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Abstract—Electrocardiograms (ECGs) are generated by checking different beating patterns of heart, and are widely used for identification of 

multiple heart-related issues. Existing deep learning models that are proposed for ECG analysis are either highly complex, or showcase lower 

scalability when applied to clinical scans. To overcome these issues, this text proposes design of a novel multimodal bioinspired feature 

representation deep learning model for identification of heart-diseases. The proposed model initially collects large-scale ECG datasets, and 

extracts Fourier, Cosine, iVector, Gabor, and Wavelet components. These components are given to a Grey Wolf Optimization (GWO) based 

feature selection model, which assists in identification of high-inter-class variance feature sets. This is done via modelling a variance-based 

fitness function and fusing it with an Iterative Learning Model (ILM) that use feedback-accuracy levels for optimization of selected feature sets. 

The extracted features are used to incrementally train a custom 1D Binary-Augmented Convolutional Neural Network (1D BACNN) that can be 

trained for multiclass scenarios. The BACNN Model is trained individually for each of the heart diseases. Each BACNN categorizes input ECG 

samples between ‘Normal’, and ‘Heart-Disease’ categories. Due to use of this binary-type classification, the proposed model is able to achieve a 

consistent 99.9% accuracy for multiple heart disease sets, which is found to be higher than most of the existing multiclass techniques. The model 

was tested for Angina, Arrhythmia, Valve disease, and Congenital heart conditions, and was observed to achieve 3.5% higher precision, 4.9% 

higher accuracy, with 1.2% increase is computational delay, which makes it highly suitable for real-time clinical use cases. 

Keywords- ECG, Classification, Diseases, Multiclass, Fourier, Cosine, iVector, Gabor, Wavelet, GRO, ILM, Scenarios. 

 

I. INTRODUCTION 

According to the World Health Organization (WHO), 

cardiovascular disease is the cause of 31% of all deaths 

globally. The electrocardiogram, often known as an ECG, is a 

diagnostic test that does not need any invasive procedures and 

assesses the effectiveness of the electrical activity in the 

cardiac muscles of the heart. Since it provides cardiologists 

with all of the information they want about heart 

abnormalities, the electrocardiogram, also known as an ECG, 

is a helpful diagnostic tool that may be used for a broad 

variety of cardiac disorders [1, 2, 3]. The life-threatening 

cardiac condition known as congestive heart failure (CHF) is 

one of the leading causes of death on a worldwide scale. In 

CHF, the heart is unable to pump blood effectively enough to 

maintain normal blood flow and provide the tissues with the 

oxygen and metabolic energy that they need. This results in 

the CHF patient's inability to maintain normal blood flow. 

This has led to the development of the illness. More than 26 

million individuals throughout the world are afflicted with 

CHF, and the prevalence of the disease is increasing at a rate 

of 3.6 million new cases year. However, if congestive heart 

failure is discovered at an earlier stage, there are more 

therapeutic options available, and the course of the condition 

may be slowed down which can be done via use of 1D Self-

Operational Neural Networks (1D SONN) [4], Bidirectional 

Long Short-Term Memory Networks [5], and Convolutional 

Recurrent Neural Networks [6] under clinical scenarios. 

Arrhythmias in the heart are a prevalent and additional cause 

of sudden deaths (ARR). ARR is an abbreviation for abnormal 

heart rhythm, which is caused by a heart rate that is outside of 

normal range. In order to accurately identify ARR and CHF, 

cardiologists need to do an examination that is both 

comprehensive and consistent. It is essential to commit a 

significant amount of both time and effort to carrying out this 

examination [7, 8, 9, 10]. As a result, there is an urgent need 

for a diagnostic instrument that is completely automated so 

that reliable diagnoses of cardiac anomalies may be made. As 

diagnostic technology advances, it may become possible for it 

to assist cardiologists in reliably diagnosing ECG recordings 

in a shorter amount of time, so saving them both time and 
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money on clinical interpretation. Only a few numbers of 

diagnostic algorithms that are based on machine learning (ML) 

