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Abstract— This work focuses on deep learning-based wideband direction-of-arrival (DoA) estimation for a wideband in particular LFM 

in case of extreme noise. We propose a convolutional neural network (CNN) that utilizes the correlation matrix to estimate and trained using 

multi-channel data in low SNR conditions. By using a systematic approach and treating the problem as a way to identify multiple possible 

DoAs, the CNN is trained to predict DoAs under different SNR conditions. This allows the CNN to accurately estimate the directions from 

which signals are coming, regardless of the level of noise in the environment. The architecture proposed exhibits robustness to noise, works 

effectively with a small number of snapshots, and achieves high resolution in angle estimation. Experimental findings demonstrate notable 

enhancements in performance under low SNR conditions when compared to existing methods, without the need for parameter tuning for 

correlated and uncorrelated sources. The enhanced robustness of our solution has broad applications in various fields, including wireless array 

sensors, acoustic microphones, and sonars. 
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I.  INTRODUCTION 

DoA estimation has attracted considerable attention and 

interest from researchers over an extended period, owing to its 

wide range of applications in many fields like radar, wireless and 

etc [1]. Localization stands out as a significant application. The 

estimation of angular directions can be achieved by utilizing 

multiple sensors arranged in specific geometric configurations, 

such as linear, rectangular, or circular arrays. Leveraging the 

observations from these sensor arrays efficiently allows for 

estimating the DoA of multiple sources, based on the number of 

antenna elements available. There are generally two main 

categories of DoA estimation techniques: the over-determined 

case, when there are fewer sources than array sensors, and the 

under-determined case, when the number of sources is greater 

than the number of array sensors [2]. This work focuses on 

investigating the first category, specifically addressing 

estimating the DoA of signals in challenging low SNR 

conditions has been a focus of research. MUSIC is an early 

technique that emerged in the field of DoA estimation is one of 

the initial approaches proposed for this task. And it has been 

followed by several variant techniques. These methods belong 

to the subspace category, which aims to separate the noise and 

signal subspaces in order to estimate the angles.  

The MUSIC method utilizes pseudo-spectra computed over 

a predefined grid, where peaks in the pseudo-spectra correspond 

to estimated angles. These high-resolution subspace-based 

methods are also used for DOA estimation in case of wideband 

signals and popularly known as time-frequency MUSIC (TF-

MUSIC) [3]. TF Root-MUSIC [4] introduced a significant 

advancement by estimating DoA from the solutions of 

polynomials. These techniques that rely on covariance analysis 

necessitate a substantial number of snapshots to accurately 

estimate the DoA in low SNR conditions to achieve accurate 

DoA estimation. Additionally, they often assume prior 

knowledge of the number of sources, which may not be available 

in practical applications. In recent years, Compressed Sensing 

(CS) techniques have emerged as a promising approach for DoA 

estimation [5]. These methods leverage the sparsity of signal 

sources in the spatial domain. CS methodologies can be 

categorized into different types as: grid-less, off-grid, and on-

grid methods [6], [7] Grid-less methods achieve superior 

performance but come with high computational complexity [8]. 

To estimate DoAs, CS methods typically solve sparse 

minimization problems using greedy methods. An effective 

approach in this field is the ℓ2,1-SVD algorithm, which utilizes 

signal data reduction techniques along with solving the ℓ2,1-

norm minimization problem in a reduced dimension. This 

strategy offers notable benefits such as reduced computational 

complexity and improved efficiency. This method was proposed 

in [9] and later used in [10]. However, a common drawback of 

these approaches is the requirement of parameter tuning, 

dependent on factors such as the number of snapshots and the 

SNR, to ensure optimal performance. Deep Learning (DL) has 

emerged as a recent approach for DoA estimation [11], [12]. DL 

methods offer advantages over optimization-based techniques: 

a) they require no optimization after network training, 

simplifying the solution to simple operations; b) parameter 

tuning is not necessary as in optimization-based methods, 
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reducing dependency on parameter settings; c) DL methods 

demonstrate resilience to data imperfections, performing well 

with fewer snapshots and in low SNR. Previous studies have 

explored DL for DoA estimation. Some focused on DoA 

classification using fully connected layers with signal covariance 

matrices [13], while others addressed channel estimation in 

massive MIMO systems [14]. Another approach employed a 

multilayer autoencoder with parallel multilayer classifiers for 

robustness to array imperfections [15]. However, these methods 

had limitations in high SNR scenarios or were restricted to two 

sources. Different DL architectures have been proposed, such as 

CNNs for DoA estimation [16] and CNNs for speech processing. 

