
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7461

Article Received: 20 May 2023 Revised: 15 July 2023 Accepted: 02 August 2023

 498

IJRITCC | August 2023, Available @ http://www.ijritcc.org

An Innovative Approach for Predicting Software

Defects by Handling Class Imbalance Problem

Ranjeetsingh Suryawanshi1, Amol Kadam2, Devata Anekar3, Vinayak Patil4
1,2 Department of Computer Engineering, College of Engineering, Bharati Vidyapeeth Deemed To Be University Pune, Maharashtra, India

3Sinhgad academy of engineering,Savitribai Phule Pune University,Maharashtra, India
4Bharati vidyapeeth college of engineering Navi Mumbai, Maharashtra, India

ranjeetsinghsuryawanshi@gmail.com

akkadam@bvucoep.edu.in

devanekar@gmail.com

vinayak.n.patil@bvcoenm.edu.in

Abstract— From last decade unbalanced data has gained attention as a major challenge for enhancing software quality and reliability.

Due to evolution in advanced software development tools and processes, today’s developed software product is much larger and complicated

in nature. The software business faces a major issue in maintaining software performance and efficiency as well as cost of handling software

issues after deployment of software product. The effectiveness of defect prediction model has been hampered by unbalanced data in terms of

data analysis, biased result, model accuracy and decision making. Predicting defects before they affect your software product is one way to cut

costs required to maintain software quality. In this study we are proposing model using two level approach for class imbalance problem which

will enhance accuracy of prediction model. In the first level, model will balance predictive class at data level by applying sampling method.

Second level we will use Random Forest machine learning approach which will create strong classifier for software defect. Hence, we can

enhance software defect prediction model accuracy by handling class imbalance issue at data and algorithm level.

Keywords- Software defect prediction;Data imbalance;Machine Learning;Prediction model;Sampling.

I. INTRODUCTION

The software business faces a constant struggle in building

open source and commercial software projects with zero bugs.

Due to the limited number of frameworks that have been

developed, there is no standardization of the software defect

prediction process. The software fault forecasting framework

performs well on training data but averagely on testing data since

it was not trained with a varied variety of data. We must focus

on the quality of the dataset if we want to obtain high accuracy

in the defect prediction model. When enough data is provided to

develop the prediction model, a higher degree of defect

prediction accuracy is achieved. The scenario, though, may

differ from project to project. For instance, the initial release of

new software does not contain any flaw information which

makes difficult for prediction model as no historical data

available.

In high dimensional datasets, it is very difficult to extract

important features from large number of data features. More

features or dimensions in dataset can reduce accuracy of

prediction model because it deals with huge number of

dimensions and it is known as Curse of dimensionality. B.

Pes conducted research to investigate the efficiency of hybrid

learning strategies that integrate dimensionality reduction

approache for resolving class imbalance problem [1].

In some software defect dataset has a class imbalance issue,

due to this defect prediction models are likely to select the class

that contains larger samples which cost decreases accuracy of

prediction model. Issue of class imbalance can be resolved by

under-sampling and over-sampling technique which helps to

improve accuracy of model. Under-sampling techniques

removes instances of the majority class and over-sampling

techniques increases instances of the minority class present in

defect prediction dataset. For developing prediction model there

are many machine learning techniques available which are:

Logistic regression:[2] In binary classification logistic

regression is very effective method. It produces a highly robust

discriminative model that is based on function.

𝑓(𝑦) =
1

(1 + ⅇ−𝑦)

Support vector machine: It is a distinct classifier that uses a

suitable hyperplane as the decision boundary to differentiate data

from two classes Typically, the hyperplane is used to maximize

the distance between classes. It generates optimum hyperplane

by solving a Lagrangian optimization problem [3].

Decision tree: A decision tree machine algorithm is used for

both regression and classification problems. The decision tree

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7461

Article Received: 20 May 2023 Revised: 15 July 2023 Accepted: 02 August 2023

 499

IJRITCC | August 2023, Available @ http://www.ijritcc.org

method divides the data recursively into subsets depending on

the most significant attribute at each node of the tree. [4].