have been proposed [11, 12, 13, 14] that uses Seq2Seq Model 

with Attention Mechanism (SAM), and Attention-Based 

Convolutional DenoisingAutoencoder (ACDA) throughout the 

course of the last several decades to differentiate between the 

many different heart diseases. In recent years, the field of 

machine learning known as deep learning (or DL) has grown 

increasingly significant, particularly in the field of ECG 

interpretation. This trend may be attributed to the rise of 

artificial intelligence (AI). Back propagation can be used to 

improve model weights and gradients [5, 6], and the 

decentralized nature of DL architecture enables the automatic 

collection of certain attributes. Back propagation can be used 

to improve model weights and gradients. Another frequent 

phrase for "DL architecture" is the more general "deep 

learning." Deep learning architectures include deep belief 

networks (DBNs) and convolutional neural networks (CNNs) 

[15, 16, 17, 18]. These are only two examples of DL 

architectures. The value of the heart rate variability (HRV) test 

cannot be overstated when compared to other diagnostic 

procedures that may be used to evaluate an individual's 

cardiovascular health; yet, it is among the most important of 

these procedures. It evaluates how well the heart contracts in 

response to either external or internal jolts. Variations in the 

time that elapses between two consecutive heartbeats may be 

analyzed with the use of RR intervals [19, 20]. The HRV time 

series is used in order to quantify this variance. Given that the 

electrical activity of the heart is not a perfectly stable oscillator 

but rather somewhat unpredictable, the concept of chaos may 

be helpful in deciphering the intricate workings of the 

cardiovascular system. This is due to the fact that the electrical 

activity of the heart is not perfectly stable [21, 22, 23, 24]. 

According to the chaos theory, chaotic behavior may be seen 

in systems that concentrate a significant amount of focus on 

the starting circumstances of its variables. Several 

investigations [25, 25, 27, 28, 29] have shown that some 

ARRs in the heart are examples of chaotic ARRs and can be 

classified via Multi-Scale Convolutional Neural Network (MS 

CNN). This has been the case for some of the ARRs in the 

heart. Signals from electrocardiograms (ECGs) were put 

through a series of tests, which are reported in [30, 31, 32, 33], 

and the findings demonstrated the existence of both 

deterministic chaos and nonlinear dynamics. The chaotic 

ventricular response that is seen in this case was corroborated 

by the findings of an investigation that used a nonlinear 

prediction approach and analyzed ECG recordings made 

during atrial fibrillation for their predictability and sensitivity 

to starting conditions. An abstract of the research is proposed 

in [34, 35, 36, 37], which can be seen over here. Any 

representation of ECG data that is intended to be understood 

as chaotic is required to include both of these fundamental 

aspects of a chaotic system. [38] These variables are referred 

to by their names, which include the CD and the Lyapunov 

exponents (LEs). Several meta-analyses (ML) have shown that 

statistical, geometrical, spectral, and nonlinear HRV measures 

are quite beneficial for CHF diagnosis [39] and ARR 

discrimination. Because it combines information from the 

Renyi entropy exponents, the technique that is presented in 

[40] is preferable than only utilizing data from the time 

domain in order to detect CHF. The classification was 

performed with an accuracy of 87.9%, a sensitivity of 80%, 

and a specificity of 94.4%, according to the results obtained by 

the KNN classifier. It was proposed [41] to employ short-term 

HRV dynamic data as part of a multi-stage risk assessment 

strategy for the diagnosis of CHF; studies revealed that a 

decision-tree-based support vector machine (SVM) classifier 

could obtain an accuracy of 96.61%. [Citation Needed] It is 

necessary to direct the reader's attention to [the citation is 

needed]. The HRV's fuzzy and permutation entropies are 

gathered using the least squares support vector machine 

classifier that is described in reference number 21. This is 

done so that the CHF may be diagnosed with an accuracy of 

98.21%. It has been proposed that the morphological and 

statistical aspects of individual heartbeats be taken into 

account when attempting to detect cardiac ARRs [28]. This is 

part of a novel strategy that has been developed. In the study 

referenced as [30], fragmentation indicators were employed in 

both classic linear and nonlinear heart rate variability (HRV) 

