
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7453

Article Received: 16 May 2023 Revised: 03 July 2023 Accepted: 31 July 2023

 424
IJRITCC | August 2023, Available @ http://www.ijritcc.org

Requirement based Test Case Prioritization for

System Testing

Harish Kumar1, Vedpal2, Umesh Kumar3, Naresh Chauhan4
1Department of Computer Engineeing

J C Bose University of Science & Technology, YMCA

Faridabad, India

htanwar@gmail.com
2Department of Computer Applications

J C Bose University of Science & Technology, YMCA

Faridabad, India

ved_ymca@yahoo.co.in
3Department of Computer Engineeing

J C Bose University of Science & Technology, YMCA

Faridabad, India

umesh554@gmail.com
4Department of Computer Engineeing

J C Bose University of Science & Technology, YMCA

Faridabad, India

nareshchauhan19@gmail.com

Abstract— System Testing encompasses a large number of test cases, which may not be able to get executed due to constrained time,

budget and limitation of the resources. Therefore, the test cases must be prioritized in some order such that the critical and most required

functionality can be tested early. In this paper, a hierarchical approach for system test case prioritization based on requirements has been

proposed that maps requirements on the system test cases. This approach analyzes and assigns value to each requirement based on a

comprehensive set of twelve factors thereby prioritizing the requirements. Further, the prioritized requirement is mapped on the highly

relevant module and then prioritized set of test cases. To analyze the effectiveness of this approach, a case study of income tax calculator

software [1] has been taken. The existing as well as the proposed approach were applied and analyzed on this software. The results show the

efficacy of the proposed approach in terms of fault detection and severity early.

Keywords- System Testing, Test case prioritization, fault severity,tcp.

I. INTRODUCTION

Test case prioritization techniques organize the test cases in a

test suite by ordering in such a manner that the most critical

test cases are executed first thereby increasing the

effectiveness of testing. The prioritization techniques [2]

provide a way to find out more bugs under resource

constrained environment and thus improve the reliability of

the system quickly. Moreover, as faults are revealed earlier,

software engineers have more time to fix the bugs

and adjust the project schedule. Many prioritization

techniques have been proposed for prioritizing the system test

cases based on requirements. However, the requirements only

in consideration cannot include critical test cases. The

implementation complexity and test case complexity may also

affect the test case prioritization. Though Hema Srikanth [3]

has included the developer perceived complexity for

implementation factor but it is only a scaling assigned by

developer explicitly. There may be lot of complexities and

issues in design and code of the mapped requirements. All

these factors should also be considered while prioritizing the

test cases. The researchers have also considered, fault

proneness of requirements only in connection with customer-

reported failures. But there is need to consider fault-

proneness for every requirement with every affected factor.

Moreover, the fault proneness associated with mapped code

should also participate in prioritizing the test cases.

In this paper, a hierarchical test case prioritization is

proposed wherein the prioritization process is performed at

three levels given below:

(1) The requirements are first prioritized on the basis of

twelve factors by assigning a priority weightage to each

requirement.

(2) The highest priority requirements are then mapped

to their corresponding modules to get prioritized modules.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7453

Article Received: 16 May 2023 Revised: 03 July 2023 Accepted: 31 July 2023

 425
IJRITCC | August 2023, Available @ http://www.ijritcc.org

(3) The test cases based on to the highest

prioritized module are then put for execution.

II. RELATED WORK

Hema Srikanth et al. [3] considered four factors for analyzing

and measuring the criticality of requirements. These factors

are Customer-Assigned priority of requirements,

Requirement Volatility, Developer- perceived

implementation complexity. Based on these four factor

values, a Prioritization factor value (PFV) is computed. PFV

is then used to produce a prioritized list of system test cases. R.

Kavitha & N.Suresh Kumar [4] proposed a method to

prioritize the regression test cases considering the following

factors: (1) Customer assigned priority of requirements, (2)

Developer-perceived code implementation complexity, (3)

Changes in requirements, (4) Fault impact of requirements,

(5)Completeness, (6) traceability (7) Execution time. Based

on these factors, a weightage was assigned to each test case in

the software thereby prioritizing the test cases.

