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Abstract— Agriculture is one of the major sectors that influence the India economy due to the huge population and ever-growing food 

demand. Identification of diseases that affect the low yield in food crops plays a major role to improve the yield of a crop. India holds the 

world's second-largest share of tomato production. Unfortunately, tomato plants are vulnerable to various diseases due to factors such as climate 

change, heavy rainfall, soil conditions, pesticides, and animals. A significant number of studies have examined the potential of deep learning 

techniques to combat the leaf disease in tomatoes in the last decade. However, despite the range of applications, several gaps within tomato 

leaf disease detection are yet to be addressed to support the tomato leaf disease diagnosis. Thus, there is a need to create an information base 

of existing approaches and identify the challenges and opportunities to help advance the development of tools that address the needs of tomato 

farmers. The review is focussed on providing a detailed assessment and considerations for developing deep learning-based Convolutional 

Neural Networks (CNNs) architectures like Dense Net, ResNet, VGG Net, Google Net, Alex Net, and LeNet that are applied to detect the 

disease in tomato leaves to identify 10 classes of diseases affecting tomato plant leaves, with distinct trained disease datasets. The performance 

of architecture studies using the data from plantvillage dataset, which includes healthy and diseased classes, with the assistance of several 

different architectural designs. This paper helps to address the existing research gaps by guiding further development and application of tools 

to support tomato leaves disease diagnosis and provide disease management support to farmers in improving the crop. 

Keywords- Agriculture, Tomato leaf disease, review, deep learning, Convolutional Neural Network (CNN), Dense Net, ResNet, VGG Net. 

 

I.  INTRODUCTION  

Agriculture has been the primary source of income for the 

world as well as for India’s majority of people. In India, 

agriculture provides 58% of the livelihood for Indians. 

Agriculture has become more than a food source for the world 

and India also Agriculture is the backbone of our country. 

Village authorities assist farmers in choosing the best crop for 

their needs. Crop production, on the other hand, is fraught with 

difficulties. They may also be made simple with the help of 

technology [1-12]. 

Tomatoes are a common crop in agriculture; India ranks 

second in the world for tomato production, and they are also 

helpful in everyday human kitchens. Tomato consumption has 

risen dramatically in recent years, but tomato agriculture has 

been hampered by a variety of diseases and soil conditions, as 

well as climate change and other environmental factors. The 

country has a lot of territories where tomatoes can be grown. 

Tomatoes are grown in Madhya Pradesh, Andhra Pradesh, 

Karnataka, Tamil Nadu, Orissa, etc and they are susceptible to 

diseases such as bacterial spots, fungus, algae, etc. Tomato leaf 

diseases are caused by organic causes. Non-living elements that 

induce plant diseases include temperature imbalances, chemical 

toxicity, incorrect fertilizer, rainfall, nutritional inadequacy, and 

so on. Tomatoes are high in vitamin C, potassium, vitamin K, 

and folate [13-23], among other vitamins and minerals. Tomato 

leaf diseases include Bacterial Spot, Early Blight, Late _Blight, 

Leaf_mould, Septoria Leaf Spot, Spider Mites, Target_Spot, 

Tomato_Yellow_Leaf Curl Virus, and Tomato Mosaic Virus. 

Due to a lack of sufficient understanding, it might be difficult for 

farmers to identify the diseases effectively [13-23]. 

Deep learning can be used to identify tomato plant diseases. 

Deep learning can accomplish object recognition and disease 

classification more precisely than machine learning because it 

uses multiple neural network convolution methods. Deep 

learning algorithms include LSTM, GAN, CNN, RNN, and 

others. Deep Learning will be used to detect and classify tomato 

leaf diseases using images. The Convolutional Neural Network 

is one of the most used deep neural networks. CNN offers a self-

learning system for extracting characteristics from images and 

categorizing them [24-65]. It has lately achieved incredible 

results in a wide range of applications, including the detection 
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and classification of plant diseases. Traditional learning 

algorithms perform admirably when used on datasets and with 

features that have been carefully built by hand, but they are 

unable to generalize their results to test cases that come from a 

variety of distributions. Deep learning is distinguished from 

other, more common methods by its use of automatic feature 

learning; nonetheless, for the model to generalize to test 

examples from a different distribution, it requires a large training 

sample with a diversified feature distribution [24-75]. 