studies in order to improve classification performance of 

cardiac disorders. The vast majority of feature-based machine 

learning algorithms depend on HRV analysis to provide high-

quality ECG diagnostic results; however, there is no assurance 

that these results will be robust. This is due to the fact that the 

most important aspects of HRV are continually impacted by a 

diverse set of characteristics, some of which include but are 

not limited to the following: spontaneous variations, breathing, 

pharmacological interferences, age, and gender. As a result, 

the evaluation of HRV should not serve as the primary method 

for identifying cardiac problems. These disadvantages may 

perhaps be eliminated with the use of new DL approaches for 

the diagnosis of heart diseases [31–38]. It is essential to keep 

in mind that it is difficult to build a deep CNN from scratch 

owing to the fact that there is a risk of over fitting with a 

limited dataset and that a sizeable amount of annotated 

training ECG data is required. This is something that should be 

kept in mind. Be conscious of the fact that building a 

comprehensive CNN from the ground up is a time-consuming 

undertaking. Transfer learning is a flexible method that allows 

the use of pre-existing neural networks (NNs) that have been 

trained with a large quantity of data and the transfer of this 

information to the targeted classification system [40]. Using 
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transfer learning, it is possible to work around this problem. 

Transfer learning is a flexible method that allows for the use of 

pre-existing neural networks (NNs) that have been trained 

with a large quantity of data. Several distinct CNNs that had 

previously been put through pre-training [41] were educated to 

recognize photographs by making use of the dataset provided 

by the ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC). The categorization of medical images involves the 

investigation of a number of different machine learning 

techniques as well as pre-trained CNN architectures [34, 36]. 

On the other hand, there are very few cases that have been 

reported of reliable DL model performance for the 

categorization of heart illnesses using ECG data [1]. By 

incorporating a distance distribution matrix in the entropy 

calculation, it was proposed in [48] that a pre-trained CNN 

model could identify CHF with an accuracy of 81.9% and a 

sensitivity of 80.99%. This was made possible by including 

the matrix in the computation. A DL model was constructed in 

the work referred to as [39] that used basic convolutional units 

and time-frequency characteristics to evaluate data and assess 

the presence or absence of CHF and ARR with an accuracy 

rate of 93.75 percent. This model was used to analyze data. 

Deep neural networks (NN) and short-term HRV data were 

used in the creation of an ensemble technique for the 

identification of CHFs. ECG classification techniques 

currently in use often provide reliable classification findings 

that allow users to differentiate between CHF and NSR 

conditions. In spite of this, it is difficult to develop an 

automated system that is real-time and easy to use while yet 

being able to distinguish between CHF, ARR, and NSR 

situations in a reliable manner. When applied to clinical 

pictures, the currently available deep learning models for ECG 

interpretation indicate either a high level of complexity or 

restricted scalability. While these models are successful, 

neither of these characteristics is scalable. There is a good 

chance that at least one person will notice this. A unique 

multimodal bioinspired feature representation deep learning 

model for the identification of heart illnesses is proposed to be 

developed in the second half of this study. At the very least in 

principle, all of those concerns will be eased as a result of this. 

In Section 3, the levels of accuracy, precision, and recall of the 

proposed model were investigated and compared to those of 

already known deep learning algorithms. The clinical data on 

the proposed model and some ideas for increasing its 

performance when applied to real-time circumstances are 

included in the last section of this text. 

II.  DESIGN OF THE PROPOSED MULTIMODAL 

BIOINSPIREDFEATURE REPRESENTATION DEEP 

LEARNING MODEL FOR IDENTIFICATION OF 

HEART-DISEASES 

Based on the discussion about existing heart-disease prediction 

models, it can be observed that deep learning models that are 

proposed for ECG analysis are either highly complex, or 

showcase lower scalability when applied to clinical scans. To 

overcome these issues, this section discusses design of a novel 

multimodal bioinspired feature representation deep learning 

model for identification of heart-diseases. Flow of the model is 

depicted in figure 1, where it can be observed that the 

proposed model initially collects large-scale ECG datasets, 

and extracts Fourier, Cosine, iVector, Gabor, and Wavelet 

components. These components are given to a Grey Wolf 

Optimization (GWO) based feature selection model, which 

assists in identification of high-inter-class variance feature 

sets. This is done via modelling a variance-based fitness 

function and fusing it with an Iterative Learning Model (ILM) 

that use feedback-accuracy levels for optimization of selected 

feature sets. The extracted features are used to incrementally 

train a custom 1D Binary-Augmented Convolutional Neural 

Network (1D BACNN) that can be trained for multiclass 

scenarios. The BACNN Model is trained individually for each 

of the heart diseases. Each BACNN categorizes input ECG 

samples between ‘Normal’, and ‘Heart-Disease’ categories. 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 7s 