Patric Berander and Anneliese Anfrews [5] considered an

approach that provides means to find an optimal subset of

requirement resulting in trade of desired project scope against

sometime conflicting constraint such as schedule, budget,

resources, time to market and quality. They also considered

requirement prioritization as the basis of the product strategy.

Maya Daneva and Andera Herrman [6] proposed a

conceptual model of requirements prioritization based on

benefit and cost prediction.

Siripong Roongruangsuwan and Jirapun Daengdej [7]

proposed a new classification of test case prioritization

techniques considering a new test case prioritization method

along with practical weight factors like test case complexity,

dependency, and test impact etc. Thillaikarasi Muthusamy et

al. [8] proposed a technique which prioritizes the test cases

based on four groups of practical weight factor such as:

customer allotted priority, developer observed code execution

complexity, changes in requirements, fault impact,

completeness, and traceability. M.Kalaiyarasan and

Dr.H.Yasminroja [9] proposed a version specific test case

prioritization technique which uses data flow information.

The proposed technique considered the fault detection

capabilities of test cases for prioritization purpose. They find

out four different categories of software modification and use

the data flow information for prioritization purpose. Johana

Ahmad et al. presented [10] the results that are obtained from

the 70 primary studies. They investigated and indentified the

factors that are used to prioritize the test cases. Their studies

show that the 10 factors that should be used to improve the

existing test case prioritization technique. The identified

factors are the Fault, redundancy, complexity, frequency,

requirements, Time, Distance, Cost, permutations, and

others.

Manaswini B et al. presented [11] a test case prioritization

technique to perform regression testing. The proposed

technique is based on the cat swarm optimization algorithm.

For experimental validation the applied the presented

technique on some open-source applications likes jtopas and

jmeter. They [12] also presented a technique using the

shuffled frog leap algorithm. They used the metrics like code

coverage, execution time etc.

Remo Lachmann et al. proposed [13] a technique to prioritize

the system test cases using the supervised machine learning.

They used the black box Meta - Data like test case history.

For evaluation of the proposed approach, they used the SVM

rank machine learning algorithm.G. Bhavyasri et al. proposed

[14] a technique to prioritize the test cases. They used the

functional dependency to cluster the test cases. The test cases

are prioritized on the bases of the function coverage.

Rayapureddy Kalyani et al. investigated [15] that whether the

grouping of the requirements helps in improve the

effectiveness of the test case prioritization techniques. They

used the code scope metric for grouping the requirements.

Manoj Kumar Sahu et al. proposed [16] a test case

prioritization for regression testing. They used the business

criticality value. They also validated the proposed algorithm

and found the effectiveness of the presented approach.

Zubair Rashid Bhat et al. presented [17] the hybrid approach

of test case prioritization. They used the robust genetic

algorithm to enhance the parameter like execution time. Song

Wang et al. presented [18] quality aware test case

prioritization technique (QTEP). They addressed the

limitation of the existing the coverage-based algorithms. They

leverage the code inspection technique. They found that the

QTEP helps to improve the efficiency of existing TCP

techniques. Naresh Chauhan et al. [19] discussed about the

role of machine learning in the designing of testing techniques

to perform the testing of the software. They found that the

testing technique based on the machine learning are affective

as compared with the traditional techniques Rongi pan at al.

[20] presented review of various literature to select and

prioritize the test cases using the machine learning. They

found that various machine learning techniques are used to

prioritize the test cases by considering the various types of the

feature like code complexity, user inputs, execution history

etc.

Cristina Maria Tiutin et al. [21] used the neural network

classification technique to prioritize the test cases.

The neural network has trained using the different factors like

the association between the requirements, tests and discovered

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7453

Article Received: 16 May 2023 Revised: 03 July 2023 Accepted: 31 July 2023

 426
IJRITCC | August 2023, Available @ http://www.ijritcc.org

faults. Jijo Joseph C George et al. presented [22] a study

related to the various techniques and effectiveness to

prioritize the test cases. Ali Samad at al. used [23] the multi-

objective particle swarm optimization to prioritize the test

cases. They considered the various factors like execution

time, code coverage etc. Elinda Kajo Mece at al. investigated

[24] the various machine learning application used to order

the test cases. They reviewed the recent proposed work and

introduce the various information like process, metric and

measure the effectiveness

 A critical review of the work done by the researchers in the

direction of system test case prioritization indicates that the

following factors have not been considered that may affect the

system test case execution:

Developer Assigned Priority: The developer may assign the

priority to every requirement on the basis of its importance.