II. CLASSIFICATION OF TOMATO LEAF DISEASES 

Planting tomatoes most diseases, which include bacterial 

spots, fungus, algae, and other organisms, are caused by bacterial 

spots, fungus, algae, and other organisms. The healthy class of 

tomato plant leaf and the 9-leaf disease class of tomato plant leaf 

diseases are the two classifications. 18160 images from the 

PlantVillage Dataset were used to test validation. Tomato plant 

leaves are infected with a variety of diseases. In tomatoes, there 

are nine Classes of diseases and healthy classes as shown in 

Fig1: 1) Target-Spot 2) Mosaic-Virus, 3) Bacterial-Spot, 4) 

Late-Blight, 5) Leaf-Mold, 6) Yellow-Leaf-Curl Virus, 7) 

Spider-Mites: Two-spotted spider mite, 8) Early- light, and 9) 

Septoria Leaf-Spot and Healthy class diseases Tomato plant leaf 

disease, sometimes known as late blight, was extremely harmful 

[24-75]. 

Fungal Diseases: About 85 percent of plant diseases may be 

traced back to fungi or organisms with similar structures. To 

infect other plants and trees, fungi, and bacteria only need to land 

on a nearby surface, as they are so tiny and light. Besides being 

susceptible to insect pests, tomatoes are also susceptible to 

several fungal diseases that create replay disease spots on the 

plant's leaves, stems, and fruit. Diseases caused by fungi in 

tomatoes are often exacerbated by wet, humid conditions. 

At first look, the symptoms of the three most frequent fungal 

infections of tomatoes appear to be relatively similar, but a closer 

investigation should reveal which fungus is to blame. Three 

Types of Fungal Infections are Early-blight, Late-blight, and 

Septoria-Leaf spot, Leaf-Mold [24-75]. 

Bacterial Diseases: Bacteria of over 200 different varieties 

cause it. Insects, splashing water, other infected plants, or 

equipment can all transmit the illness. It is caused by 

Xanthomonas bacteria, namely Xanthomona’s performance, and 

only affects green tomatoes, not red ones. As with peppers, 

diseases have spread to peppers. The disease tends to spread 

more during the rainy seasons. Spots on the leaves and fruits 

reduce crop output and can even kill plants or cause them to 

wither and die from sun damage. Symptoms include spots on the 

leaves that range from angular to irregular and wet to dry and 

buy or scabby spots on the fruit. The leaf dots may have a golden 

halo around them. Cores lose moisture and become brittle over 

time [24 - 75].  

Viral Diseases: It is the rarest sort of plant disease and is 

caused by viruses. However, there are no chemical therapies for 

a virus after it has been infected, thus all suspicious plants should 

be destroyed to halt the infection. They must physically 

penetrate the plant, and insects are the most common carriers [24 

- 75]. 

By examining various diseases, we can see the various sorts 

of surgeries and aspects that must be considered. Several disease 

variations are discussed in further detail. 

Bacterial Spot: Spots generated by the bacterium 

Xanthomonas are called bacterial infections. When combined 

with high temperatures, heat, and rain, it can cause crops to lose 

their leaves and get damaged [24 - 75]. 

Early blight: Fungi or bacteria are responsible for early 

blight. On elder leaves, little black dots develop first. Infected 

leaves might become brown and fall off, or they can become 

dead, dry leaves that attach to the stem [24 - 75]. 

Late Blight: Fungal pathogen viruses are responsible for late 

blight. Symptoms of late blight in leaves include water-soaked 

lesions with an uneven outline and a lighter halo ring [24 - 65]. 

Leaf Mold: Known scientifically as a fungus, Leaf Mold 

thrives in damp conditions [24] and high relative humidities 

(above 85%). Yellow dots on the upper leaf surface are a replay 

indicator of the diseases [24 - 75]. 

Septoria Leaf spot: Septoria Leaf Spot is a fungal infection 

that affects the leaves. It usually appears on the lower leaves after 

the first fruit has formed. Per leaf, there are many circular 

regions with dark brown borders and multiple dots. The leaves 

turn yellow, then brown [24], and eventually, wither if there are 

multiple leaf lesions [24 - 75]. 

