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Abstract— Internet of Vehicles (IoV) is a steadily growing field of research that deals with highly ad-hoc wireless networks. These 

networks require design of high-speed & high-efficiency routing models, that can be applied to dynamically changing network scenarios. 

Existing models that perform this task are highly complex and require larger delays for estimation of dynamic routes. While, models that have 

faster performance, do not consider comprehensive parameters, which limits their applicability when used for large-scale network scenarios. To 

overcome these limitations, this text proposes design of a novel dynamic fan-shaped clustering model for QoS-aware routing in IoV networks. 

The model initially collects network information sets including node positions, & energy levels, and combines them with their temporal packet 

delivery & throughput performance levels. These aggregated information sets are processed via a hybrid bioinspired fan shaped clustering 

model, that aims at optimization of routing performance via deployment of dynamic clustering process. The model performs destination-aware 

routing process which assists in reducing communication redundances. This is done via a combination of Elephant Herding Optimization (EHO) 

with Particle Swarm Optimization (PSO), which integrates continuous learning for router level operations. The integrated model is able to 

reduce communication delays by 5.9%, while improving energy efficiency by 8.3%, throughput by 4.5%, and packet delivery performance by 

1.4% under different network scenarios. Due to which the proposed model is capable of deployment for a wide variety of dynamic network 

scenarios. 

Keywords- Routing, Particle Swarm Optimization, Elephant Herding Optimization, Delay, Energy, Throughput, Packet Ratio. 

 

I.  INTRODUCTION 

IoV based routing protocol design requires integration of 

multimodal frameworks that can analyse dynamic network 

configurations. These frameworks must include analysis of 

node-level topologies, network structure, dynamically changing 

node behaviour, Quality of Service (QoS), etc. A typical IoV 

routing model [1] is depicted in Fig. 1, wherein cluster 

formation is followed by collaborative gateway identification 

for efficient route optimizations. The proposed model initially 

collects data from base-station & other vehicular nodes and use 

it for density-based clustering operations. The formed clusters 

are used for identification of  

recording angles, which assists in estimation of Global 

Queuing Index (GQI) using the evaluation function, 

GQI=f(E,d,P,T) Where, E,d,P & T reflects the energy levels, 

distance metrics, packet delivery ratio, and throughput levels of 

the node sets, whilst f represents the evaluation function for 

estimate of the GQI levels. The value of the GQI is used to 

generate a list of plausible routing nodes, which helps in the 

discovery of QoS-aware routes. This procedure is carried 

performed several times for a variety of routing requests, which 

contributes to the ongoing discovery of routing configurations. 

This model, however, is dependent on the collaborative 

information provided by other nodes. As a result, the latency 

associated with route estimate rises, which in turn reduces the 

model's scalability for use in large-scale network situations. 

The next portion of this article provides an overview of 

comparable models [2, 3, 4], during which their operational 

subtleties, deployment-specific benefits, application-specific 

restrictions, and deployment-specific future scopes are 

dissected in depth. After having this conversation, it was 

established that the present models for carrying out this activity 

are exceedingly complicated, which results in the need of 

lengthier estimating durations for dynamic routes. Although 

models with better performance do not take into account all of 

the relevant characteristics, their usefulness in large-scale 

network situations is severely limited. To get around these 

restrictions, a unique dynamic fan-shaped clustering model for 

QoS-aware routing in IoV networks is presented in section 3 of 

this paper. This model may be found in this document. In 

section 4, the performance of this model was tested in terms of 

routing latency, energy efficiency, packet delivery 
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performance, and throughput levels. It was compared to a 

variety of state-of-the-art approaches throughout this 

evaluation. This article draws to a close with a number of 

network-specific observations about the model that has been 

provided, as well as ideas for additional performance 

enhancements. 