 Random forests: It comprise a set of decision tree, in which

every tree is dependent on random vector values collected

independently. Mathematically It can be defined as

{ℎ(𝑥, 𝜃𝑘)}, 𝑘 = 1, . . . } where input x is represented by a set of

random vectors {𝜃𝑘 }, each of which cast unit vote for most

preferred class. Breiman applied the randomization technique to

generate diversity among base decision trees, which works

satisfactorily with bagging or random subspace approaches.

[5][6].

Naive Bayes: Naive Bayes is appropriate for huge datasets

since it is predicated on the idea that particular variables are

independent of one another and that such a model does not need

recurrent estimations of parameters. [7].

k-nearest neighbour: It identifies new samples according to

the minimum distance in the initial data. KNN determines the

correct class by measuring the dispersion between the test data

and all of the training points[7].

This study is organized systematically as follows: section I

gives an introduction to the research problem. Section II

describes corresponding research carried out for handling class

imbalance issue. Section III describes the proposed architecture

for predicting software defects by addressing the class imbalance

problem. In Section IV we discussed what we found for our

research questions. We conclude our final remark in conclusion

segment.

II.RELATED WORK

Although many researchers and academician made excellent

contributions, still H. Krasner's (2018) quality report estimates

that the cost of software reliability for exterior defects and

breakdowns is roughly around 635 billion dollars. According to

Report, fixing software flaws can lower quality costs[8].

According to research articles it suggests that this can be

minimized by addressing class imbalance issue, removing

outliers in classifications, and handling high dimension data. We

have completed literature survey of available research articles

for software defect prediction using machine learning

approach[9].In this work we proposing novel approach for

software fault prediction by handling class imbalance problem.

Research on software defect prediction has started in the

international arena since early 1970s.Akiyama found a

correlation between the number of flaws and the program's

judgement calls after discovering a total of 546 bugs across 9

modules during study observation [10]. A. Ihara et al solved bug

issue in upcoming release of bug fix. This work performed

experiment on Eclipse software and the findings of the

experiment demonstrate that the next release of open-source

software can fix bug problem[11].

Qiao Yu et al used an attribute selection and attribute ranking

approach to solve the issue of fault prediction performance for

dissimilar project. The work tested on the NASA and PROMISE

datasets and the findings shows that performance has been

enhanced using this method for cross-project defect prediction

[12]. N. Nagwani et al work finds expert to fix software bugs by

mapping a list of expert developers with common bug keywords.

The system will forecast experienced developers for a specific

bug by mapping frequent phrases with developer relationships.

1000 software bugs from the Mozilla bug repository and 97

developers are selected in the experiment for matching bug

expert[13].

Santosh Singh Rathore et al study concentrated on

establishing a link between fault proneness of object-oriented

software systems and class level object-oriented metrics with the

purpose of evaluating coupling, cohesion, complexity, and

inheritance design features[14]. With the use of test case

execution paths within the code, Prateek Anand solved the

problem of future flaws being released due to change in code.

Twelve data sets from four industrial projects were used to verify

defect prediction, and the top 10 faulty features were predicted

with an average normalised cumulative gain of 0. 684[15].

Shruthi Puranik et al. devised an approach to forecast the fault

sensitivity score using minimal R square values and regressions

as intermediate stage. This work tested using Eclipse JDT Core

dataset [16]. Santosh Singh Rathore et al used five-fold cross-

validation method to test the work on the PROMISE data

repository for intra-release prediction. Older releases are utilized

as the training dataset and testing dataset for inter-releases

prediction[17].

Jianming Zheng et al investigated that accuracy of software

defect prediction model depends upon balanced distribution of

defect data sets. This study demonstrates higher

prediction accuracy over the minority class by using two unique

algorithms that gain knowledge from unbalanced data sets. In

first approach IAdaBoost method is used which classifies

imbalanced data sets using adaptive cost matrix. In the Second

approach, the SWIMBoost technique creates minority samples

by using the oversampling method and it increases decision

boundaries of the minority class of unbalanced data which helps

to boost classification accuracy[18].