Two-spotted spider mite: The two-spotted spider mite 

causes white spots to form on tomato leaves. Diseased areas 

appear on plant leaves, and the leaves turn yellow or grey before 

falling off after many days of heavy pest feeding [24 - 75]. 

Target spot: The ideal growing conditions for tomatoes are 

temperatures between 68 and 82 degrees Fahrenheit and leaf 

wetness intervals of up to 16 hours. On leaves, it causes necrotic 

tumors to form in circular patterns [24 - 75]. 

Target Mosaic virus: The yellowing and shrinking of 

tomato plants caused by the tomato mosaic virus is a major cause 

of crop failure caused by this virus. Curled, distorted, or 

abnormally small leaves are symptoms [24 - 75]. 

Yellow leaf curl Virus: To put it simply, the Yellow Leaf 

Curl Virus causes massive economic losses in tropical and 

subtropical regions. The fungus gnats, a type of bug, is the vector 

for this disease. Leaf size is drastically reduced, and the leaves 

curl or cup upward, as a result of this disease [24 - 75]. 
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Figure 1Tomato Plant Leaf Diseases Sample Images 

III. CLASSIFICATION OF DEEP LEARNING 

TECHNIQUES 

Deep Learning is a type of machine learning that uses a three-

layer architecture, with an input layer, an output layer, and a 

hidden layer, to process information in a manner analogous to 

the human brain when dealing with complex and large datasets.  

Artificial neural networks (ANNs) are the backbone of deep 

learning algorithms and their brain-like information-processing 

capabilities make them useful for early disease diagnosis. similar 

to self-learning training machines, during the training phase, 

algorithms utilize unknown components in the input distribution 

to extract features, classify objects, and discover significant data 

patterns.  Deep learning made use of many models. While there 

is no such thing as a perfect network, a problem-specific 

algorithm is used to determine the most efficient means of 

improving feature generation.  

To detect the forecast plant diseases different DL algorithms are 

applied. DL is the best choice than machine learning for 

convolution for huge data, disease detection, and classification 

utilizing CNN networks such as LSTM, RNN, GAN, and others 

which have the highest accuracy rate. The deep learning 

algorithms are divided into categories depending on the different 

neural network methods listed below as shown in Fig2. 

 
Figure 2 Deep Learning Algorithms Classifications 

A. Convolutional Neural Networks (CNN) 

T CNNs are a special kind of neural network that specializes in 

processing images and other data that can be represented on a 

grid. To describe it simply, a digital image is a binary 

representation of visual data. The pixels are generally stored in 

a grid, and their values specify the colors and intensity of each 

yellow circle. CNN is a multi-layer neural network that is used 

for object recognition and image processing, as well as detecting 

time series and animal image detection, extracting features from 

data as shown in Fig3 [75-127]. 

 

Figure 3Convolutional Neural Networks (CNNs) 

B. Long Short-Term Memory Networks (LSTMs) 

LSTM networks were created to solve the long-term 

dependency problem of RNNs Feedback connections 

distinguish LSTMs from feedforward neural networks. LSTMs 

may handle complete sequences of data (e.g., time series) by 

preserving important knowledge about past data points to help 

process future data points as shown in Fig4. Thus, LSTMs excel 

at processing text, speech, and time-series sequences [75-127]. 

 
Figure 4 Long Short-Term Memory Networks (LSTMs) 

C. Recurrent Neural Networks (RNNs) 

As the most common type of neural network and widely 

considered the most effective, Recurrent Neural Networks 

(RNNs) are at once the most fundamental and the most 

powerful. These algorithms have been receiving a lot of 

attention since they have shown potential in a range of 

innovations. RNN was developed with the goal of improving 

the processing of sequential data as shown in Fig5 The concept 

of internal memory is what sets RNN apart from other neural 

network types [75-127]. 

Deep Learning Algorithms

Convolutional Neural 

Networks (CNNs)

Long Short-Term 

Memory 

Networks(LSTMs)

Recurrent Neural 

Networks(RNNs)

Generative 

Adversarial 

Networks(GANs)

Radial Basis Function 

Networks(RBFNs)

Multilayer 

Perceptron’s(MLPs)
Self-Organizing 

Map(SOMs)

Deep Belief 

Networks(DBNs)

Restricted Boltzmann 

Machines(RBMs)
Autoencoders
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Figure 5 Recurrent Neural Networks (RNNs) 

D. Generative Adversarial Networks (GANs) 

In the field of deep learning, generative adversarial networks, 

often known as GANs, are a specific kind of generative 

algorithm that is utilized to generate new data that is comparable 

to the training data. A GAN consists of a generator that learns 

how to generate fake data and a discriminator that learns how to 

recognize such data. Together, these two components learn how 

to detect fake data as shown Fig6. 

