy (99.49%) and precision

(100%). Among the comparable models, the one proposed by

Yin et al. [26] exhibits competitive performance, with

comparable accuracy and F1-score. Additionally, Nguyen et al.

[27] introduced a model with a higher F1-score (96.98%), albeit

at a slightly lower accuracy when compared to our method.

Further investigation reveals that they employed a one-class

support vector machine (SVM) as an additional classifier to

mitigate false positives.

(a)

(b)

(c)

(d)

Figure 10. LSTM-AE performance under various time window length.(a)accuracy.(b)precision. (c)recall. (d)F1 –score

TABLE IV. PARAMETERS COMPARISON

 Parameters Performances

 Learning

rate:0.001
Batch size F1-Score Recall Precision Accuracy Time(s)/epoch

 64 95.02 90.01 100 99.49 35.69±1.29

 32 94.2 89.03 100 99.44 45.18±3.41

 10 93.67 88.08 100 99.42 99.70±1.52

 Batch

size:64
Learning rate F1-Score Recall Precision Accuracy Time(s)/epoch

 0.00001 93.56 86.98 100 99.38 35.84±1.14

 0.0001 93.91 88.53 100 99.42 35.79±1.29

 0.001 95.02 90.01 100 99.49 35.69±1.29

TABLE V. PERFORMANCE COMPARISON

Model Method F1-score Recall Precision Accuracy

Kang et al.[28] LSTM-AE 91.45 85.77 97.94 94.44

Nguyen et al.[27]
LSTM-AE-

OCSVM
96.98 99.59 98.45 98.36

Liu et al.[29] LSTM-AE - 97.55 97.55 98.57

Yin et al.[26] LSTM-AE 95.97 94.16 97.84 99.25

Our proposed
method

LSTM-AE 95.02 90.01 100 99.49

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7618

Article Received: 01 June 2023 Revised: 27 July 2023 Accepted: 11 August 2023

 194

IJRITCC | September 2023, Available @ http://www.ijritcc.org

VII. CONCLUSION

Our proposed approach utilizes a hybrid deep-learning

technique, specifically combining LSTM-AE, to effectively

identify contextual anomalies within IAQ data sets. Within our

model, the LSTM component focuses on learning the common

patterns found in CO2 time sequence data. Conversely, the AE

component reduces data dimensionality and calculates the

optimal reconstruction error for each time sequence. By

establishing a threshold based on the average reconstruction

error observed in normal time-series data, we can detect

contextual anomalies that deviate from the expected pattern.

Therefore, our approach capitalizes on the complementary

Strengths of LSTM and AE for anomaly detection in IAQ data

sets. We also have plans to expand our research in various

directions. Firstly, we aim to incorporate sensor data from

additional sources, such as specific matter, temperature, and

relative humidity, to broaden the scope of our present efforts.

Additionally, we intend to apply our proposed approach to

different application domains to evaluate its generalizability and

practicality.

REFERENCES

[1] He, J., Xu, L., Wang, P., Wang, Q., 2017. A high precise e-nose

for daily indoor air quality monitoring in living environment.

Integration 58, 286–294.

[2] Motlagh, N.H., Zaidan, M.A., Lagerspetz, E., Varjonen, S.,

Toivonen, J., Mineraud, J., Rebeiro-Hargrave, A., Siekkinen,

M., Hussein, T., Nurmi, P., et al., 2019. Indoor air quality

monitoring using infrastructure-based motion detectors, in:

2019 IEEE 17th International Conference on Industrial

Informatics (INDIN), IEEE. pp. 902– 907.

[3] Wargocki, P., Porras-Salazar, J.A., Contreras-Espinoza, S.,

Bahnfleth, W., 2020. The relationships between classroom air

quality and children’s performance in school. Building and

Environment 173, 106749.

[4] Maduranga, M., Kosgahakumbura, K., Karunarathna, G., 2020.

Design of an iot based indoor air quality monitoring system

[5] Peng, Z., Jimenez, J.L., 2021. Exhaled co2 as a covid-19

infection risk proxy for different indoor environments and

activities. Environmental Science & Technology Letters 8, 392–

397.

[6] Zeng, Y., Chen, J., Jin, N., Jin, X., Du, Y., 2022. Air quality

forecasting with hybrid lstm and extended stationary wavelet

transform. Building and Environment 213, 108822.

[7] Franco, A., Leccese, F., 2020. Measurement of co2

concentration for occupancy estimation in educational buildings

with energy efficiency purposes. Journal of Building

Engineering 32, 101714.

[8] Zhu, Y., Al-Ahmed, S.A., Shakir, M.Z., Olszewska, J.I., 2022.

Lstm based iot-enabled co2 steady-state forecasting for indoor

air quality monitoring. Electronics 12, 107.

[9] Wei, Y., Jang-Jaccard, J., Sabrina, F., Alavizadeh, H., 2020.

Largescale outlier detection for low-cost pm 1.0 sensors. IEEE

Access 8, 229033–229042.

[10] Kumari, S., Singh, S.K., 2022. Machine learning-based time

series models for effective co2 emission prediction in india.

Environmental Science and Pollution Research , 1–16.

[11] Kallio, J., Tervonen, J., Räsänen, P., Mäkynen, R., Koivusaari,

J., Peltola, J., 2021. Forecasting office indoor co2 concentration

using machine learning with a one-year dataset. Building and

Environment 187, 107409.