Ruchika Malhotra et al handled issue of imbalance dataset

and dimensionality reduction using naïve bays classifier with

SMOTE sampling technique. support vector machine synthetic

minority oversampling technique focuses on borderline area

between minority and majority classes, so misclassification is

avoided at border area. Linear Discriminant Analysis is used for

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7461

Article Received: 20 May 2023 Revised: 15 July 2023 Accepted: 02 August 2023

 500

IJRITCC | August 2023, Available @ http://www.ijritcc.org

dimensionality reduction by calculating variance and the

distance between means of the two classes[19]. Santosh Singh

Rathore et al focused on the issue of segmenting the defect

dataset into various module subsets, each of which is trained

with a different learning technique before combining the results.

The PROMISE and the Eclipse bug data set used to test this

concept and the results show that the dynamic preferred strategy

gives good result[20].

 Thanh Tung Khuat et al performed experiment on

imbalanced data with synthetic minority oversampling technique

and ensembles classifiers (LR,SVM,Decision Tree,KNN).This

work experimentally analyses the significance of data sampling

in software defect prediction model using different classifiers on

imbalanced data.Experimental result shows that combined

sampling approaches using base classifiers gives improved

defect prediction performance and generates much better F1-

score values[21]. Somya Goyal proposed Neighbourhood based

undersampling approach for prediction defect in software with

high accuracy. This algorithm avoid information loss in dataset

by getting more visibility of minority data points and minimizing

the surplus elimination of majority data points while sampling

dataset.[22]. Maohua Gan et al proposed research idea to solve

the issue of class imbalance which is primarily based on the

negative and positive values of data set which is used to compute

accuracy measures. This research provides a rating of

predictions across multiple data sets using the proposed

measures, which can discriminate between successful and failed

forecasts[23].

P. Soltanzadeh et al. developed an enhanced SMOTE-based

technique, Range-Controlled SMOTE (RCSMOTE), to

overcome the overgeneralizing problem caused by oversampling

of noisy data and overlapping between various classes near class

boundaries. This work is carried out in three phases. 1) splitting

up the unbalanced data input into major and minor classes. 2)

finding noisy minority class instances, and 3)preventing

generation of minority instances inside majority class

regions[24].

F. Thabtah et al explained two approaches for solving class

imbalance problem 1. Data driven: This approach balances the

class distribution with training dataset for e.g. Oversampling and

undersampling technique. 2.Algorithm driven: This approach

balances the class distribution using machine learning

algorithms without training dataset for e.g. cost sensitive

learning (cost of misclassification), thresholding.This work

performed experiment with Nave Bayes as base classifier and

five datasets from the University of California Irvine (UCI)

repository[25]

The researchers came up with several methods to handle the

class imbalance issue. We are proposing an approach to boost

the prediction model accuracy by addressing the class imbalance

problem with software fault detection. From our proposed

design we will be able to answer following research questions

(RQ):

RQ1. How to increase the accuracy for software defect

prediction model?

RQ2. How to decrease the impact of class imbalance on

software defect prediction?

RQ3. How to handle high dimensional dataset used for

software defect prediction

III. PROPOSED FRAMEWORK FOR SOFTWARE

DEFECT PREDICTION

Figure 1 shows proposed framework for handling class

imbalance issue in software fault prediction. It consists of

following stages:

• Data extraction and pre-processing

• Handling high-dimensional data

• Data Sampling

• Building SDP Model

• Performance measures

Data extraction and pre-processing:

For our experimental setup we will be using NASA

dataset[26]. We extracted data from CM1 and JM1 dataset for

data preprocessing. Firstly, we explored CM1 dataset which

contains 39 features and 344 observations with Majority class

contain 302 observations whereas Minority class contain 42

observations. We also explored CM1 data for defective class

distribution and from figure 2 it shows that there is imbalanced

data for defective and non-defective class. First, we need to

balance class distribution in order get better result in data

balancing stage.

Handling high-dimensional data:

More features or dimensions in dataset can reduce accuracy

of prediction model, so we are using gini impurity, entropy and

information gain to handle high dimensional data.