Our study specifically focuses on wide-band DoA estimation, 

distinguishing it from previous works. In the context of 

acoustics, DL methods have been proposed for beamforming 

using sample covariance matrices [17]. However, these 

approaches are limited in low SNR scenarios where more 

sensors and snapshots are required. This work aims to address 

the gap in DoA estimation literature by focusing on low SNR 

scenarios and utilizing DL techniques. Existing methods often 

struggle with DoA estimation in low SNR due to deviations of 

the Sample Covariance Matrix estimates from the actual 

manifold matrix. To overcome these challenges, we propose the 

following contributions:  

• We introduce a new method for estimating the 

directions of wideband signals. We develop effective training 

techniques for our network, demonstrating its ability to 

accurately predict directions even in challenging low SNR 

conditions, including high SNR situations.  

• In this study, we introduce a deep CNN that is trained 

on multi-channel data. This data is obtained from the complex-

valued covariance matrix, which includes real, imaginary, and 

phase components as separate channels.  

• Here we use 2-D convolutional layers in the CNN to 

accurately predict the angle of the source, improving the 

estimation of direction in situations with low SNR.  

• We use a method that divides the desired angular region 

into discrete values (on-grid), treating the task of estimating 

directions as a classification problem with multiple possible 

labels.  

The results demonstrate that the proposed CNN surpasses 

competing methods in low SNR DoA estimation. It exhibits 

resilience in estimation, even with a small number of snapshots 

and varying angular separations of the sources. Moreover, the 

CNN shows enhanced robustness in the presence of SNR 

mismatches and achieves accurate inference of both the number 

of incoming sources and their corresponding DoAs with minimal 

errors and high confidence levels. 

II. DATA MODEL 

A. Linear Frequency Modulating Signal 

 
Figure 1. LFM signal 

 

We know that, we have the following equation for wave, 

𝑠(𝑡) = 𝑎 𝑐𝑜𝑠(2𝜋(𝑓 𝑡 +  ∅)) (1) 

to generate a linear frequency modulating (LFM) signal, we 

need to increase the frequency of the carrier signal with time. 

Let the frequency of the transmitted signal be a linearly 

increasing function of time as shown in the figure 1. The 

equation of the linearly increasing line shown in figure 1 with 

slope µo = B/T, (where B is bandwidth and T is the time duration 

of the signal) and y-intercept fo is 

𝑓 = 𝜇0𝑡 + 𝑓0 (2) 

substituting equation 2 in equation 1 

𝑠(𝑡) = 𝑎 𝑐𝑜𝑠(2𝜋((𝜇0𝑡 + 𝑓0)𝑡 +  ∅)) (3) 

𝑠(𝑡) = 𝑎 𝑒
(𝑗2𝜋((2𝑓0𝑡+𝜇0𝑡2)+ ∅))

 
(4) 

In general, [18] the LFM signal is represented as equation 5, is 

a matter of convention and mathematical convenience (see 

appendix A). 

𝑠(𝑡) = 𝑎 𝑒
(𝑗𝜋((2𝑓0𝑡+𝜇0𝑡2)+ 𝑗∅))

 
(5) 

where 𝑎 is the signal amplitude, fo is the initial frequency, t 

is time vector, µo is the chirp or sweep rate and φ is the initial 

phase offset of the signal. 

B. Signal Model 

 
Figure 2. Signal model 

 

Let us consider an N-element uniform linear array 

(ULA) with inter element spacing as d = λ/2 , where λ is 

wavelength of the incoming signals λ = c/f (f is highest 

frequency of incoming signals in case of multi-source) and K 

uncorrelated wideband sources from far-field are impinging on 

the antenna array as shown in the figure 2. Then [18] the 

received signal from antenna array is modeled as 
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𝑥(𝑡) = ∑ 𝒂 (𝑣, 𝑡) 

𝑀

𝑖=1

𝑠𝑖(𝑡)  +  𝒏(𝑡) (6) 

In the wideband model we have time-varying location vector 

𝒂(𝑣, 𝑡) of the array, whereas in the distributed narrowband 

model, it remains constant. The random variable si(t) represents 

the temporal characteristics of the wideband source, n(t) 

represents additive zero-mean white noise vector. 

