
International Journal on Recent and Innovation Trends in Computing and Communication                               ISSN: 2321-8169 

Volume: 5 Issue: 6                                                     253 – 257 

_______________________________________________________________________________________________ 

253 

IJRITCC | June 2017, Available @ http://www.ijritcc.org 
_______________________________________________________________________________________ 

Generalized Coding Theorem with Different Source Coding Schemes 

 

D. K. Sharma 
Jaypee University of Engineering and Technology, 

Raghogarh, Dist. Guna(M.P.)-473226, India 

 dilipsharmajiet@gmail.com 

Sonali Saxena 
 Jaypee University of Engineering and Technology, 

Raghogarh, Dist. Guna(M.P.)-473226, India 

  

 

 

Abstract— In the present paper we have consider a parametric generalization of mean codeword length and for this we have 

proved generalized source coding theorems. To transmit text written in the source alphabet in the form of code alphabetic 

character we have to associate a code word to represent each source alphabet word that we might wish to send, hence we have also 

verified generalized source coding theorem by using source coding schemes. Kraft’s theorem states the condition which the 

lengths of codewords must meet to be a prefix codes. It may seem restrictive to limit ourselves to prefix codes, as uniquely 

decipherable codes are not always prefix codes. The Shannon-Fano encoding scheme is based on the principle that each code bit, 

which can be described by a random variable, must have a maximum entropy, so we have also discussed different type of source 

coding schemes by taking some suitable examples. 
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I.  INTRODUCTION 

Shanonn [9] discussed the notion of source coding in 

his seminal paper which laid the framwork of the Information 

Theory. The primary objective of the source coding is to 

compress the data by efficient representation of the symbols. 

Let we have  a Discrete Memoryless Source(DMS) generated 

a symbol every seconds and let X be the discrete random 

variable taking a finite number of symbols 𝑥1 , 𝑥2 , 𝑥3, ………𝑥𝑛  

with probabilities 𝑝1 , 𝑝2 , 𝑝3 , ………𝑝𝑛  such that 𝑝𝑖 ≥ 0, 𝑖 =

1,2,3, ……… , 𝑛  and      𝑝𝑖 = 1𝑛
𝑖=1  . Then entropy of DMS in 

bits per source symbols is given as: 

𝐻 𝑋 = − 𝑝𝑖 𝑙𝑜𝑔𝑝𝑖
𝑛
𝑖=1                                         (1) 

 Entropy given by (1) plays a vital role in theory of coding and 

provided lower and upper bounds for average code word 

length. For a finite set of n 

symbols(𝑥1 , 𝑥2 , 𝑥3 , ………𝑥𝑛),encoded by the D size alphabets 

with probabilities (𝑝1 , 𝑝2 , 𝑝3 , ………𝑝𝑛)  and codeword 

lengths(𝑙1 , 𝑙2 , 𝑙3, ……… 𝑙𝑛 ),then average mean codeword length 

is defined as follows: 

𝐿 =  𝑝𝑖 𝑙𝑖𝑙𝑜𝑔𝐷
𝑛
𝑖=1 ,                                               (2)  

Further, it was shown by Kraft[ 6] that uniquely decipherable 

codes with code word length   satisfy the following inequality 

which is known as Kraft’s inequality : 

  𝐷−𝑙𝑖𝑛
𝑖=1 ≤ 1.                                                                    (3)                                                                                         

Therefore under the Kraft inequality source coding theorem is 

stated as follows: 

𝐻 𝑃 ≤ 𝐿 ≤ 𝐻 𝑃 + 𝑙𝑜𝑔𝐷, 𝐷 ≥ 2                       (4) 

In other words source coding theorem says that for 

any prefix code used to represent the symbol from a 

source the minimum number of bits required to 

represent the source symbols on an average on any 

event equal to the entropy of the source. 