GANs have grown in popularity over the years. For the study of 

dark matter, they can mimic gravitational lensing to improve 

scientific imaging. Visuals in older games can be improved by 

utilizing GANs and image training to create 4K or higher 

resolutions of the original 2D graphics [75-127]. 

 

 
Figure 6 Generative Adversarial Networks (GANs) 

E. Radial Basis Function Networks (RBFNs) 

When compared to other types of neural networks, the structure 

of radial basis function (RBF) networks is unique. Many layers 

of a neural network's architecture are typically used to make 

non-linearity through the iterative application of nonlinear 

activation functions. By contrast, an RBF network has only 

three layers: input, hidden, and output. In an RBF network, the 

input layer just acts as a channel for data to be passed on to the 

hidden compute layer. The strength of an RBF network lies in 

its hidden layer, where computations take place in a way that is 

fundamentally distinct from those of other neural networks. It 

is the job of the output layer to make predictions, either through 

classification or regression as shown Fig7. 

 

 
Figure 7 Radial Basis Function Networks (RBFNs) 

F. Multilayer Perceptron’s (MLPs) 

The perceptron excels at the task of categorizing data that can 

be neatly split into linear categories. As the XOR example 

showed, they encounter serious limitations when working with 

data sets that do not even follow this pattern as shown Fig8. The 

XOR problem is an example of a set that cannot be partitioned 

linearly into any four-point classification. 

However, in order to categorize datasets that are not simply 

divisible by linear measures, the Multilayer Perceptron, often 

known as MLPs, is able to circumvent this problem. That is 

because they utilize a more robust and complex architecture to 

create regression and classification models for challenging 

datasets. 

 

 
Figure 8 Multilayer Perceptron’s 

G. Self-Organizing Maps (SOMs) 

As with many types of modern Classifiers, the Self Organizing 

Map (also known as a Korhonen map or SOM) is based on 

biological models of neural systems from the 1970s. It uses a 

competitive learning method to train its network in an 

unsupervised manner. To simplify difficult problems for human 

comprehension, SOM is employed in clustering and mapping 

(or dimensionality reduction) techniques to map 

multidimensional data onto lower-dimensional spaces as shown 

Fig9. The Input layer and the Output layer are the two 

components of a SOM. 
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Figure 9 Self-Organizing Maps (SOMs) 

H. Deep-Belief-Networks (DBNs) 

In the field of deep learning, DBN is an unsupervised 

probabilistic algorithm. DBN is made up of several different 

layers of unpredictable predictor variables. A binary set of 

variables, often known as feature detectors or hidden units, are 

the subject of this study. DBN is a hybrid graphical model that 

can generate new data as shown in Fig10. Both uppermost 

layers are completely agnostic. Directional links from higher 

levels to lower ones. 

 

 
Figure 10 Deep Belief Networks (DBNs) 

I. Restricted Boltzmann Machines (RBMs) 

Essentially, it is a set of interconnected neural nodes. There are 

two layers in this device: the input/visible layer and the 

output/hidden layer.  The v-symbolizes the top, visible layer, 

while the h-symbolizes the bottom, hidden layer. It is important 

to note that the Boltzmann machine does not have an output 

layer. Boltzmann machines are a special kind of generative and 

random neural network that can represent and (in sufficient 

time) solve difficult cooperative and productive problems as 

shown in Fig11. 

The visible and concealed units of RBMs are separated into two 

categories. Every visible and concealed unit is connected. When 

using RBMs, all the visible and hidden units are connected to a 

single bias unit. 

 

 
Figure 11 Restricted Boltzmann Machines 

J. Autoencoders 

The input and output of an auto encoder are identical, making 

it a sort of feed forward neural network. As a result, they can 

reconstitute the output after compressing it into a lower-

dimensional code. The code, also known as the latent-space 

representation, is a condensed version of the input. 