One way to address this challenge is by employing a 

time-varying location vector to capture the dynamic nature of 

the wideband signal. This location vector includes not only the 

central angle of the source but also the width that represents the 

angular spread of the signal. By incorporating the time-varying 

location vector, we can effectively model the wideband signal 

and apply techniques like coherent wideband beamforming for 

accurate source localization. On the other hand, the FRFT-

based beamforming approach assumes a time-invariant location 

vector in the Dechirping domain. In this specialized domain, the 

FRFT is utilized to steer the array response towards a specific 

direction. By assuming a time-invariant lo cation vector, we can 

leverage the FRFT for source localization without the need to 

account for temporal variations in the location vector [18]. 

signal received by the reference antenna element in the array is 

without delay and represented as equation 5, signal received at 

the kth antenna element with respect to reference antenna 

element is time delayed by τk = (k−1)dsin(θ)/c, where k = 

1,2,...,N, θ is the incident angle of the wideband source and c is 

the speed of the light. 

𝑥𝑘 =  𝑎 𝑒{𝑗2𝜋(2𝑓0(𝑡−𝜏𝑘)+𝜇0(𝑡−𝜏𝑘)2}+𝑗∅ (7) 

=  𝑎𝑒𝑗𝜋(2𝑓0𝑡+𝜇0𝑡2)+𝑗∅ 𝑒𝑗𝜋(−2𝑓0𝜏𝑘+𝜇0𝜏𝑘
2−2𝜇0𝑡𝜏𝑘

 )  (8) 

Therefore, the equation 8 as two terms, first term is the 

LFM signal transmitted i.e., source signal and the second term 

is time varying location vector. As discussed earlier this time-

varying location vector can be converted into time-invariant 

form by using tools like FRFT. Which will result in array 

steering matrix as 

𝑨(𝜃) = 𝑒𝑗𝜋(−2𝑓0𝜏𝑘+𝜇0𝜏𝑘
2)  (9) 

since the τk is depending on the antenna elements and incident 

angles, 𝑨(θ)∈CN×M. And the distance between antenna elements 

is very small so, 𝜇0𝜏𝑘
2 term can be neglected [19]. 

𝑨(𝜃) ≈ 𝑒𝑗𝜋(−2𝑓0𝜏𝑘)  (10) 

𝑨(𝜃) ≈ [𝒂𝟏(𝜽)𝒂𝟐(𝜽)𝒂𝟑(𝜽). . . 𝒂𝑴(𝜽)] (11) 

𝒂𝒊(𝜃)

≈ [𝟏       𝑒−𝑗𝜋 2𝑓0𝑠𝑖𝑛(𝜃)/𝑐         𝑒−𝑗𝜋 4𝑓0𝑠𝑖𝑛(𝜃)/𝑐 .  .  .   

 . 𝑒−𝑗𝜋 2𝑓0 (𝑁−1)𝑠𝑖𝑛(𝜃)/𝑐  ]T 

(12) 

where i = 1, 2,...,M and θ ∈ [−90o 90o]. The received signal is 

constructed as 

𝒙(𝒕) = 𝑨(𝜃)𝒔(𝑡) + 𝒏(𝑡)  (13) 

 

 

The received signal correlation vector is 

𝑹𝑥 = 𝐸 [𝑥(𝑡). 𝑥𝐻(𝑡)] = 𝑨(𝜃)𝑹𝑠𝑨𝐻(𝜃) +

𝜎𝑒
2𝑰𝑁  

(14) 

where Rs represents diagonal source correlation matrix E[s(t) 

sH(t)]. In practice the received signal correlation vector is 

obtained as 

𝑹̃𝒙 =
𝟏

𝑻
∑ 𝒙(𝑡). 𝒙𝐻(𝑡)𝑇

𝑡=1   (15) 

III. PROPOSED DEEP NETWORK METHOD FOR DOA 

    In this section, we present our approach to DoA estimation, 

which involves formulating it as a multilabel classification task. 

We provide details on how we manage the data and label it in 

Section 3.1. Additionally, in Section 3.2, we de scribe the 

architecture of the CNN that we employ to predict the DoAs. 

The CNN utilizes convolution layers to extract relevant features 

from the multi-channel in put data. These extracted features are 

then processed by the fully connected (FC) layers to estimate 

the DoAs based on a grid that has been pre-selected. 