DOI: https://doi.org/10.17762/ijritcc.v11i7s.7530 

Article Received: 20 April 2023 Revised: 16 June 2023 Accepted: 28 June 2023 

___________________________________________________________________________________________________________________ 

 

    694 

IJRITCC | June 2023, Available @ http://www.ijritcc.org 

 

Fig. 1 Design of the proposed ECG classification model via cascaded 

binary CNN process 

Thus, the model initially collects large-scale class-specific 

ECG signals from different sources, and extracts multimodal 

features from these signals. These features include Fourier 

Transform Sets (for frequency analysis) which is extracted via 

equation 1, 

𝐷𝐹𝑇𝑖 = ∑ 𝑥𝑗 ∗ [𝑐𝑜𝑠 (
2 ∗ 𝜋 ∗ 𝑖 ∗ 𝑗

𝑁𝑓

) − √−1

𝑁𝑓

𝑗=1

∗ 𝑠𝑖𝑛 (
2 ∗ 𝜋 ∗ 𝑖 ∗ 𝑗

𝑁𝑓

)] … (1) 

Where, 𝑥 represents the ECG signal used for analysis, while 

𝑁𝑓  represents number of ECG sample values extracted for 

each of the signal sets.  

These features are extended via extraction of entropy-based 

cosine features via equation 2, 

𝐹(𝐷𝐶𝑇𝑖) =
1

√2 ∗ 𝑁𝑓

∗ 𝑥𝑖 ∑ 𝑥𝑗

𝑁𝑓

𝑗=1

∗ cos [
√−1 ∗ (2 ∗ 𝑖 + 1) ∗ 𝜋

2 ∗ 𝑁𝑓

] … (2) 

To further support feature augmentation, Gabor features are 

extracted via equation 3, where particular wavelengths 𝜆, and 

angular constants 𝜕 & ∅ were extracted for representing ECG 

signals. 

𝐺(𝑥, 𝑦)𝑠 = 𝑒
−𝑥`2+𝜕2∗𝑦′2

2∗∅2 ∗ cos (2 ∗
𝑝𝑖

𝜆
∗ 𝑥′) … (3) 

Where, 𝑥 & 𝑦 represent the ECG signal components and their 

transposed Cartesian features are extracted via equation 4, 

𝑥′ = 𝑥 ∗ cos(𝜙) + 𝑦 ∗ sin(𝜙) 

𝑦′ = −𝑥 ∗ sin(𝜙) + 𝑦 ∗ cos(𝜙) … (4) 

For covering the entire angular spectrum, the angles 𝜕 & ∅ are 

varied between (0, 2𝜋), which assists in extraction of large-

scale feature sets. These sets are extended via evaluation of 

approximate & diagonal Wavelet components via equations 5 

& 6 as follows, 

𝑊𝑎 =
𝑥𝑖 + 𝑥𝑖+1

2
… (5) 

𝑊𝑑 =
𝑥𝑖 − 𝑥𝑖+1

2
… (6) 

All these feature sets are cascaded with a Convolutional 

feature vector, which uses window-based operations in order 

to extract high-density feature sets via equation 7, 

𝐶𝑜𝑛𝑣𝑜𝑢𝑡𝑖
= ∑ 𝑥(𝑖 − 𝑎) ∗ 𝐿𝑅𝑒𝐿𝑈 (

𝑚 + 2𝑎

2
) … (7)

𝑚

2

𝑎=−
𝑚

2

 