II. LITERATURE REVIEW 

A large number of IoV routing models are proposed by 

researchers, and each of them varies in terms of its internal 

operating characteristics. For instance, work in [5, 6] proposes 

use of Traffic Awareness with Link Preference, and Vehicle 

Position Analysis for estimation of efficient routes. These 

models are highly complex, and cannot be scaled for multiple 

network scenarios. To overcome these issues, work in [7] 

proposes use of Advanced Greedy Hybrid Bio-Inspired 

Routing that aims at improving route identification 

performance for multiple use cases. Similar models are 

discussed in [8, 9, 10], which propose use of temporal 

convolutional network with reinforcement learning mechanism 

(TCN RL), Online Sequential Learning-Based Adaptive 

Routing with Software-Defined Vehicular Networks (OSL AR 

SDN), and Reinforcement Learning, which aims at iteratively 

optimizing route selection performance under large scale 

network scenarios. These models are highly efficient, and can 

be used for a wide variety of routing use cases. Extensions to 

these models are discussed in [11, 12, 13], which propose use 

of Two-Tier Collection and Processing Schemes, 

Heterogeneous Earliest Finish Time (eHEFT) Model, and 

multiple learning models for estimation of QoS-aware routes in 

real-time network scenarios. 

Models that use QoS-Aware Grid Routing based on 

Reinforcement Learning (QGRL) [14], Multi-Lane 

Connectivity Routing (MLCR) [15], Ant Colony Optimization 

Ad hoc On-demand Distance Vector (ACO-AODV) [16], 

Scheduled Routing [17], and information-center networking 

(ICN) [18] aim at optimizing route selection via integration of 

low complexity, and high-density feature representation 

techniques. These models are further extended in [19, 20] via 

use of Probabilistic Broadcasting Schemes, Self-Assessment 

Cluster (SAC) Routing, which integrates different learning 

models for enhancement of route selection performance under 

multiple traffic types. Similar models are discussed in [21, 22, 

23, 24, 25], which propose use of short-range OFDM wideband 

communication (SOWC), Incentive and Punishment Scheme 

(IPS), Crowdsensing based routing, Mix Integer Non-Linear 

Programming (MINLP), and coupling mode (CRF) with 

decoupling mode (DRF) for estimation of fault-aware routes. 

But these models are extremely complicated and call for longer 

delays before providing an estimation of dynamic routes. 

However, models that have a faster performance do not take 

into account comprehensive parameters, which restricts their 

applicability when applied to large-scale network scenarios. To 

overcome these issues, next section proposes a light-weight 

dynamic fan-shaped clustering model for QoS-aware routing in 

IoV networks. The model was evaluated under multiple 

scenarios, and compared with various state-of-the-art 

techniques, to estimate its performance, and validate it for real-

time use cases. 

III. DESIGN OF THE PROPOSED DYNAMIC FAN-

SHAPED CLUSTERING MODEL FOR QOS-AWARE 

ROUTING IN IOV NETWORKS 

As a result of reviewing the existing IoV routing models, it 

has been observed that these models are extremely complicated 

and call for longer delays before providing an estimation of 

dynamic routes. However, models that have a faster 

performance do not take into account comprehensive 

parameters, which restrict their applicability when applied to 

large-scale network scenarios. 

 
Figure 1. Design of a collaborative IoV routing model for QoS aware 

operations 
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This section proposes the design of a novel dynamic fan-

shaped clustering model for QoS-aware routing in IoV 

networks in an effort to overcome the limitations that have 

been outlined. The flow of the model is depicted in Fig. 2, 

where it can be seen that the model initially collects network 

information sets including node positions and energy levels and 

combines them with their temporal packet delivery and 

throughput performance levels. This is shown as the first step 

in the model's overall process. These compiled data sets are 

then put through a hybrid bioinspired fan-shaped clustering 

model for processing. This model's purpose is to maximize the 

efficiency of the routing process through the utilization of a 

dynamic clustering procedure. A destination-aware routing 

process is carried out by the model, which contributes to the 

reduction of communication redundancies. This is 

accomplished by integrating continuous learning for router 

level operations into Elephant Herding Optimization (EHO), 

which is a combination of Particle Swarm Optimization (PSO) 

and Elephant Herding Optimization processes. 