For CM1 data there are total 39 features, due to this high

dimension data we have calculated gini impurity for Feature

selection using following mathematical equation.

 Gini Impurity = 1 − ∑ (pi)
2c

i=1
 ……………. (1)

Table 1 shows gini impurity calculated for CM1 dataset.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7461

Article Received: 20 May 2023 Revised: 15 July 2023 Accepted: 02 August 2023

 501

IJRITCC | August 2023, Available @ http://www.ijritcc.org

Figure 1. Software defect prediction architecture

Figure 2. CM1 Software defect Imbalance class distribution

TABLE 1 GINI IMPURITY FOR CM1 DATASET

Gini impurity Value target feature

0.193624071 locComments

0.194694632 locExecutable

0.196201667 locTotal

0.196653312 numUniqueOperators

0.198222519 numOfLines

0.198839768 numUniqueOperands

0.200464139 halsteadContent

0.202190654 numOperator

0.202424683 halsteadEffort

0.202424683 halsteadProgTime

0.202947539 halsteadVolumn

0.202957631 loc_blank

0.202963698 halsteadEffortEst

0.203642364 halsteadLength

0.203981144 numOperands

0.204238523 normCyclomaticComplex

0.204708153 designComplexity

0.204717195 percentComments

0.205095759 callPairs

0.205820916 parameterCount

0.206163297 cyclomaticComplexity

0.206237606 nodeCount

 0.20677133 branchCount

0.206898721 cyclomaticDensity

 0.20690006 edgeCount

0.207768467 halsteadDifficulty

0.208131643 halsteadLevel

0.208324693 decisionCount

0.208757045 modifiedConditionCount

0.209048378 ConditionCount

0.209048378 multipleConditionCount

0.209154561 maintenanceServirity

0.209526095 locCode&Comment

0.209878636 essentialComplexity

0.209920337 designDensity

0.212311526 decisionDensity

0.213018819 essentialDensity

For splitting data in CM1 dataset we have calculated entropy

using following mathematical equation,

 Entropy = − ∑ p𝑘 log2 pk
N
k=1 …………. (2)

Software defect

repository / dataset

Data Preprocessing

Test Data
Training Data

Data Sampling

Software Defect Classification

Software Defect Prediction Model

Performance Evaluation

Result

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7461

Article Received: 20 May 2023 Revised: 15 July 2023 Accepted: 02 August 2023

 502

IJRITCC | August 2023, Available @ http://www.ijritcc.org

In equation 2 The probability of selecting a class k item at an

arbitrary rate is expressed by the symbol pk and N represents

number of classes and to decide the ordering of attributes in a

decision tree we have calculated information gain by using

following mathematical equation,

Information Gain = 𝐸𝑃𝑎𝑟𝑒𝑛𝑡−𝐸𝐶ℎ𝑖𝑙𝑑

Where, Eparent is the entropy of the parent node and Echild is

the average entropy of the child nodes. Table 2 shows

information gain calculated for CM1 dataset.

TABLE 2 INFORMATION GAIN FOR CM1 DATASET

Info Gain target feature

0.273033042 decisionDensity

0.382419785 essentialDensity

0.385127871 essentialComplexity

0.461587796 modifiedConditionCount

0.462375873 parameterCount

0.468614218 branchCount

0.468614218 cyclomaticComplexity

0.469167803 decisionCount

0.470223841 multipleConditionCount

0.470464467 locCode&Comment

0.471378419 ConditionCount

0.472490352 edgeCount

 0.47742667 maintenanceServirity

0.477792474 halsteadLevel

0.478567621 designDensity

0.479964826 nodeCount

0.481763928 halsteadDifficulty

0.483094208 callPairs

0.484931519 loc_blank

0.485596819 percentComments

 0.48883191 designComplexity

0.490646312 cyclomaticDensity

0.491404677 numOperands

0.495544374 normCyclomaticComplex

 0.49635303 locTotal

0.496574295 locExecutable

0.497813671 numOperator

 0.49958927 halsteadContent

0.501045814 halsteadLength

0.501538386 halsteadEffort

0.501538386 halsteadProgTime

 0.50331986 halsteadEffortEst

0.505678967 halsteadVolumn

0.519858894 numOfLines

0.519909257 numUniqueOperators

0.522310168 numUniqueOperands

0.53687742 locComments

Data Sampling:

 Solving class imbalance problem in a dataset is very

difficult, this can be handled by data sampling technique.