Each part of an autoencoder the encoder, the code, and the 

decoder has its own specific function. Data is compressed and a 

code is generated by the encoder; the decoder uses this code 

alone to reassemble the data as shown in Fig12. 

 

 
Figure 12 Autoencoders 

IV. SUITABILITY OF CNN FOR TOMATO LEAF 

DISEASE DETECTION 

Their primary distinction is that, in comparison to conventional 

feedforward neural networks, they require a much smaller 

number of structural parts (artificial neurons) due to the layering 

process they employ. Several CNN baseline architectures have 

been created for use in image recognition applications, and 

these have been effectively used to challenge visual imaging 

challenges. 

A rise in popularity for Deep Convolutional Neural Networks 

can be traced back to the 2012 ImageNet challenge when the 

Alex Net architecture significantly improved accuracy on the 

classification job by decreasing top 5 errors by an additional 

8%. Alex Net’s unique ideas contributed greatly to speed gains 

when compared to LeCun's original architecture [128-165]. 
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Recently, Deep Learning has emerged as the go-to strategy for 

problems of this nature. According to Brahimi et al., deep 

learning techniques (using Alex Net and Google Net 

architectures with pre-trained weights) outperformed traditional 

machine learning approaches when it came to the classification 

of 9 diseases affecting the tomato plant [18-165]. 

An application of feed-forward neural networks known as 

convolutional neural networks (CNN) [38] has been developed 

to automate the process of finding and diagnosing diseases that 

can affect tomatoes.  There are multiple stages to this, each of 

which is tailored to a particular purpose. Layers in Convent are 

composed up of neurons arranged in all three dimensions (x, y, 

and z) . Furthermore, the neurons in a given layer do not have a 

one-to-one connection with all the neurons in the layer below, 

but rather, they have connections with only a lazed subset of 

those neurons [128-165]. 

These days, Deep Learning is the go-to method for making 

precise diagnoses of plant diseases. Diseased leaves are 

gathered and categorized. Additional data is gleaned from the 

labeled images when they are pixelized . With the help of 

automatic feature extraction, neural network models can 

classify images automatically into categories. Following feature 

extraction, the most informative features are narrowed down to 

a manageable number, and then one of several classification 

methods is employed [128-165]. 

In deep learning, the convolutional neural network is a powerful 

Algorithm for overcoming the identification problem. Recently, 

CNN has emerged as the self-learning model capable of feature 

extraction and image classification CNN has shown promising 

results in a variety of uses, including author identification, 

object detection, text detection from images water leakage 

detection, biological image analysis, and facial image detection 

[57-165]. 

CNN has its own system for learning feature extraction and 

labeling, which it uses to better understand images. Numerous 

fields have benefited from employing CNN, with better results 

being achieved in each one. This includes object detection, 

scene text detection, biological image analysis, and face 

recognition. [CNN] [App for CNN] Since CNN considers 

regional background information from around the world, it can 

infer more robust features. Significant differences on key 

elements that emerged as a result of shadows, distortions, and 

brightness oscillations in natural photos can also be addressed 

thanks to image processing methods. The light, clouds, and 

other environmental elements could all contribute to the subtle 

but noticeable differences shown in natural images [57 -165]. 

The application of the convolutional neural network (CNN) 

Algorithm for the analysis of plant leaf images has progressed 

to the point where CNN algorithms can be successfully applied 

to leaf disease analysis due to their increased sensitivity to 

important features. This is possible because CNN algorithms 

take into account more information. One of the many areas in 

which it has recently demonstrated great success is in the 

identification of plant diseases [57-165]. 

To summarize, deep learning is an approach to training neural 

networks to do novel tasks. The ability of deep learning to 

automatically extract data from images is a major benefit. As it 

is trained, a neural network learns to extract features like these 

from the data. The most popular deep learning model right now 

is the multi-layer feed-forward neural network or CNN. 

V. CNN MODELS FOR TOMATO LEAF DISEASE 

DETECTION  

 
Figure 13 Classification of CNN Models 

Convolutional neural networks (CNNs) are a subset of deep 

learning algorithms that have been designed to handle pixelated 

data. These networks are widely used in image recognition and 

analysis. It receives an image as input, applies a set of biases 

and weights that it has learned to each image, and then uses this 

information to tell them apart. One potential benefit of adopting 

CNN is that it requires far less pre-processing than previous 

algorithms meaning the neural network learns on its own 

instead of relying on filters that were manually constructed for 

traditional methods [63-175]. 