In the present work we consider the parametric 

generalization of mean code word length defined by 

Hooda and Bhakar [4] and proved source coding 

theorem for the same generalized code word length in 

section 2. In section 3 by using different source 

coding techniques source coding theorem is verified 

by taking some illustrations. Also some other coding 

techniques with their applications to communication 

theory are also discussed. Sections 4 conclude the 

work presented. 

II. GENERALIZED MEAN CODE WORD LENGTH AND 

SHANNON’S NOISELESS CODING THEOREM  

In this section we consider generalized mean codeword length 

as follows: 
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where il  is the length of the codeword ix  and ip  is the 

probability of occurrence of codeword ix   

The codeword length defined in (5) satisfies the following 

essential properties of being a mean codeword length: 
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 Next we prove Shaanon’s noise less coding theorem for 

generalized mean codeword length defined in (5)  as follows: 

Theorem 2.1.For all uniquely decipherable codes the 

exponentiated mean codeword length 
 PL

  defined in (5) 

satisfies the following relation  
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under the generalized Kraft inequality given by  
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Substituting (9) in (5) we have        
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Thus we are to minimize (10) subject to the following 

constraints: 
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Since 


L  is pseudo convex function for each ni ,,2,1 

,therefore, we can obtain the minimum value of  PL
  by 

applying the Lagrange’s multiplier method. 

Let us consider the corresponding Lagrangian as given below: 
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Differentiating w.r.t. ix  and equating to zero, we get 
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It implies                                                                                                                               

when,ii cpx  10  c                                         (12)                                                                                                  

  (12) together with (9) gives  
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Multiplying both sides of (13) by 
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From (5) and (10), we get the minimum value of  )(PL
  as 

follows: 
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il  is always integral value in (13), so it must be equal to 
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Putting (16) in (5), we have 
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Since 10  i ,therefore, (17) reduce to 
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Hence from (15) and (18), we get 

      ,1 PHPLPH 
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
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 which is (6). 

Thus by following optimization technique we get new 

generalized entropy given by (7).  

III    SOURCE CODING SCHEMES  

In this section we review different type of source coding 

schemes. Basically the source coding schemes are 

characterized in two parts.  

1). Source specific  

2). Universal  

     In the first case (i.e. source specific) source encoder require 

full knowledge of the source statistics in order to perform 

function. Such type of coding scheme could not perform well 

for source other than that for which it is designed. However, 

on the other end universal coding scheme tend to perform well 

(in an asymptotic sense) for all source in some comparatively 

large class. 

 These source coding schemes can be listed  as follows: 

(a). Shannon Fano  

(b). Huffman  

(c). Lynch-Davision  

(d). Elias-Willems 

(e). Lampbel –Ziv  

Shannon-Fano coding [2] is a technique for realizing 

the message encoder that explicitly aims to make the resulting 

sequence of codeword digits a good guess to the output of the 

Binary symmetric source(BSS). The Shannon-Fano algorithm 

is an "insatiable" algorithm in the sense that it makes each 

successive codeword digit as nearly as equally likely to be a 0 

or a 1 as possible, at the cost of possible severe biasing of later 

codeword digits. Its algorithm is simple for which first makes 

a list of all possible messages in order of decreasing 

probability. Then splits this list at the point where the two 

resulting values are as nearly equally probable as possible, 

assigning the first codeword digit as a 0 for messages in the 

first o value and as 1 in the second value. And  repeats this 

splitting process on all the values to assign subsequent 

codeword digits to messages until all values contain a single 

message. 

The algorithm for optimum prefix-free encoding of a message 

set was given by Huffman [5]. The trick is to be completely  

"satiable " and to choose the last digits of codewords first. The 

algorithm is extremely simple. One assigns a last digit of 0 and 

1, respectively, to the two least probable messages, then 

merges these two messages to a single message whose 

probability is the sum of those of the two merged messages. 

One then repeats this combination on the new message set 

until one has just a solitary message left. 