The model initially clusters nodes based on destination node’s 

location via a Fan Shaped Clustering (FSC) process. This 

process initially estimates maximum 1-hop distance d_1hop for 

destination node, and evaluates node cluster level (CL) via 

equation 1, 

                 𝐶𝐿𝑖 =
√(𝑥𝑖 − 𝑥𝑑𝑒𝑠𝑡)2 + (𝑦𝑖 − 𝑦𝑑𝑒𝑠𝑡)2

𝑑1ℎ𝑜𝑝

                (1) 

Where, x,y represents node locations in Cartesian 

coordinate system, while i represents current node number for 

which level is being evaluated to form clusters. Using this 

approach, the network is divided up into a series of fan-shaped 

clusters, each of which makes full use of the advantages that 

come with location-based clustering. The widths of the rings 

are constantly and evenly fixed in this subdivision, which is 

indicated by the letter r. The workload will be divided evenly 

across all of the nodes in the cluster if the cluster sizes are all 

brought up to the same level. Therefore, the ith level ring is 

divided into (2i-1) times four subrings, and each of these 

subrings has an area of its own. The sink would typically be 

situated in the exact geographic middle of the network in a 

configuration of this kind. On the other hand, if the sink is 

situated in a more peripheral location, this barrier might be 

used in its place. Previous studies often made use of the 

coverage radius of each node in order to determine the value of 

a cluster. In other words, the length is designed in such a way 

that each node may effectively cover not only the clusters that 

are immediately next to it but also the clusters that are located 

farther away. In our method, we begin with the assumption of a 

square cluster length (l), and we get r by determining the 

greatest distance (distance X-Y) that exists between any two 

adjacent clusters. It is possible for many values of i to get the 

same result for ri (ranging from 1 to N). In this instance, we 

bring r down to its lowest possible value (ri). In the scenario in 

which i=3, our computation brings us to the conclusion that, 

where is also the coverage radius of the node. This value of r 

ensures that there is continuous communication between any 

two nodes that are in close proximity to one another. Sending a 

partition message is what kicks off the operation of 

partitioning, which is started by the sink node. This message 

includes a variety of pieces of information, including the 

current value of the parameter r, the location of the sink, the 

size of the center zone, and more. After getting this message, 

every node will determine whether or not it is a part of the 

cluster by using both its own location data and the information 

sets that it has been given for multiple use cases. 

Evaluate cluster level for each node, and then apply an 

Elephant Herding Particle Swarm Optimizer (EHPSO) Model 

to evaluate routes. The EHPSO Model is used to improve the 

speed of decision making, which is not catered by other bio-

inspired models. The optimization is performed via the 

following process, 

• To start the optimization process, initially setup following 

model parameters, 

o Total EHPSO optimization iterations (𝑁𝑖) 

o Total EHPSO particles (𝑁𝑝) 

o Total EHPSO herds (𝑁ℎ) 

o Social & Cognitive learning rates (𝐿𝑠 & 𝐿𝑐) 

o Temporal packet delivery performance and throughput 

levels for all nodes 

o Node locations and their energy levels 

• Initially generate 𝑁ℎ herds via the following process, 

o Select a stochastic node from current cluster that caters 

equation 2, 

                          𝑑𝑖,𝑑𝑒𝑠𝑡 < 𝑑𝑟𝑒𝑓  & 𝑑𝑖,𝑠𝑟𝑐 < 𝑑𝑟𝑒𝑓                       (2) 

Where, 𝑑𝑖,𝑑𝑒𝑠𝑡 , 𝑑𝑖,𝑠𝑟𝑐  & 𝑑𝑟𝑒𝑓  represents distance between 

current node & destination, distance between current node & 

source, and direct distance between source & destination nodes. 