To extract characteristics from high-dimensional data, 

convolutional neural networks (CNNs) are a type of artificial 

neural network. In this Analysis, a max-pooling layer is added 

to a simple CNN model consisting of three convolutional 

blocks. In addition, a dropout layer, a dense layer, and a flat 

layer were added as a conclusion as shown Fig13. The function 

that flattens the pooled feature maps into a single vector before 

sending them to a dense layer comes in between the pooling and 

dense layers [63-175]. 

A CNN-based DL model was built to distinguish between 

healthy and TSW-afflicted images. The CNN-based model can 

binary and multi-classify the image collection. It has two 

convolutional (C) layers, two max-pooling (M) layers, one 

flattening (F) layer, and one fully connected (D) layer. Train the 

two convolutional layers with an input image to extract features 

using convolution [. The max-pooling layer receives the output 
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feature vector next. This layer pools feature vectors from 

convolutional layers and finds the maximum value from each 

feature map batch [63-175]. 

A. Google Net 

The GoogleNet can save time in part by reducing the size of the 

input image while keeping the relevant spatial details intact. 

Several filters were applied to the publicly available Plant 

Village dataset to highlight the disease hotspots using 

GoogleNet CNN architectures. For the purpose of measuring 

performance and contrasting the two well-known CNN designs, 

we used the P, R, F1, and OAI measures across three different 

situations (color, grayscale, and segmented). Results showed 

that GoogleNet was superior to Alex Net [6-180]. 

B. ResNet 50 and ResNet 101 

ResNet-50 is a 50-layer deep convolutional neural network. The 

network can be loaded in its pre-trained state, which has been 

exposed to over a million images in the ImageNet database [16]. 

The ResNet-50 model is the basis for this 97% accurate 

framework. Advantages include a trained model that can 

improve its results by augmenting them with additional data. 

Cons It might be pricey to maintain a high-configuration 

hardware environment for training purposes [28-97]. 

 

The ResNet-101 network has 101 hidden layers of processing 

power. In order to save time, you can simply load a version of 

the network that has already been trained with data from the 

ImageNet database of over a million images. Mask R-CNN 

improves detection rate and performance with ResNet-101, 

reaching 99.64%mAP. Promptness and accuracy in 

implementation are two advantages [16-186]. 

C. DenseNet_Xception 

The network is trained on high-level parameters using an image 

of a tomato illness, then used to classify nine tomato leaf 

varietals. High-level network parameters are updated while 

low-level parameters remain unchanged during training. 

Average accuracy and specs vary. The best recognition 

accuracy of Dense Net Xception is 97.10 percent, but its 

parameters are at most, and the best recognition accuracy of 

Shuffle Net is 83.68 percent, but its parameters are small, 

providing model support for the continued development of an 

intelligent tomato disease diagnosis system based on 

smartphones and other mobile terminals, which is crucial for 

pest control decision-making [5-135]. 

D. Learning Vector Quantization  

Using the RGB channels from images of tomato leaves in the 

Plant Village dataset, how model trained a convolutional neural 

network model. Due to its topology and adaptive model, the 

Learning Vector Quantization (LVQ) model was our top pick 

for classifiers Kohonen designed a neural network called 

Learning Vector Quantization, which blends unsupervised 

learning with competitive learning. It is a robust heuristic 

technique for resolving categorization issues. LVQ's adaptable 

model and straightforward topology have led to its widespread 

implementation. It divides the input data into a predetermined 

set of categories. Specifically, it has an input layer, a Kohonen 

(competition) layer, and an output layer. The neurons in the 

input layer tally the input values.  

The neurons in the output layer each stand for a specific type of 

input. Full connectivity exists between the input and Kohonen 

layers, while only a partial connection exists between the 

Kohonen and output layers. Kohonen's learning layer is where 

things get done. The classified information is then sent to the 

linear output layer [73-185]. 