Sampling will transform training dataset in balanced class

distribution. For our experiment we will use Synthetic Minority

Oversampling Technique which leads to improve model

performance by adding minority sample in SDP (Software defect

prediction) data. SMOTE Oversampling generates synthetic

samples by linearly interpolating between feature vectors of

neighbouring minority class samples and their close neighbours.

Working procedure for Synthetic Minority Oversampling

Technique will be as follows.

A new synthetic sample in feature space is created by adding

the difference between a sample and its nearest neighbour,

multiplied by a random value between 0 and 1, and then moving

on to the next nearest neighbour for generation of new synthetic

sample. Mathematically it can be expressed by,

SDPNewSample=SDPDataSample+Random(0,1)*(

NeighbourSample- SDPDataSample)

Where, SDPDataSample represents SDP (Software defect

prediction) minority class sample.

Random represents random value between 0 and 1 that

controls the degree of interpolation.

NeighbourSample represents close neighbour of the

SDPDataSample.

After applying data sampling on CM1 dataset we have

balanced data as shown in figure 3

Figure 3. CM1 Software defect balanced class distribution

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7461

Article Received: 20 May 2023 Revised: 15 July 2023 Accepted: 02 August 2023

 503

IJRITCC | August 2023, Available @ http://www.ijritcc.org

Building SDP Model:

As single classifier will create bias-variance problem,

due to this in our experiment we are using ensemble approach

with random forest machine learning algorithm to predict

software defect. Random Forest's ensemble nature helps to

minimize overfitting and limiting the influence of noisy or

irrelevant features in the dataset.

Our Software defect prediction model gives 81%

accuracy by deploying random forest ensemble classifiers with

balanced dataset.

 Performance measures:

We evaluated the performance of our model using

model accuracy, recall, and precision values as well as an F-

measure created from the recall and precision values. Confusion

matrix evaluate following parameters for measuring predictive

performance of the model.

TP (True Positive): project faulty category as faulty

FP (False Positive): project non-faulty category as faulty

FN (False Negative): project faulty category as no-faulty

TN (True Negative): project non-faulty category as non-faulty

From above parameter we can calculate different model

performance measure like model accuracy, recall, precision, F-

measure and mathematically it can be represented as,

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐴)

=
𝑇𝑟𝑢ⅇ𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢ⅇ𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢ⅇ𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠ⅇ𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢ⅇ𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠ⅇ𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

 𝑃𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛(𝑃) =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

 𝑅ⅇ𝑐𝑎𝑙𝑙(𝑅) =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

 𝐹_𝑀ⅇ𝑎𝑠𝑢𝑟ⅇ(𝐹) =
2×𝑃×𝑅

𝑃+𝑅

Also, for evaluating the effectiveness of our software defect

categorization approach, we use a receiver operating characteristic

curve by generating true versus false positives plot.

As precision-recall curve is much suitable measure for imbalanced

data, so we have used precision-recall curve to assess the performance

of our classification model.

IV. RESULT DISCUSSION:

In our experimental model we got performance measure result as

shown in table 3.

TABLE 3 DEFECT PREDICTION PERFORMANCE MEASURE

Accuracy Precision Recall F_measure

0.8142 0.8571 0.7272 0.7868

 In our plot generated from our result is shown in figure 4.

It shows the ROC curve is closer to the top left corner of our

plot diagram, that shows our model is better in categorizing the

data. To quantify this, we computed the AUC (area under the

curve), which shows how much of the plot lies behind the curve.

For our experimental model we got AUC (area under the curve)

computed value as 0.91 and our model got highest AUC,

indicating that it has the most area under the curve and is the

best model at correctly categorizing observations.