Where, 𝑚, 𝑎 are the window& stride sizes for different 

convolutional layers. The convolutional features use a Leaky 

Rectilinear Unit (LReLU) based activation function which is 

extracted via equation 8, 

𝐿𝑅𝑒𝐿𝑈(𝑥) = 𝑙𝑎 ∗ 𝑥, 𝑤ℎ𝑒𝑛 𝑥 < 0 , 𝑒𝑙𝑠𝑒 𝐿𝑅𝑒𝐿𝑈(𝑥) = 𝑥 … (8) 

For LReLU, 𝑙𝑎 represents a scaling constant, and is used for 

quantization of feature sets. All these feature sets are 
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combined to form a ECG Feature Vector (EFV), which 

contains feature redundancies due to extraction of overlapping 

feature sets. This redundancy reduces the model’s accuracy, 

and increases its delay of classification, when tested under 

clinical scenarios. To overcome these issues, a Novel Grey 

Wolf Optimization (GWO) Model is used, which works as per 

the following process, 

• To initialize the optimizer, its constants are setup as 

follows, 

o Total count of Wolves that will generate different 

feature configurations (𝑁𝑤) 

o Total count of Iterations for which Wolves will be 

validated & reconfigured (𝑁𝑖) 

o Rate of learning for individual Wolves (𝐿𝑤) 

• The GWO Model initially generates 𝑁𝑤  Wolf 

configurations as per the following process, 

o Stochastically select 𝑁 features as per equation 9, 

𝑁 = 𝑆𝑇𝑂𝐶𝐻(𝐿𝑤 ∗ 𝑁𝑓 , 𝑁𝑓) … (9) 

Where, 𝑆𝑇𝑂𝐶𝐻  represents a stochastic process that uses 

Markovian operations for generation of number sets. 

o For each of these features, estimate Wolf fitness via 

equation 10, 

𝑓𝑤 =
√

(∑ (𝑥𝑖 − ∑
𝑥𝑗

𝑁

𝑁
𝑗=1 )

2
𝑁
𝑖=1 )

𝑁 + 1
… (10) 

o Repeat this process and generate 𝑁𝑤 Wolves 

• Once all Wolves are generated, then estimate Wolf fitness 

threshold via equation 11, 

𝑓𝑡ℎ = ∑ 𝑓𝑤𝑖
∗

𝐿𝑤𝑖

𝑁𝑤

𝑁𝑤

𝑖=1

… (11) 

• Based on this fitness threshold, mark the Wolves as 

follows, 

o If 𝑓𝑤 > 2 ∗ 𝑓𝑡ℎ, then Mark Wolf as ‘Alpha’ 

o Else if 𝑓𝑤 > 𝑓𝑡ℎ , then Mark Wolf as ‘Beta’, and 

change its learning rate via equation 12, 

𝐿𝑤(𝑁𝑒𝑤) = 𝐿𝑤(𝑂𝑙𝑑) +
∑ 𝐿𝑤𝑖

𝑁(𝐴𝑙𝑝ℎ𝑎)
𝑖=1

𝑁(𝐴𝑙𝑝ℎ𝑎)4
… (12) 

o Else if 𝑓𝑤 > 𝐿𝑤𝑖
∗ 𝑓𝑡ℎ, then Mark Wolf as ‘Gamma’, 

and modify its learning rate via equation 13, 

𝐿𝑤(𝑁𝑒𝑤) = 𝐿𝑤(𝑂𝑙𝑑) +
∑ 𝐿𝑤𝑖

𝑁(𝐵𝑒𝑡𝑎)
𝑖=1

𝑁(𝐵𝑒𝑡𝑎)3
… (13) 

o Otherwise, Mark Wolf as ‘Delta’, and modify its 

learning rate via equation 14, 

𝐿𝑤(𝑁𝑒𝑤) = 𝐿𝑤(𝑂𝑙𝑑) +
∑ 𝐿𝑤𝑖

𝑁(𝐺𝑎𝑚𝑚𝑎)
𝑖=1

𝑁(𝐺𝑎𝑚𝑚𝑎)2
… (14) 

• Repeat this process for 𝑁𝑖  iterations, and reconfigure 

individual Wolves for better feature extraction under 

different class types. 