E. MobileNetV1 with Adam optimization 

As of late, lightweight deep neural networks with low latency 

have been developed by using depth-wise separable 

convolutions. Due to its lightweight and low-latency nature, the 

MobileNetV1 architecture is well-suited for edge device 

applications like mobile and embedded vision. Clinical 

diagnosis of tomato leaf diseases: inductive learning. No further 

training data was used as MobileNetV1 trained using a batch 

size of 32, a learning rate of 0.0001, and 15 epochs, each of 

which has 199 steps, to achieve a 99% accuracy. An Adam 

optimization strategy was used to achieve this [26-165]. 

F. Transfer learning model 

After a transfer learning model confirmed the presence of 

disease, absolute color was added to the image. Absolute colour 

space is a visual space that preserves color accuracy across a 

wide range of brightness. This method helps smooth the 

transition from the non-standard RGB colour profile to the 

device-independent XYZ colour profile. The ICC input profile 

must include a Matr value. To characterize a device's colour 

characteristics or viewing demands, the International Color 

Consortium (ICC) defines a mapping between the device's 

source or target colour space and a profile connection space 

(PCS) [9-138]. 

G. InceptionV3 model 

In this work, we employ Neural Computing Stick (NCS) to 

expedite computation and simplify detection because of their 

mobility, speed, and accuracy. To detect Septoria leaf spot 

disease in tomatoes, researchers at Intel NCS used the 

InceptionV3 model to create a deep learning system [14-147]. 

H. VGG-16 and VGG-19 

A classifier based on the deep learning algorithm VGG (Visual 

Geometry Group)16, which includes 16 convolutional layers in 

its network. improved upon the Alex Net model by proposing 
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this deep CNN version. Multiple smaller convolution filters, 

such as 33, are used by VGG16. To better learn complicated 

features from training data, use smaller kernel stack filters. We 

have observed the classified various tomato leaf diseases using 

a pre-trained VGG16 model.  

Because VGG16 is a pre-trained model of the convolution 

Neural Network, we can infer that it provides superior 

performance and accuracy. CNN pre-trained model (VGG16) 

helps improve model accuracy and performance. While there 

are certain benefits to employing this model, there are also some 

drawbacks, such as the model's relatively high price tag and the 

increased complexity that comes with having more parameters 

[33-197]. 

Transforming a network that has already been trained using 

transfer learning saves time and effort compared to starting 

from scratch. It does not need a load of information or 

processing power. The ability to apply one's understanding of 

one problem type to another. VGG19 enables a pre-trained 

network to be applied to the task of learning something new. 

The network has already been trained on a huge number of 

characteristics, which can be used effectively for new 

classification tasks [38-184]. 

This paves the way for re-training with the updated information. 

Since overfitting is undesirable and large changes to pre-trained 

weights can compromise previously extracted features, we 

opted for a slow learning rate in the fine-tuning phase. was 

developed by the Visual Geometry Group at Oxford University 

specifically for the 2014 ImageNet Large Scale Visual 

Recognition Challenge [38-184]. 

I. DenseNet-121 

Though all the models did well, the DenseNet-121 model had 

the highest accuracy while also being the smallest in size. 

DenseNet-121's results were similarly achieved by ResNet-101 

and VGG16. However, ResNet-101 was much bigger, making 

it inappropriate for mobile devices with limited storage space. 

Additionally, this research can be expanded to identify and 

diagnose diseases, and a lightweight model can be implemented 

for use on mobile devices. A better dataset can lead to better 

results [29-199]. 

J. MobileNet V2 

Methods based on transfer learning and the SSD Mobile Net V2 

Finite 640x640 model are utilized to detect plant diseases. Our 

final decision was since this model's power source would be 

most conveniently located at the base of the vertical pole. A 

voltage converter, also installed on the same vertical pole, is 

used to deliver power to the Raspberry Pi, the servo motors, and 

the limit switches [34-199]. 

 

The model uses a depth-wise convolution of (3x3) and a point-

wise convolution of (1x1) instead of a single, continuous 

convolution layer. This change improves efficiency by a factor 

of eight to nine, at the expense of a little amount of precision. 

To save representational power, non-linearities are also 

eliminated from the thin layers, and linear bottlenecks are 

employed instead. displays the architecture of MobileNetV2 

with a dense network output [41-199]. 