The precision-recall curve shows the trade-off

between Precision and Recall scores across different thresholds,

the lower the threshold model will get more False Positive

predictions. As shown in figure 5, the graph is trending

downward and from graph we conclude that our model is good

classifier.

Figure 4 ROC curve for Software defect prediction

Figure 5 precision-recall curve for Software defect prediction

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7461

Article Received: 20 May 2023 Revised: 15 July 2023 Accepted: 02 August 2023

 504

IJRITCC | August 2023, Available @ http://www.ijritcc.org

CONCLUSION

In the software projects, imbalanced software defect

dataset gives inaccurate classification as an outcome for

software fault detection model and a bias in favour of the

dominant class. Here we have first addressed high dimensional

data by calculating gini impurity, entropy, and information gain

for selection of important features. Then we applied data

sampling to handle class imbalance in defect dataset. Finally,

we build model using random forest algorithm which gives

better accuracy for software defect prediction model. In future

this work can be extended to cross project data for detecting

defect in software product.

REFERNCES

[1] B. Pes, “Learning from high-dimensional biomedical datasets:

The issue of class imbalance,” IEEE Access, vol. 8, pp. 13527–

13540, 2020, doi: 10.1109/ACCESS.2020.2966296.

[2] T. M. Khoshgoftaar and E. B. Allen, “Logistic regression

modeling of software quality,” Int. J. Reliab. Qual. Saf. Eng.,

vol. 6, no. 4, pp. 303–317, 1999, doi:

10.1142/S0218539399000292.

[3] R. Akbani, S. Kwek, and N. Japkowicz, “to Imbalanced

Datasets,” Eur. Conf. Mach. Learn., pp. 39–50, 2004.

[4] G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard, “A study

of the behavior of several methods for balancing machine

learning training data,” ACM SIGKDD Explor. Newsl., vol. 6,

no. 1, pp. 20–29, 2004, doi: 10.1145/1007730.1007735.

[5] L. Breiman, “Random Forests,” Mach. Learn. 45, 5-32., pp. 542–

545, 2001, doi: 10.1109/ICCECE51280.2021.9342376.

[6] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2,

pp. 123–140, 1996, doi: 10.1007/bf00058655.

[7] J. Ha, M. Kambe, and J. Pe, Data Mining: Concepts and

Techniques. 2011. doi: 10.1016/C2009-0-61819-5.

[8] H. Krasner, “Quality Software A 2018 Report,” Consort. IT

Softw. Qual., 2018.

[9] R. S. Suryawanshi, A. Kadam, and D. R. Anekar, “Software

defect prediction: A survey with machine learning approach,”

Int. J. Adv. Sci. Technol., vol. 29, no. 5, pp. 330–335, 2020.

[10] F. Akiyama, “An Example of Software System Debugging.,” Int.

Fed. Inf. Process. Congr., vol. 71, pp. 353–359, 1971, Accessed:

Mar. 03, 2020. [Online]. Available:

https://dblp.org/rec/conf/ifip/Akiyama71

[11] A. Ihara et al., “An investigation on software bug-fix prediction

for open source software projects - A case study on the eclipse

project,” Proc. - Asia-Pacific Softw. Eng. Conf. APSEC, vol. 2,

pp. 112–119, 2012, doi: 10.1109/APSEC.2012.86.

[12] Q. Yu, J. Qian, S. Jiang, Z. Wu, and G. Zhang, “An Empirical

Study on the Effectiveness of Feature Selection for Cross-Project

Defect Prediction,” IEEE Access, vol. 7, pp. 35710–35718,

2019, doi: 10.1109/ACCESS.2019.2895614.

[13] N. K. Nagwani and S. Verma, “Predicting expert developers for

newly reported bugs using frequent terms similarities of bug

attributes,” Int. Conf. ICT Knowl. Eng., pp. 113–117, 2011, doi:

10.1109/ICTKE.2012.6152388.

[14] S. S. Rathore and A. Gupta, “Investigating object-oriented

design metrics to predict fault-proneness of software modules,”

2012 CSI 6th Int. Conf. Softw. Eng. CONSEG 2012, 2012, doi:

10.1109/CONSEG.2012.6349484.