  Further we will verify generalized Shannon’s coding theorem 

for generalized mean codeword length by using source 

specific coding scheme (i.e. Shannon Fano and Huffman). 

Here we have used some empirical data  as given in the 

following two tables. For  𝛼 = 0.5 𝑎𝑛𝑑 𝛽 = 2 then from (5) 

and (7) ,we have 

 

           Table 3.1: Shannon-Fano coding Scheme
 

 
   We have 𝐿𝛽

𝛼  𝑃 = 2.21979, 𝐻𝛽
𝛼 𝑃 = 2.03595,  and 

𝜂 =
𝐻𝛽

𝛼 (𝑃)

𝐿𝛽
𝛼 (𝑃)

× 100 = 91.78% 

                   

Table 3.2: Huffman coding  scheme 

 
 

We have 𝐿𝛽
𝛼  𝑃 = 2.12484, 𝐻𝛽

𝛼 𝑃 = 2.03595,  and 𝜂 =

𝐻𝛽
𝛼 (𝑃)

𝐿𝛽
𝛼 (𝑃)

× 100 = 95.81% 

From table (3.1) and (3.2) we conclude the following:  

(i) Shannon’ Noiselss Coding theorem  holds in both cases of 

Shannon -Fano codes and Huffman codes.  

(ii) Huffman mean codeword length is less than Shannon –

Fano mean codeword length.  

(iii) Huffman Coding is more efficient then Shannon-Fano 

Coding scheme. 

Next we discuss universal coding schemes as following: 

 

The Lynch-Davisson coding scheme utilizes an L-block 

message parser. The message encoder first determines the 

number of 1’s (i.e. hamming weight)) WH in the 

message𝑣1={𝑢1, 𝑢2, ……… . 𝑢𝑛}, then determines the index I of 

this message in an indexed list of all binary n-tuples of 

Hamming weight WH. The codeword 𝑠1 is then the  log⁡(𝐿 +

1) bit binary code for WH followed by the  log⁡( 𝐶𝑊𝐻
𝑛 ) bit 

binary code for I. Here we consider base 2 for the algorithm. 

Because the length of the code for WH does not rely on upon 

the specific message𝑣1, the decoder can decide WH from this 

code to figure out where the codeword will end, so this 

encoding of the message 𝑣1 is undoubtedly free from prefix 

.Hence it can be says that the Lynch-Davisson source-coding 

scheme is universally asymptotically optimum for the class of 

all binary memoryless sources. It perform good for Discrete 

Stationary and Ergodic Sources (DSES's) with weak memory 

but can be very inefficient for such sources with strong 

memory. 
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In Elias [2]-Willems [8] two prefix-free coding schemes for 

the positive integers ℤ+= {1,2,3, …… }  let we consider the 

natural binary coding𝐵(𝑛)for 𝑛 ∈ ℤ + , i.e., B(1) = 1, B(2) 

=10, etc. We note that this natural binary code is not a prefix-

free code for ℤ + [infact B(1) = 1 is a prefix of every other 

codeword] and that the length L(n) of B(n) is log n+ 1. 

Elias' first coding scheme for ℤ +  encodes n as B1(n) where 

B1(n) consists of L(n) - 1 0's followed by B(n). For instance, 

because L(13) = log 13one obtains (n) 

= 0001101. The length of B1(n) is L1(n) = 2 L(n) - 1 = 2 log 

n1, about twice that of B(n). In any case, the encoding 

B1(n) is without prefix in light of the fact that the number L(n) 

- 1 of driving 0's in B1(n) decides the length of the codeword 

i.e., where the codeword will end. Elias's second prefix-free 

coding scheme for ℤ +builds on the first. The codeword B2(n) 

is B1(L(n)) [i.e., the first coding applied to the length of n in 

the natural binary code] followed by B(n) with its now 

"useless" leading 1 removed. The Elias-Willems source-

coding scheme is universal for the class of all discrete 

stationary and ergodic sources. 