This node selection is done by stochastically selecting a node 

from the list of nodes that satisfy equation 2, thus indicating 

nodes that are present in current path between source & 

destination nodes. 

o Repeat this process for next clusters till source node 

cluster is reached, and evaluate herd fitness via 

equation 3, which assists in calculating herd fitness, 

𝑓 =
1

𝑁𝑡

∑ ∑
𝑑(𝑠𝑒𝑙𝑗 , 𝑠𝑒𝑙𝑗+1)

𝑑𝑟𝑒𝑓

𝑁𝑠𝑒𝑙

𝑖=1

+
𝑀𝑎𝑥(𝐸)

𝐸𝑗

𝑁𝑡

𝑖=1

+
𝑀𝑎𝑥(𝑇𝐻𝑅)

𝑇𝐻𝑅𝑗

+
100

𝑃𝐷𝑅𝑗

                                                 (3) 
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Where, 𝑑  represents node-to-node distance, 𝐸  represents 

residual energy levels of nodes, 𝑇𝐻𝑅  represents temporal 

throughput levels, while 𝑃𝐷𝑅  represents temporal packet 

delivery ratio of the nodes when estimated for 𝑁𝑡 

communications, and 𝑁𝑠𝑒𝑙  represents number of nodes selected 

between source & destination for routing process. 

• Generate such combinations, and then select herd with 

highest fitness as ‘Matriarch’ herd. 

• Once this is done, then scan all herds for 𝑁𝑖 iterations, and 

update herd fitness via equation 3.1, 

𝑓(𝑁𝑒𝑤) = 𝑟 ∗ 𝑓(𝑂𝑙𝑑) + 𝐿𝑐 ∗ (𝑓(𝑂𝑙𝑑) − 𝑓(𝐵𝑒𝑠𝑡)) + 𝐿𝑠

∗ (𝑓(𝑂𝑙𝑑) − 𝑓(𝑀))                             (3.1) 

Where, 𝑓(𝐵𝑒𝑠𝑡) is previous best fitness of the herd, while 

𝑓(𝑀)  represents fitness levels of the ‘Matriarch’ herd, and 

𝑓(𝑁𝑒𝑤) & 𝑓(𝑂𝑙𝑑) represents new & old fitness levels of the 

herds. 

• If 𝑓(𝑁𝑒𝑤) > 𝑓(𝑂𝑙𝑑), then do not update fitness levels of 

the herd, else, stochastically modify 𝐿𝑐 ∗ 𝑁𝑠𝑒𝑙  nodes from 

current herd by referring to ‘Matriarch’ herd 

configurations. 

• At the end of each iteration, update fitness of all herds, and 

select ‘Matriarch’ herd with minimum fitness levels. 

 

Figure 2. Fan Shaped Clustering with Bio-inspired Optimizations 

This process is repeated for 𝑁𝑖  iterations, and routing 

configurations of ‘Matriarch’ herd are used for routing process. 

This enables the model to achieve better energy efficiency with 

lower delay, higher throughput and better packet delivery 

performance levels. Performance of the model is validated on 

standard network configurations in the next section of this text. 

IV. RESULT ANALYSIS & COMPARISON 

The DFQIoV Model that has been proposed utilizes a 

combination of Fan Shaped Clustering with Elephant Herding 

Optimization and Particle Swarm Optimization in order to 

locate fault-tolerant and low complexity routes. These routes 

have been chosen because they have a low delay, a low energy 

consumption, a high temporal throughput, and high temporal 

PDR performance levels. A comparison of the proposed model 

to the models proposed in TCN RL [8], OSL AR SDN [9], and 

ACO [16] is going to take place in this section. The following 

information regarding the network's parameters is used in this 

comparison, 

TABLE I.  STANDARD NETWORK PARAMETERS USED DURING THE 

ROUTING & VALIDATION PROCESS 

Network Parameter Value of the Parameter 

Total IoV Nodes 200 to 500 

Routing Protocol Model Ad-hoc On Demand Distance 

Vector (AODV) 