[12] Tekler, Z.D., Ono, E., Peng, Y., Zhan, S., Lasternas, B., Chong,

A., 2022. Robod, room-level occupancy and building operation

dataset, in: Building Simulation, Springer. pp. 2127–2137.

[13] Tekler, Z.D., Ono, E., Peng, Y., Zhan, S., Lasternas, B., Chong,

A., 2022. Robod, room-level occupancy and building operation

dataset, in: Building Simulation, Springer. pp. 2127–2137.

[14] Christopher Davies, Matthew Martinez, Catalina Fernández,

Ana Flores, Anders Pedersen. Applying Recommender Systems

in Educational Platforms. Kuwait Journal of Machine Learning,

2(1). Retrieved from

http://kuwaitjournals.com/index.php/kjml/article/view/171

[15] Ahn, J., Shin, D., Kim, K., Yang, J., 2017. Indoor air quality

analysis using deep learning with sensor data. Sensors 17, 2476.

[16] Tagliabue, L.C., Cecconi, F.R., Rinaldi, S., Ciribini, A.L.C.,

2021. Data driven indoor air quality prediction in educational

facilities based on iot network. Energy and Buildings 236,

110782.

[17] Wambura, S., Huang, J., Li, H., 2020. Long-range forecasting in

feature-evolving data streams. Knowledge-Based Systems 206,

106405.

[18] Sharma, P.K., Mondal, A., Jaiswal, S., Saha, M., Nandi, S., De,

T., Saha, S., 2021. Indoairsense: A framework for indoor air

quality estimation and forecasting. Atmospheric Pollution

Research 12, 10– 22.

[19] Xu, C., Chen, H., Wang, J., Guo, Y., Yuan, Y., 2019. Improving

prediction performance for indoor temperature in public

buildings based on a novel deep learning method. Building and

Environment 148, 128–135.

[20] Jung, Y., Kang, T., Chun, C., 2021. Anomaly analysis on indoor

office spaces for facility management using deep learning

methods. Journal of Building Engineering 43, 103139.

[21] Hossain, E., Shariff, M.A.U., Hossain, M.S., Andersson, K.,

2020. A novel deep learning approach to predict air quality

index, in: Proceedings of International Conference on Trends in

Computational and Cognitive Engineering: Proceedings of

TCCE 2020, Springer. pp. 367–381.

[22] Ottosen, T.B., Kumar, P., 2019. Outlier detection and gap filling

methodologies for low-cost air quality measurements.

Environmental Science: Processes & Impacts 21, 701–713.

[23] Li, J., Izakian, H., Pedrycz, W., Jamal, I., 2021. Clustering-

based anomaly detection in multivariate time series data.

Applied Soft Computing 100, 106919.

[24] Zusman, M., Gassett, A.J., Kirwa, K., Barr, R.G., Cooper, C.B.,

Han, M.K., Kanner, R.E., Koehler, K., Ortega, V.E., Paine 3rd,

R., et al., 2021. Modeling residential indoor concentrations of

pm2. 5, no2, nox, and secondhand smoke in the subpopulations

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10s

DOI: https://doi.org/10.17762/ijritcc.v11i10s.7618

Article Received: 01 June 2023 Revised: 27 July 2023 Accepted: 11 August 2023

 195

IJRITCC | September 2023, Available @ http://www.ijritcc.org

and intermediate outcome measures in copd (spiromics) air

study. Indoor air 31, 702– 716

[25] Jolles, J.W., 2021. Broad-scale applications of the raspberry pi:

A review and guide for biologists. Methods in Ecology and

Evolution 12, 1562–1579.

[26] Liu, Y., Pang, Z., Karlsson, M., Gong, S., 2020. Anomaly

detection based on machine learning in iot-based vertical plant

wall for indoor climate control. Building and Environment 183,

107212.

[27] Dehaq E. Mohsen, Ehsan M. Abbas, Maan M. Abdulwahid.

(2023). Performance Analysis of OWC System based (S-2-S)

Connection with Different Modulation Encoding. International

Journal of Intelligent Systems and Applications in Engineering,

11(4s), 400–408. Retrieved from

https://ijisae.org/index.php/IJISAE/article/view/2679

[28] Yin, C., Zhang, S., Wang, J., Xiong, N.N., 2020. Anomaly

detection based on convolutional recurrent autoencoder for iot

time series. IEEE Transactions on Systems, Man, and

Cybernetics: Systems 52, 112– 122.

[29] Nguyen, H.D., Tran, K.P., Thomassey, S., Hamad, M., 2021.

Forecasting and anomaly detection approaches using lstm and

lstm autoencoder techniques with the applications in supply

chain management. International Journal of Information

Management 57, 102282.

[30] Kang, J., Kim, C.S., Kang, J.W., Gwak, J., 2021. Anomaly

detection of the brake operating unit on metro vehicles using a

one-class lstm autoencoder. Applied Sciences 11, 9290.

[31] Liu, P., Sun, X., Han, Y., He, Z., Zhang, W., Wu, C., 2022.

Arrhythmia classification of lstm autoencoder based on time

series anomaly detection. Biomedical Signal Processing and

Control 71, 103228.

http://www.ijritcc.org/