[15] P. Anand, “An approach for feature-level bug prediction using

test cases,” 2015 Int. Conf. Adv. Comput. Commun. Informatics,

ICACCI 2015, pp. 1111–1117, 2015, doi:

10.1109/ICACCI.2015.7275759.

[16] S. Puranik, P. Deshpande, and K. Chandrasekaran, “A Novel

Machine Learning Approach for Bug Prediction,” Procedia

Comput. Sci., vol. 93, no. September, pp. 924–930, 2016, doi:

10.1016/j.procs.2016.07.271.

[17] S. S. Rathore and S. Kumar, “Linear and non-linear

heterogeneous ensemble methods to predict the number of faults

in software systems,” Knowledge-Based Syst., vol. 119, pp.

232–256, 2017, doi: 10.1016/j.knosys.2016.12.017.

[18] J. Zheng, X. Wang, D. Wei, B. Chen, and Y. Shao, “A Novel

Imbalanced Ensemble Learning in Software Defect Predication,”

IEEE Access, vol. 9, pp. 86855–86868, 2021, doi:

10.1109/ACCESS.2021.3072682.

[19] R. Malhotra and K. Lata, “Improving Software Maintainability

Predictions using Data Oversampling and Hybridized

Techniques,” pp. 1–7, 2020, doi:

10.1109/cec48606.2020.9185809.

[20] Farhad Khoshbakht, Atena Shiranzaei, S. M. K. Quadri. (2023).

Design & Develop: Data Warehouse & Data Mart for Business

Organization. International Journal of Intelligent Systems and

Applications in Engineering, 11(3s), 260–265. Retrieved from

https://ijisae.org/index.php/IJISAE/article/view/2682

[21] S. S. Rathore and S. Kumar, “An approach for the prediction of

number of software faults based on the dynamic selection of

learning techniques,” IEEE Trans. Reliab., vol. 68, no. 1, pp.

216–236, 2019, doi: 10.1109/TR.2018.2864206.

[22] Prof. Barry Wiling. (2017). Monitoring of Sona Massori Paddy

Crop and its Pests Using Image Processing. International Journal

of New Practices in Management and Engineering, 6(02), 01 -

06. https://doi.org/10.17762/ijnpme.v6i02.54

[23] T. T. Khuat and M. H. Le, “Evaluation of Sampling-Based

Ensembles of Classifiers on Imbalanced Data for Software

Defect Prediction Problems,” SN Computer Science, vol. 1, no.

2. 2020. doi: 10.1007/s42979-020-0119-4.

[24] S. Goyal, “Handling Class-Imbalance with

KNN (Neighbourhood) Under-Sampling for Software Defect

Prediction,” Artificial Intelligence Review, vol. 55, no. 3. pp.

2023–2064, 2022. doi: 10.1007/s10462-021-10044-w.

[25] M. Gan, Z. Yücel, and A. Monden, “Neg/pos-Normalized

Accuracy Measures for Software Defect Prediction,” IEEE

Access, vol. 10, no. November, pp. 134580–134591, 2022, doi:

10.1109/ACCESS.2022.3232144.

[26] P. Soltanzadeh and M. Hashemzadeh, “RCSMOTE: Range-

Controlled synthetic minority over-sampling technique for

handling the class imbalance problem,” Inf. Sci. (Ny)., vol. 542,

pp. 92–111, 2021, doi: 10.1016/j.ins.2020.07.014.

[27] F. Thabtah, S. Hammoud, F. Kamalov, and A. Gonsalves, “Data

imbalance in classification: Experimental evaluation,” Inf. Sci.

(Ny)., vol. 513, pp. 429–441, 2020, doi:

10.1016/j.ins.2019.11.004.

[28] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data quality: Some

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7461

Article Received: 20 May 2023 Revised: 15 July 2023 Accepted: 02 August 2023

 505

IJRITCC | August 2023, Available @ http://www.ijritcc.org

comments on the NASA software defect datasets,” IEEE Trans.

Softw. Eng., vol. 39, no. 9, pp. 1208–1215, 2013.

http://www.ijritcc.org/