A. Data Handling and Annotation 

To model DoA prediction, we treat the task as a classification 

problem where each data sample can be associated with 

multiple labels or categories simultaneously. We define a grid 

G consisting of 2G+1 discrete points with a resolution ρ, 

covering the range from −φmax to φmax in increments of ρ 

degrees. The covariance matrix is calculated for K randomly 

selected angles from the grid G at each SNR level, according to 

equation 14.  

The input data for our CNN is represented by a real-valued 

N×N×3 matrix, where the third dimension corresponds to 

different channels. 

Table 1. Input data to CNN. 

S. No Channel  Input 

1 First Re{Rx} 

2 Second Im{Rx} 

3 Third ∠{Rx} 

 

      Based on the well-known universal approximation theorem 

[20], it is proven that a specific type of neural network 

architecture, which includes a single hidden layer and a 

multilayer perceptron, has the capability to approximate 

continuous functions within a bounded region in Rn. In the 

context of our specific task, which involves multilabel 

classification, our main objective is to develop a ma chine 

learning model, represented as function f, that can effectively 

map input data from the space RN×N×3 to the desired output space 

Z. During the training phase, the network is trained using the 

true covariance matrix. However, for testing and evaluation 

purposes, we utilize the sample covariance described in 

equation 15 since the true covariance matrix is not available. 

This guarantees that during the evaluation phase, all input 

samples are considered as ’new’ or ’un known’ data with 

respect to the training procedure. 

http://www.ijritcc.org/
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B. Architecture of Proposed CNN 

      The proposed CNN architecture draws inspiration from 

established convolutional structures commonly employed in 

image processing literature [21], [22]. However, necessary 

modifications have been introduced to address the specific 

requirements and characteristics of our problem. The 

visualization of the CNN architecture is as shown in figure 3. 

The function f, which has adjustable parameters, is realized 

using a CNN architecture comprising 8 layers.  

𝑓(𝑿) = 𝑓8(𝑓7(… (𝑓1(𝑿))) = 𝑧  (16) 

The function {fi(.)} i = 1,2,3,4 represents a sequence of 

convolutional layers, the basic information of the architecture is 

tabulated in table 2. After the activation layer following f4(.), a 

reshaping layer is used to convert the tensor output into a vector 

size M × M. In the first layer, the convolution operation is 

performed on the input data X and the kernel K, both of which 

have specific dimensions as RN×N×3 and Rk×k×3 respectively, 

which is given as: 

(𝑿 ∗ 𝑲)𝑚,𝑛 =

∑ ∑ ∑ 𝐾𝑖,𝑗,𝑘𝑋𝛿(𝑚−1)+𝑖,𝛿(𝑛−1)+𝑗.𝑘
3
𝑘=1

𝑘
𝑗=1

𝑘
𝑖=1   

(17) 

The mathematical operation performed on the qth filter at the 

ℓth convolutional layer is performed for values of m and n 

ranging from 1 to M, where M is calculated as ⌊(N −k)/δ⌋+1. In 

this operation, the parameters involved are as follows: Input: 

We have X[ℓ−1], an M[ℓ−1] ×M[ℓ−1] ×𝑛𝐶
[ℓ−1]

 matrix. In this 

case, X [0] = X and M [0] = N, with 𝑛𝐶
[0]

 = 3. Filter: The kernel 

is denoted as 𝐊𝑞
[ℓ]

 dimensions k[ℓ] × k[ℓ] × 𝑛𝑞
[ℓ−1]

. Stride: The 

stride is δ[ℓ]. Bias: The bias term is 𝑏𝑞
[ℓ]

. Output: The resulting 

output is 𝐗𝑞
[ℓ]

, an M[ℓ]×M[ℓ] matrix. The convolution operation 

can be explained as follows:  

To compute the value of (X[ℓ−1] × 𝐊𝑞
[ℓ]

)m,n, we sum the 

products of 𝐊𝑖,𝑗,𝑘
q,[ℓ]

 and 𝐗δ(m−1)+i,δ(n−1)+j,k
[ℓ−1]

 for i = 1...k[ℓ], j = 

1...k[ℓ], and k = 1... 𝑛𝐶
[ℓ−1]

 . We then add the bias term 𝑏𝑞
[ℓ]

. 