K. LeNet 

The input and kernel sizes, the number of filters, and the 

convolutional layers of a CNN are all determined by its 

architecture. If you want an example of a simple NN, look no 

further than LeNet or LeNet-5, both of which accept a (32x32) 

input. Alex Net is an eight-layer NN, while VGG-16 has 16. 

More layers in a network means more complexity and more 

time to train [18]. The activation function is either Sigmoid or 

Tanh, and the pooling is averaged. Roughly 60,000 parameters 

make up this network [18-139]. 

VI. REVIEW ON CNN MODELS 

In this Analysis, we observed the performance of many 

different CNN architectures for disease detection in tomato 

plants, including Dense Net, VGG-19, and ResNet. In both the 

experimental results and comparison analysis sections, it is 

shown that the Dense Net model has the best average validation 

accuracy for detecting tomato leaf diseases while using a 

reduced number of epochs than the other models and 

recognizing the gradient vanishing problem. Below, we describe 

our findings from a comparison of the different CNN models' 

authentication accuracy for the detection of 10 distinct diseases 

of tomato leaves in Table 1,2,3. The following Graph 

summarizes together the results of a comparison study into the 

accuracy of various CNN models. 

 

Table 1 for Data for training and Testing with respect to the 80 and 

20 ratio. 

S.NO Model 
Accuracy 

(80-20) 

TOTAL 

IMAGES 

1 DenseNet_Xception 97.1 41263 

2 LeNet 98 18378 

3 CNN 95 16011 

4 VGG-19 97 16000 

5 DenseNet-121 99.69 14529 

6 InceptionV3 model 95.85 3362 

7 
MobileNetV1 with 

Adam optimization 
99 1432 

8 Resnet-50 98 1000 

9 
Learning Vector 

Quantization 
90 500 
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Figure 14 Performance Measurements of various CNN Models with 

ratio of 80 and 20. 

 

This comparative analysis has been clarified in a Table 2 and 

Figure 15 Graph for accuracy in different CNN models' 

processing of data, with 70% and 30% respectively presented 

below. 

 

Table 2 for Data for training and Testing with respect to the 70 and 

30 ratio. 

S.NO Model 

Accuracy (70-

30)  

TOTAL 

IMAGES 

1 CNN 92 22930 

2 MobileNetV2 97.26 18601 

3 CNN 98.77 11804 

4 VGG16 99.23 10735 

5 GoogleNet  98 10735 

6 

Transfer learning 

model 
99.386 400 

 

 
Figure 15 Performance Measurements of various CNN Models with 

ratio of 70 and 30. 

 

This comparative analysis has been clarified in a Table 3 and 

Figure 16 Graph for accuracy in different CNN models' 

processing of data, with 60% and 20% respectively presented 

below. 

 

Table 3 for Data for training and Testing with respect to the 60 and 

20 ratio. 

S.NO Model Accuracy (60-20) 

TOTAL 

IMAGES 

1 CNN 98 87840 

2 LeNet 97 55000 

3 VGG16 95.5 33000 

 

 
Figure 16 performance measurements of various CNN Models with 

ratio of 60 and 20. 

VII. CONCLUSION 

Deep learning and image categorization are currently used for 

various applications in the agricultural field aiming at quality 

and productivity. CNN is great for image recognition and 

classification in deep learning. Most farmers struggle to prevent 

crop diseases and fungus or bacteria attacks. If done appropriate 

and on the right time, the gain in agricultural yield will be 

noticeable. Deep CNN models identify and classify diseased 

tomato plant leaves. Tomato leaf disease affects crop quality, 

despite expensive fertilizers and hence farmers must worry 

about plant diseases every other day. By identifying the 

symptoms, the proposed approach may detect tomato plant 

diseases early. Various CNN architectures—Alex Net, LeNet, 

GoogleNet, VGGNet, ResNet, and Dense Net were compared 

for tomato plant disease identification performed on a plant 

village data set. The accuracy achieved varies from 90% to 99% 

and can be improved further. The results from a genuine image 

collection are encouraging. Both experimental findings and 

comparative analyses demonstrate that the Dens Net model has 

the highest average validation accuracy for detecting tomato 

leaf diseases with the most epochs and resolving the gradient 

vanishing problem. In conclusion, we could very well accept 

Dense Net model detects tomato plant diseases more efficiently 

than any other existing models. 
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