Type of Antennas used for 

communication 

Omnidirectional Antennas 

Type of Queue Priority Queue with Drop-tailing 

of packets 

Dimensions of Network 1 km x 1 km 

Transmission energy needed 

during communications 

0.5 mJ 

Reception energy needed during 

communications 

0.125 mJ 

Sleep energy needed during 

communications 

0.005 mJ 

Travel energy needed during 

communications 

2 mJ 

Idle energy needed during 

communications 

0.025 mJ 

 

To evaluate communication speed, average delay was 

evaluated for 𝑁 different communications via equation 4, 

                                  𝐷 =
1

𝑁
∑ 𝑡𝑒𝑛𝑑𝑖

− 𝑡𝑠𝑡𝑎𝑟𝑡𝑖

𝑁

𝑖=1

                      (4) 

Where, 𝑡𝑠𝑡𝑎𝑟𝑡  & 𝑡𝑒𝑛𝑑  are the starting communication 

and finishing communication timestamps. This communication 

delay was evaluated for 𝑁 different communication sets, and 

tabulated in table 2 as follows, 
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TABLE II.  AVERAGE COMMUNICATION DELAY FOR DIFFERENT IOV 

ROUTING MODELS 

N D (ms) 

TCN RL 

[8] 

D (ms) 

OSL AR 

SDN [9] 

D (ms) 

ACO [16] 

D (ms) 

DFQ IOV 

20 6.80 8.00 5.03 3.94 

40 7.15 8.45 5.50 4.19 

60 7.50 8.78 6.00 4.42 

80 7.82 9.03 6.48 4.63 

100 8.27 9.28 6.96 4.87 

120 8.66 9.45 7.44 5.08 

140 9.17 9.70 7.92 5.33 

160 9.64 10.00 8.41 5.58 

180 10.04 10.33 8.89 5.82 

200 10.46 10.65 9.37 6.06 

 

 

Figure 3. Average communication delay for different IoV routing models 

In light of the results of this analysis and the information 

presented in Fig. 3, it is clear that the proposed model has a 

delay that is 14.5 percentage points lower in comparison to 

TCN RL [8], nearly 15.2 percentage points lower in 

comparison to OSL AR SDN [9], and approximately 10.5 

percentage points lower in comparison to ACO [16]. Since of 

this, it is very helpful for implementing high-speed routing 

because it cuts down on latency by such a significant amount. 

The aforementioned increase in routing speed can be traced 

back to the incorporation of distance measurements into the 

process of modelling the routing fitness functions as the root 

cause of the changes. Similarly, energy consumption was 

evaluated via equation 5, as follows, 

                               𝐸 =
1

𝑁
∑ 𝐸𝑠𝑡𝑎𝑟𝑡𝑖

− 𝐸𝑒𝑛𝑑𝑖

𝑁

𝑖=1

                         (5) 

Where, 𝐸𝑠𝑡𝑎𝑟𝑡  & 𝐸𝑒𝑛𝑑  are the initial and final energy 

levels of nodes while performing communication operations. 

This energy was evaluated for different number of 

communications, and tabulated in table 3 as follows, 

 

 

TABLE III.  AVERAGE ENERGY CONSUMPTION FOR DIFFERENT IOV 

ROUTING MODELS 

N E (mJ) 

TCN RL 

[8] 

E (mJ) 

OSL AR 

SDN [9] 

E (mJ) 

ACO [16] 

E (mJ) 

DFQ IOV 

20 8.58 10.97 8.27 5.02 

40 8.99 11.41 8.99 5.30 

60 9.43 11.77 9.72 5.57 

80 9.90 12.06 10.43 5.84 

100 10.44 12.36 11.16 6.11 

120 10.99 12.67 11.88 6.40 

140 11.54 13.06 12.60 6.69 

160 12.07 13.45 13.33 6.98 

180 12.53 13.83 14.05 7.26 

200 12.90 14.40 14.77 7.54 

 