In simpler terms, the output matrix 𝐗𝑞
[ℓ]

 is obtained by sliding 

the filter 𝐊𝑞
[ℓ]

 over the input matrix X[ℓ−1] with a stride of δ[ℓ]. At 

each position, the corresponding elements of the filter and input 

are multiplied and summed, along with the bias term. This 

process is repeated for each position in the output matrix, 

resulting in the final M[ℓ] × M[ℓ] matrix. 
 

Table 2 The table represents the basic architecture information. 

Layer Description Filters Kernel 

Size 

Stride 

(δ) 

f1(.) 2D-Convolutional layer 

Batch normalization 

256 3 × 3 2 

 

f2(.) 

ReLU 

2D-Convolutional layer 

Batch normalization 

 

256 

 

2 × 2 

 

1 

 

f3(.) 

ReLU 

2D-Convolutional layer 

Batch normalization 

 

256 

 

2 × 2 

 

1 

 

f4(.) 

ReLU 

2D-Convolutional layer 

Batch normalization 

 

256 

 

2 × 2 

 

1 

IV. CNN LEARNING PROCESS 

      To train the proposed CNN, we utilized a grid resolution of 

ρ = 1o and narrow grid (G = 60). We used φmax = 60o, resulting 

in a narrow grid set Gn ={−60o,...,60o} with 121 grid points. The 

CNN’s output dimension, after binary transformation of the 

DoAs, is 121. Consequently, the training process for the 

proposed network was conducted independently for each 

network. To reduce the required training data and enable DoA 

prediction for various snapshots of the Sample Covariance 

Matrix estimate, we employed data from the true co variance 

matrix. One benefit of our method is that the CNN has the 

capability to learn the number of sources by treating it as a task 

of classifying multiple classes. Therefore, we employed training 

approach with a Known Source Count. This approach assumes 

a known number of sources and is suitable when the number of 

sources is predetermined. 4.1. Training Approach with a Known 

Source Count Here we outline the process of generating 

synthetic data when the number of sources is known in advance. 

For the case of K=1 sources, we generate pairs of DoA angles 

from all possible combinations within the angular grid G, 

resulting in 2G+1 K angle pairs. For each SNR value, we 

generate the input data X by utilizing the actual covariance 

matrix obtained from equation 15, along with the appropriate 

labels as explained in Section 3.1. The Dechirped signal is taken 

at different SNR’s, especially at low SNR’s ranging from-20dB 

to 0dB, with a step size of 5dB.  

 
Figure 4. The performance and error metrics during the training and 

validation stages of the CNN are illustrated for a fixed number of sources and 

a narrow grid Gn. 

Table 3 Training and Validation Metrics for CNN Accuracy and Loss. 

S.No. Parameter Result 

1. Training Accuracy 99.99 

2. Validation Accuracy 99.97 

3. Training loss 3.86 x 10−4 

4. Validation loss 7.18 x 10−4 

5. number of epochs 300 

6. Accuracy score 100% 

http://www.ijritcc.org/
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For the narrow angular region with G=60, we generate 

(
2𝐺 + 1

𝐾
) training examples per SNR. We specifically focus on 

low SNR scenarios for training the proposed CNN, considering 

SNR values of {−20,−15,−10,−5,0}dB. We noticed that training 

in the low SNR range, which represents challenging conditions, 

is effective in obtaining accurate predictions even at higher 

SNRs, as discussed in Section 5.2. Training multiple models per 

SNR would require storing many parameters, and in the testing, 

the exact SNR would need to be known, which is often not 

feasible. Therefore, we opt for joint training across the range of 

low SNRs to overcome these limitations and achieve robust 

performance. The CNN training process is conducted offline 

using randomly split data, with 90% allocated for training and 

10% for validation. Figure 4 display the binary accuracy and 

loss during training and validation in each cycle for the specified 

number of sources, the CNN is trained using the corresponding 

narrow grid. Training and validation metrics for CNN accuracy 

and loss are shown in table 3. 

V. SIMULATIONS AND DISCUSSIONS 

Here comprehensive simulation results to estimate the 

performance of the proposed CNN in DoA estimation across 

different scenarios. Initially, in section 5.1 we summarize the 

methods for comparison, evaluating the CNN’s performance 

under the assumption of known source count. Then we present 

results demonstrating the CNN’s capability to predict DoAs in 

both on-grid and off-grid scenarios in section 5.2.  