The Lempel-Ziv((1977) coding scheme is quite 

different from  above defined schemes. It uses variable-length 

message parsing; indeed this parsing is its most distinctive 

attribute. There are rather several versions of the Lempel-Ziv 

scheme,all of which are based on the ideas originally proposed 

in Ziv. We will consider the version described by Welch 

(1984), which seems to be the one most often actualized, and 

we will consign to this version as the LZ-W source-coding 

scheme.  

The key plan in every Lempel-Ziv source-coding 

scheme is to parse the source sequence according to the 

subsequence or "strings" that come out for the initially within 

the source sequence. In the LZ-W edition, one parses a binary 

source by assuming that the length-one strings 0 and1 are the 

only earlier encountered strings. Let 𝐿1 = (0,1)  refer to this 

initial list. The parsing rule is then as follows. For each i, i = 1, 

2, ..., mark the end of the i
th

  phrase at the point where 

counting the next digit would give a string not in the list Li of 

previously encountered strings, then position this string with 

the next digit added toward at the end of the list Li to form the 

list Li+1. Applying this parsing rule to the sequence 

001000100001000 gives 

11001000100001000, 

as we now explain. The initial string 0 is in𝐿 = (0,1), but the 

string 00 is not. Thus, we place a marker after the initial 0 and 

form the list 𝐿2 =  0,1,00 . Looking forward from this first 

marker, we first see 0, which is in 𝐿2  , then we see 01, which 

is not. Thus we place a marker after this second 0 and form the 

list 𝐿3 = (0,1,00,01) etc.The messages 𝑣1 , 𝑣2, 𝑣3 , … . , 𝑣𝑛  of the 

LZ-W scheme are the phrases of the parsed source sequence. 

Note that the list Li contains exactly i+1 strings. In the LZ-W 

scheme, the message 𝑣𝑖  is encoded as the  𝑊𝑖= log⁡(𝑖 + 1)  

bit binary code for its index in the list Li. [Note that, for i > 

1, the last string in the list Li is placed there only after the 

parsing of 𝑣𝑖−1, which requires examination of the first digit of 

𝑣𝑖 . Thus, for i > 1, the decoding of the codeword 𝑥𝑖  to the 

message 𝑣𝑖 , when  𝑥𝑖  is the codeword pointing to the last entry 

in Li , cannot be performed by table look-up as the decoder 

will then have formed only the list Li-1. But the last entry in Li 

is always a string having 𝑣𝑖  as a prefix. Thus, when i > 1 and 

𝑥𝑖  points to this last string in Li, the first digit of 𝑣𝑖   must be 

the same as the first digit of 𝑣𝑖−1 and hence the decoder can 

"prematurely" form the list Li that it needs to decode 𝑥𝑖 .] 

Because the length Wi of the i-th codeword 𝑥𝑖  does not depend 

on the source sequence, the LZ-W coding is prefix-free; 

moreover, the lengths of the first in codewords sum to 

 𝑊 =   log⁡(𝑖 + 1) 𝑛
𝑖=1

𝑛
𝑖=1 . 

The corresponding sum of message lengths, however, depends 

strongly on the statistics of the DSES encoded. Lempel and 

Ziv [10] have revealed (by an argument that applies 

additionally to the LZ-W version) that this the Lempel-Ziv 

source-coding scheme is universal for the class of all Discrete 

Stationary and Ergodic Sources. Lempel-Ziv source coding, 

and in particular the LZ-W version, has ended up  being an 

exceptionally famous data-compression scheme in practice, as 

much result of the simplicity. 

IV   CONCLUSION 

In the work presented here we chew over a generalized mean 

codeword length suggested by Hooda and Bhakar , we find out 

the bounds for this generalized mean codeword length in the 

terms of Shannon coding theorem. By taking some particular 

values for the parameters 𝛼  and 𝛽   we have illustrate the 

veracity of Shannon’s theorem. We have also discussed some 

more source coding schemes. 
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