 

Figure 4. Average energy consumption for different IoV routing models 

It can be seen from this evaluation and Fig. 4 that the 

proposed model has a 14.1% lower energy consumption 

w.r.t. TCN RL [8], nearly 18.3% lower energy consumption 

w.r.t. OSL AR SDN [9], and around 18.5% lower energy 

consumption w.r.t. ACO [16]. This makes it very useful for 

high network lifetime routing deployments because it 

consumes less energy overall. The use of leftover energy 

during the modelling of the routing fitness functions is the 

cause of this decrease in the amount of energy that was 

consumed. Similarly, average levels of throughput were 

evaluated as per equation 6, as follows, 

                                   𝑇 =
1

𝑁
∑

𝑃𝑟𝑥𝑖

𝐷𝑖

𝑁

𝑖=1

                                   (6) 

Where, 𝑃𝑟𝑥  & 𝐷  are the number of received packets 

and communication delay levels. Using this strategy, 

average throughput for 𝑁 communications can be observed 

from table 4 as follows, 
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TABLE IV.  AVERAGE THROUGHPUT FOR DIFFERENT IOV ROUTING 

MODELS 

N T (kbps) 

TCN RL 

[8] 

T (kbps) 

OSL AR 

SDN [9] 

T (kbps) 

ACO [16] 

T (kbps) 

DFQ IOV 

20 384.63 474.18 332.33 537.80 

40 403.29 496.58 362.25 569.60 

60 423.35 513.67 392.87 600.01 

80 442.87 527.26 422.69 628.20 

100 467.68 540.84 452.81 659.08 

120 491.15 553.12 482.93 688.68 

140 517.73 568.89 513.06 721.34 

160 542.66 586.24 543.18 753.94 

180 564.25 603.96 573.31 785.13 

200 586.60 621.13 603.44 816.44 

 

According to this assessment and Fig. 5, it can be 

shown that the suggested model exhibits 19.4% greater 

throughput w.r.t. TCN RL [8], about 18.5% better throughput 

w.r.t. OSL AR SDN [9], and around 19.3% better throughput 

w.r.t. ACO [16], which makes it very helpful for high-speed 

routing deployments. Fig. 5 shows a comparison of the 

throughputs of the proposed model with those of R1, R2, and 

R3. This considerable improvement in throughput may be 

attributed to the fact that the assessment of routes now takes 

into account the temporal throughput performance for each of 

the routes. Similarly, PDR was evaluated via equation 7, as 

follows, 

                               𝑃𝐷𝑅 =
1

𝑁
∑

𝑃𝑟𝑥𝑖

𝑃𝑡𝑥𝑖

𝑁

𝑖=1

                                (7) 

Where, 𝑃𝑡𝑥  is the number of packets that are transmitted 

during each of the communications. Based on this evaluation, 

the PDR (P) was tabulated in table 5. 

 

Figure 5. Average throughput for different IoV routing models 

TABLE V.  AVERAGE PDR FOR DIFFERENT IOV ROUTING 

MODELS 

N P (%) 

TCN RL 

[8] 

P (%) 

OSL AR 

SDN [9] 

P (%) 

ACO [16] 

P (%) 

DFQ IOV 

20 91.93 91.03 92.73 96.40 

40 91.19 90.14 91.53 95.87 

60 90.38 89.46 90.31 95.37 

80 89.60 88.91 89.11 94.90 

100 88.61 88.37 87.91 94.38 

120 87.67 87.88 86.70 93.89 

140 86.61 87.25 85.50 93.34 

160 85.61 86.55 84.29 92.80 

180 84.75 85.84 83.09 92.28 

200 83.85 85.16 81.88 91.76 

 