Throughout the training and testing phases of our 

experiments, we employ a ULA consisting of 16 antenna 

elements. These elements are evenly distributed at a separation 

distance of half-wavelength (d=λ/2). 

Table 4. The trainable parameters for G = 60 of the CNN architecture. 

S.No. Layer Parameter 

1. First convolutional 7680 

2. Second convolutional 262912 

3. Third convolutional 262912 

4. Fourth convolutional 262912 

5. First FC 16781312 

6. Second FC 8390656 

7. Third FC 2098176 

8. Fourth FC 124025 

 

The training parameters of the CNN architecture at each 

stage are tabulated and shown in table 4. Overall, the CNN 

architecture we propose involves training a significant number of 

parameters, approximately 28.2 million in total. Through- out all 

experiments, the SNR is defined according to the reference [23]. 

𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10
𝑚𝑖𝑛{𝜎1

2,𝜎2
2,…𝜎𝐾

2 }

𝜎𝑒
2   

(18) 

Following the training process, the CNN provides 

predictions 

𝒑̂ = 𝑓(𝑿̃) = [
𝑝̂1

⋮
𝑝̂2𝐺+1

]  (19) 

𝑿̃ be a matrix of dimensions N×N×3 where X:,:,1 represents the 

real part of 𝑹̃y, X:, :, 2 represents the imaginary part of 𝑹̃y, and 

X:, :, 3 represents the phase. 

A. Evaluation and Comparison with Other Approaches 

Here is the summary of the methods employed for 

comparison against the proposed CNN.  

1. Conventional beamforming [1]  

2. LFM-MUSIC [3]  

3. LFM-R-MUSIC [4] The comparison includes methods 

commonly found in the literature of DoA estimation: methods 

1 represent classical beamforming approach, method 2 rep 

resents subspace-based method and method 3 represents 

parametric based DoA estimation method. For the on-grid 

methods (MUSIC), we adopt a grid resolution of ρ = 1o, 

matching that of the CNN. Additionally, we compute CRLBs 

for the estimation accuracy [24], [25].  

B. Performance comparison of proposed technique 

     During testing, the CNN outputs a set of probabilities using 

equation 19. After determining the K number of sources, we 

identify K highest probabilities from the CNN’s output. The 

indices on the grid that correspond to these probabilities are 

considered as the estimated DoAs. To evaluate the performance 

of the CNN architecture, we employ the RMSE as the statistical 

performance metric. The RMSE is defined as follows:  

𝑅𝑀𝑆𝐸 = √
1

𝑇𝑡𝐾
∑ (𝜃𝑘

(𝑚) 
− 𝜃̂𝑘

(𝑚)
)

2𝑇𝑡
𝑚=1   

(20) 

where for the mth testing example true DoA’s are denoted 

as [𝜃1
(𝑚)

, 𝜃2
(𝑚)

, … 𝜃𝑘
(𝑚)

]𝑇  while the estimated DoA’s are 

represented as [𝜃1
(𝑚)

, 𝜃2
(𝑚)

, … 𝜃𝑘
(𝑚)

]𝑇 The variable Tt represents 

each experiments total testing samples. 

 In the first experiment, we examine scenarios where the SNR 

dB is low. The array receives a signal with an SNR of-10 dB, 

while the first signal’s direction varies from −60o to an 

increasing step of 1o. We collect T=1024 snapshots to estimate 

the spatial covariance matrix (SCM). The trained CNN is then 

tested for all possible ON-GRID angles, the error obtained for 

all predictions is zero as shown in figure 5, the probability of 

detecting the signal is 99.12%. And the performance of all the 

angles is shown in figure 6. 

Now, we assess the effectiveness of the CNN we proposed in 

estimating the DoA for single sources placed at an angle of θ = 

15o is evaluated. To assess its performance, the RMSE is 

calculated based on 1000 Monte Carlo simulations at each SNR 

level, with the sample covariance estimated using T=1 

snapshots. Figure 7 illustrates the RMSE results, along with the 

CRLB calculated based on [24] for each SNR. In the range of 

low SNR, the CNN exhibits impressive performance with 
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RMSE values comparable to the robust TF-MUSIC method. 