Once all iterations are complete, then an union of all ‘Alpha’ 

Wolf features is extracted via equation 15, 

𝐹(𝐹𝑖𝑛𝑎𝑙) = ⋃ 𝐹𝑖

𝑁(𝐴𝑙𝑝ℎ𝑎)

𝑖=1

… (15) 

These features are used to train a set of binary CNNs, each of 

which is responsible for categorizing the input features into 1 

of 2 classes. Design of this CNN can be observed from figure 

2, where different Convolution, Max Pooling, Drop Out and 

Fully Connected Neural Network (FCNN) layers are 

connected in cascade, that assists in classification of these 1D 

feature sets. 

 

Fig. 2 Design of the 1D CNN Classifier for identification of binary 

classes 

The classifier can be trained for 𝑁𝑐 classes via the following 

process, 

• Select a common class 𝐶 from these 𝑁𝑐 classes 

http://www.ijritcc.org/
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• Generate 𝑁𝑐 − 1 cascaded CNNs, each of which is trained 

for 2 classes. Out of these classes, one class is 𝐶 , and 

other class is the current class 

• Each of the classifiers uses equation 16 to categorize input 

features into ‘𝐶’ class or current class. 

𝑐𝑜𝑢𝑡 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (∑ 𝑓𝑖 ∗ 𝑤𝑖

𝑁𝑓

𝑖=1

+ 𝑏𝑖) … (16) 

Where, 𝑓, 𝑤 & 𝑏  represents the extracted features, their 

individual weights, and biases. 

• If the features are classified into current class, then the 

classification process converges, and the input is 

categorized into that class 

• Otherwise, the process continues for other classifiers 

Based on this process, the model is able to efficiently classify 

any input ECG signal into 𝑁  different classes, while 

maintaining high efficiency levels. These efficiency levels are 

evaluated for different datasets, and compared with existing 

models in the next section of this text. 

III. RESULTS AND DISCUSSION 

The proposed model is able to represent the collected ECG 

signals into multimodal feature sets. These sets include Fourier 

sets (for frequency analysis), Discrete Cosine sets (for entropy 

analysis), Gabor sets (for coordinate analysis), Convolutional 

sets (for window-based analysis), and Wavelet sets (for detail 

analysis). These feature sets allow classifier models to analyze 

input signals, and categorize them with higher confidence 

levels. To improve the inter-class variance levels of these 

features, a Grey Wolf Optimization (GWO) Model is 

activated, which assists in continuous selection of highly 

variant feature sets. These feature sets are classified by a series 

of Binary CNN Models, that can be extended for multiple 

number of classes. To validate the performance of this model, 

its accuracy (A), precision (P), recall (R), and classification 

delay (D) levels were evaluated for PTB-XL 

(https://physionet.org/content/ptb-xl/1.0.3/), MITBIH 

(https://www.kaggle.com/datasets/shayanfazeli/heartbeat), and 

Multi-led ECG signals (https://physionet.org/content/ecg-

arrhythmia/1.0.0/). These sets were combined to form a total 

of 1 million records, out of which 60% were used for training, 

15% were used for testing, while 25% were used for validation 

operations. Based on this strategy, the accuracy of 

classification was compared with SONN [4], SAM [12], & MS 

CNN [26], and can be observed from table 1 as follows, 

 

 

TABLE I.  CLASSIFICATION ACCURACY ACHIEVED FOR ANALYSIS OF 

DIFFERENT ECG SIGNALS 

NTA A (%) 

SONN 

[4] 

A (%) 

SAM 

[12] 

A (%) 

MS 

CNN 

[26] 

A (%) 

Proposed 

10k 91.21 85.40 88.81 94.59 

20k 91.30 85.64 89.27 94.87 

30k 91.38 85.88 89.69 95.14 

50k 91.47 86.12 90.09 95.40 

100k 91.57 86.35 90.51 95.67 

200k 91.67 86.59 90.95 95.95 

250k 91.77 86.83 91.41 96.24 

300k 91.87 87.07 91.88 96.53 

400k 91.97 87.31 92.32 96.81 

450k 92.07 87.54 92.77 97.09 

500k 92.17 87.78 93.22 97.37 

550k 92.27 88.02 93.66 97.65 

600k 92.36 88.26 94.11 97.93 

700k 92.46 88.50 94.55 98.21 

800k 92.56 88.74 94.99 98.49 

900k 92.65 88.97 95.44 98.77 

1M 92.75 89.21 95.88 99.04 

 