Figure 6. Average PDR for different IoV routing models 

According to this analysis and Fig. 6, it is clear that the 

suggested model exhibits a PDR that is 8.3% better when 

compared to TCN RL [8], roughly 5.9% better when compared 

to OSL AR SDN [9], and about 10.5% better when compared 

to ACO [16]. This makes it very valuable for high-efficiency 

routing installations since it improves PDR by a wider margin 

than earlier models, which makes it more useful than its 

predecessors. The fundamental reason for this improvement in 

PDR is due to the incorporation of temporal PDR performance 

across the whole of the route estimate process. As a result of 

these performance gains, the solution that was presented is 

useful for a wide variety of IoV routing application cases. 

V. CONCLUSION 

The proposed routing model initially combines a highly 

efficient destination-aware clustering process that estimates 

node hop levels in order to group nodes into different fan 

shaped cluster sets. These groups are processed by a combined 

EHPSO Model that combines temporal throughput and packet 

delivery performance levels with instantaneous energy & 

distance metrics to estimate highly efficient route sets. The 
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proposed model has a delay that is 14.5 percentage points 

lower in comparison to TCN RL [8], nearly 15.2 percentage 

points lower in comparison to OSL AR SDN [9], and 

approximately 10.5 percentage points lower in comparison to 

ACO [16]. This is achieved by combining fan clustering with 

EHPSO. Because of this, it is very useful for implementing 

high-speed routing because it reduces latency by such a 

significant amount. This makes it very helpful for 

implementing high-speed routing. The previously mentioned 

increase in routing speed can be traced back to the process of 

modelling the routing fitness functions, which included the 

incorporation of distance measurements as part of the process. 

This was the primary factor that led to the changes. In addition 

to this, it was discovered that the proposed model has a 14.1% 

lower energy consumption in comparison to TCN RL [8], 

nearly 18.3% lower energy consumption in comparison to 

OSL AR SDN [9], and approximately 18.5% lower energy 

consumption in comparison to ACO [16]. Because of this, it 

has a very low overall energy consumption, which makes it an 

excellent choice for high network lifetime routing 

deployments. This decrease in the amount of energy that was 

consumed is due to the utilization of unused energy during the 

modelling of the routing fitness functions, which was the 

cause of the aforementioned phenomenon. However, it was 

found that the proposed model has a throughput that is 19.4% 

higher when compared to TCN RL [8], approximately 18.5% 

better when compared to OSL AR SDN [9], and 

approximately 19.3% higher when compared to ACO [16]. 

This demonstrates that it is an excellent choice for high-speed 

routing deployments. This significant increase in throughput 

may be attributed to the fact that the evaluation of routes now 

takes into account the temporal throughput performance of 

each of the routes. Consequently, this improvement was made 

possible. When compared to TCN RL [8], OSL AR SDN [9], 

and ACO [16], the suggested model demonstrates a PDR that 

is 8.3% better than TCN RL [8], approximately 5.9% better 

than OSL AR SDN [9], and approximately 10.5% better than 

ACO [16]. Because of this, it is very useful for high-efficiency 

routing installations because it improves PDR by a larger 

margin than earlier models, which makes it more useful than 

its predecessors. Additionally, this makes it very valuable for 

high-efficiency routing installations. The incorporation of 

temporal PDR performance throughout the entirety of the 

route estimate process is the primary reason for this 

improvement in PDR. This improvement in PDR was achieved 

as a result. The solution that was presented is useful for a wide 

variety of IoV routing application cases as a result of the 

performance gains that were mentioned earlier by optimization 

models. In future, researchers can extend performance of the 

proposed model via integrating it with multiple deep learning 

& machine learning techniques, thereby assisting in improving 

its route estimation performance for different scenarios. 

Moreover, researchers can also integrate different bioinspired 

techniques including Firefly Optimization, Genetic Algorithm, 

Bacterial Foraging, etc. to further enhance clustering 

performance under multiple use cases. 
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