Importantly, the CNN exhibits a distinct advantage by 

eliminating the need for parameter tuning, which is particularly 

beneficial in real-world situations where the SNR is uncertain 

or subject to slight changes. Additionally, the findings reveal 

that in high-SNR conditions, the RMSE reaches a lower limit 

for all methods based on a predefined grid. However, it is worth 

noting that only the grid-less estimator R-MUSIC has the 

potential to approach the CRLB in terms of accuracy. 

 

  
(a)    (b) 

 
(c)    (d) 

Figure 5. We evaluate and compare the accuracy of various methods for 

direction of arrival (DoA) estimation, including: (a) the proposed CNN, (b) 

TF-MUSIC, (c) TF-R-MUSIC, and (d) conventional beamforming. The results 

indicate that the CNN outperforms the other methods, demonstrating the errors 

and performance that is comparable to the conventional estimators. 

 

 
(a)    (b) 

  
(c)    (d) 

Figure 6. The DoA estimation performance for on-grid angles θ within the 

range of [−60o,60o] at-10 dB SNR using T=1024 snapshots. The DoA 

estimation results of various methods are shown for comparison, including: (a) 

Proposed CNN, (b) Time-Frequency-MUSIC, (c) Time-Frequency Root-

MUSIC, (d) Conventional beamforming 

 

The trained CNN is evaluated by testing it at an SNR of-10dB 

for various off-grid angles. Although the predictions made by 

the CNN are not error-free, the probability of detecting the 

signal accurately is 93% as shown in figure 8. This indicates 

that the CNN can perform well in identifying the presence of 

the signal, despite some errors in the predicted angles. 

The performance of the trained CNN is evaluated for predicting 

off-grid angles within a range of −59.7o to +60.7o. The CNN is 

tested on these angles, and the results are plotted in a figure 9. 

The plot provides an overview of the CNN’s performance in 

accurately predicting the off-grid angles across the given range. 

 

 
Figure 7. RMSE versus SNR for the estimation of a single source DoA using 

T=1 snapshot. Remarkably, in the low-SNR range, the proposed CNN exhibits 

superior performance compared to subspace-based methods, indicating its 

effectiveness in challenging conditions. 

 

 
Figure 8. CNN Prediction of OFF-GRID angles 

VI. CONCLUSION 

This research paper introduces an innovative method for 

predicting DoA in low SNR scenarios utilizing a deep CNN 

equipped with 2D filters. We address the challenge of angle 

estimation by treating it as a multi-label classification problem 

and employing an on-grid approach. The integration of 2-D  

 
Figure 9. CNN Errors For Prediction of Different OFF-GRID Angles 

 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9s 

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7473 

Article Received: 26 May 2023 Revised: 20 July 2023 Accepted: 05 August 2023 

___________________________________________________________________________________________________________________ 

 

    613 

IJRITCC | August 2023, Available @ http://www.ijritcc.org 

convolutional layers in our CNN allows for efficient feature 

extraction from multi-channel input data, enabling effective 

information transfer to fully connected layers, resulting in 

improved DoA estimation in low SNR scenarios. Additionally, 

we propose a specific training strategy for a fixed number of 

sources, which is particularly suitable when the source number 

is known beforehand, a common assumption in related research. 

To validate our approach, we compare it in comparison to 

cutting-edge techniques and utilize the CRLB as a benchmark. 

Evaluating the performance of our CNN, we measure its RMSE 

for angles that are not on the grid in var ious configurations, 

including a wide range of SNRs and fixed directions. Our 

results demonstrate superior performance in low SNR 

conditions and highlight the CNN’s potential for resolving 

closely spaced angles. Future work may focus on further 

exploring its capabilities in low SNR scenarios. 
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APPENDIX 

A. Justification of LFM alternate equation 

The LFM signal is typically described using the 

instantaneous frequency, which is the derivative of the phase 

with respect to time [26]. In the case of the LFM signal, the 

phase Φ(t) can be written as: 

𝛷(𝑡) = 𝜋(2𝑓0(𝑡) + 𝜇0𝑡2)  (A.1) 

To calculate the instantaneous frequency, we take the derivative 

of the phase with respect to time: 

𝜔(𝑡) =
𝑑 𝛷(𝑡)

𝑑𝑡
= 𝜋(2𝑓0 + 2𝜇0𝑡  )  (A.2) 

𝜔(𝑡) = 2𝜋(𝑓0 + 𝜇0𝑡  ) (A.3) 
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