 

Fig. 3. Classification accuracy achieved for analysis of different ECG 

signals 

Based on this extensive evaluation and its visualization in 

figure 3, it can be observed that the proposed model is 5.9% 

more accurate than SONN [4], 8.5% more accurate than SAM 

[12], and 2.8% more accurate than MS CNN [26] under 

different classification scenarios. The reason for this 

improvement in accuracy is use of multimodal feature sets, 

and their selection via the GWO model, which assists in 

identification of highly variant feature sets.Similarly, the 

precision of classification can be observed from table 2 as 

follows, 
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Table 2. Classification precision achieved for analysis of different 

ECG signals 

NTA P (%) 

SONN 

[4] 

P (%) 

SAM 

[12] 

P (%) 

MS 

CNN 

[26] 

P (%) 

Proposed 

10k 85.59 80.28 83.68 91.28 

20k 85.67 80.51 84.08 91.54 

30k 85.76 80.74 84.47 91.80 

50k 85.85 80.96 84.86 92.06 

100k 85.94 81.18 85.27 92.33 

200k 86.04 81.41 85.70 92.60 

250k 86.13 81.63 86.13 92.87 

300k 86.22 81.85 86.55 93.14 

400k 86.31 82.07 86.97 93.41 

450k 86.41 82.30 87.39 93.68 

500k 86.50 82.52 87.81 93.95 

550k 86.59 82.74 88.23 94.22 

600k 86.68 82.97 88.64 94.49 

700k 86.77 83.19 89.06 94.76 

800k 86.86 83.41 89.47 95.03 

900k 86.95 83.64 89.88 95.29 

1M 87.04 83.86 90.30 95.56 

 

 

Figure 4. Classification precision achieved for analysis of different 

ECG signals 

Based on evaluation and its visualization in figure 4, it can be 

observed that the proposed model is 8.3% more precise than 

SONN [4], 12.4% more precise than SAM [12], and 5.9% 

more precise than MS CNN [26] under different classification 

scenarios. The reason for this improvement in precision is use 

of multimodal feature sets, its selection via the GWO model 

and classification via binary CNN, which assists in 

classification of sample sets into multiple class types. 

Similarly, the recall of classification can be observed from 

table 3 as follows, 

Table 3. Classification recall achieved for analysis of different ECG 

signals 

NTA R (%) 

SONN 

[4] 

R (%) 

SAM 

[12] 

R (%) 

MS 

CNN 

[26] 

R (%) 

Proposed 

10k 89.56 84.01 87.55 94.27 

20k 89.65 84.24 87.97 94.54 

30k 89.73 84.48 88.38 94.80 

50k 89.83 84.71 88.79 95.07 

100k 89.93 84.94 89.22 95.35 

200k 90.03 85.18 89.67 95.63 

250k 90.13 85.41 90.12 95.92 

300k 90.23 85.64 90.56 96.20 

400k 90.32 85.88 91.00 96.48 

450k 90.42 86.11 91.44 96.76 

500k 90.51 86.34 91.87 97.03 

550k 90.61 86.58 92.31 97.31 

600k 90.70 86.82 92.75 97.59 

700k 90.80 87.05 93.19 97.87 

800k 90.89 87.28 93.62 98.14 

900k 90.99 87.52 94.05 98.42 

1M 91.08 87.75 94.48 98.70 

 

 

Figure 5. Classification recall achieved for analysis of different ECG 

signals 

Based on evaluation and its visualization in figure 5, it can be 

observed that the proposed model achieves 6.5% more recall 

than SONN [4], 10.5% more recall than SAM [12], and 3.5% 

more recall than MS CNN [26] under different classification 

scenarios. The reason for this improvement in recall is use of 

multimodal feature sets, and classification via multiple binary 

CNNs, which assists in high consistency classification of 

sample sets into multiple class types. Similarly, the delay 

needed for classification can be observed from table 4 as 

follows, 
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Table 4. Delay needed for analysis of different ECG signals 

NTA D (ms) 

SONN 

[4] 

D (ms) 

SAM 

[12] 

D (ms) 

MS 

CNN 

[26] 

D (ms) 

Proposed 

10k 117.90 110.53 116.58 97.31 

20k 118.01 110.85 117.17 97.59 

30k 118.12 111.16 117.72 97.86 

50k 118.24 111.46 118.25 98.13 

100k 118.37 111.77 118.81 98.41 

200k 118.51 112.08 119.40 98.71 

250k 118.64 112.38 120.01 99.01 

300k 118.77 112.69 120.60 99.30 

400k 118.89 113.00 121.18 99.59 

450k 119.02 113.30 121.77 99.87 

500k 119.14 113.61 122.35 100.16 

550k 119.27 113.92 122.93 100.45 

600k 119.40 114.23 123.52 100.73 

700k 119.52 114.54 124.10 101.02 

800k 119.64 114.85 124.68 101.30 

900k 119.77 115.15 125.26 101.59 

1M 119.90 115.46 125.83 101.88 

 

 

Figure 6. Delay needed for analysis of different ECG signals 

Based on evaluation and its visualization in figure 6, it can be 

observed that the proposed model achieves 19.5% faster 

performance than SONN [4], 14.2% faster performance than 

SAM [12], and 24.3% faster performance than MS CNN [26] 

under different classification scenarios. The reason for this 

improvement in speed is use of GWO, which assists in 

selection of highly variant feature sets for different class types. 

Due to these enhancements, the proposed model is observed to 

be applicable for a wide variety of clinical scenarios. 

 

 

 

IV. CONCLUSION AND FUTURE SCOPE 

The suggested model has the capacity to transform the 

gathered ECG signals into multimodal feature sets. These sets 

include Wavelet sets, Fourier sets, Discrete Cosine sets, Gabor 

sets, and entropy sets for window-based analysis, coordinate 

analysis, and frequency analysis, respectively (for detail 

analysis). These feature sets give classifier models the ability 

to analyze input signals and classify them with greater 

certainty. A Grey Wolf Optimization (GWO) Model is 

activated, which aids in the continuous selection of highly 

variant feature sets, to improve the inter-class variance levels 

of these features. A number of Binary CNN Models that can 

be expanded for numerous classes are used to categorize these 

feature sets. Under various classification scenarios, it was 

found that the proposed model is 2.8% more accurate than MS 

CNN [26], 8.5% more accurate than SAM [12], and 5.9% 

more accurate than SONN [4] in terms of accuracy. The use of 

multimodal feature sets and their selection using the GWO 

model, which aids in the identification of highly variant 

feature sets, is the cause of this improvement in accuracy. 

Under various classification scenarios, it was found that the 

proposed model is 5.9% more precise than MS CNN [26], 

12.4% more precise than SAM [12], and 8.3% more precise 

than SONN [4]. The use of multimodal feature sets, their 

selection using the GWO model, and classification using 

binary CNN, which helps classify sample sets into various 

class types, are the reasons for this improvement in precision. 

While it was noted that the proposed model achieves 6.5% 

more recall than SONN [4], 10.5% more recall than SAM 

[12], and 3.5% more recall than MS CNN [26] under various 

classification scenarios, in terms of classification consistency. 

The use of multimodal feature sets and classification using 

multiple binary CNNs, which help in the high consistency 

classification of sample sets into multiple class types, are the 

reasons for this improvement in recall. When delay was 

evaluated, it was found that the proposed model performs 

19.5% faster than SONN [4], 14.2% faster than SAM [12], and 

24.3% faster than MS CNN [26] under various classification 

scenarios due to feature selection. The use of GWO, which 

aids in the selection of highly varied feature sets for various 

class types, is the cause of this improvement in speed. The 

proposed model is observed to be applicable for a variety of 

clinical scenarios as a result of these improvements. 

Future validation of the model will involve large-scale ECG 

classes, and it will be possible to enhance it by incorporating 

high-density feature sets that can be extracted from LSTM & 

GRU layers. Additionally, by incorporating various 

bioinspired models that can help with ongoing performance 

tuning in clinical settings, this performance can be enhanced 

for real-time scenarios. 
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