Show Stopper Requirements: These are the critical

requirements in the absence of which the software may not

work. The developer may therefore assign the priority to these

types of requirements.

Frequency of Requirements: It is the frequency of a

requirement how much it is being used in the software.

Expected fault: The developer may analyze the causes which

may make the software error prone.

Implementation Complexity: It is the criteria how much each

requirement is difficult to implement considering technology

dependency, interdependency of the requirements, complexity

of requirement itself, etc.

Cyclomatic Complexity: It is the logical complexity [1] of a

program. The module with higher complexity may lead to

complex test cases.

Non DC path: In data flow graph [1] of a program, the non-dc

paths which are the path between the definition node and the

usage node of the variable wherein the variable is defined more

than once are the problematic areas with respect to the use of a

variable. Therefore, this factor may also be considered for

module prioritization.

This paper considers the above factors and proposes a new

technique for system test case prioritization, which is discussed

in next sections.

III. PROPOSED WORK

The proposed Hierarchical System Test Case Prioritization

(HSTCP) approach starts with analyzing and assigning

value to each requirement based on a comprehensive set of

twelve factors thereby prioritizing the requirements. After

getting the ordered list of requirements, a mapping between

the highest priority requirement and its corresponding

modules is performed. The modules are then prioritized

based on Cyclomatic complexity and non dc path. The

weighted prioritized module is then selected for testing. It

may be possible again that there are several test cases

corresponding to this selected module. For this purpose, the

third level of prioritization is applied by prioritizing these

several test cases based on four factors. In this way a

hierarchical system test case prioritization (HSTCP)

technique is proposed and discussed in subsequent sections. In

the proposed prioritization process almost every stakeholder

viz. the customer, developer, tester, and business analyst

participate. The prioritization process includes the following

steps (See Figure. 1).

Figure 1. Process for Proposed HSTCP Approach Based on Requirements

Requirements Set Prioritization

Based on 12

Factors (RP)

Prioritized

Requirement Set

Mapped to the

corresponding

modules

Module Set Prioritization

based on 2

factors (MP)

Prioritized

Module

Set

Mapped to the

corresponding

Test cases

Test Suite

Prioritization

based on 4

factors (TP)

Prioritized Test

Suite

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7453

Article Received: 16 May 2023 Revised: 03 July 2023 Accepted: 31 July 2023

 427
IJRITCC | August 2023, Available @ http://www.ijritcc.org

(1) Customer, developer, analyst, and tester assign

values to the requirement factors.

(2) Apply the process of the requirements prioritization

(RP).

(3) Based on the prioritized requirements a mapping

between the requirements and their corresponding

modules are performed.

(4) Apply the process of prioritization of the modules (MP).

(5) Tester assigns the value to each factor of test case of the

prioritize module.

(6) Apply the process of test case prioritization (TP).

(7) The resulting test suite contains the prioritized test cases.

A. Prioritization of Requirements

There are the various factors on the basis of which process

of prioritization of requirements is performed. These factors

are in accordance with every phase of SDLC. All these

factors have been assigned a priority value between 0 to 10.

These priority values are assigned by various stakeholders

of the project. The Table 1 shows these factors.

1) Requirements Volatility: Requirement volatility is the

frequency of changing a requirement during development

cycle of the software.

Reasoning: The most of errors are found during the

requirements gathering and analysis phase. If the developers

implement the requirement and that requirement changes

then developer has to redesign and re-implement the same.

Due to reimplementation of requirement, it also increases

the fault density in the programs. Studies show [19] that 35

% of the requirements for an average project change before

project completion. The requirement with a higher change

frequency is assigned a higher priority value as compared to

the stable requirements.

2) Customer Assigned Priority: Based on the priority of the

requirement, the customer assigns a priority value to each

requirement.

Reasoning: Several studies indicate that some requirements

of a project are frequently used and some are rarely used.

The studies show that approximately half of the software

functions are never used. Only 36 % of the software

function is always used and most of the faults lie in these

functions which are frequently executed. So the customer is

involved to know which requirements are very important to

him so that these are tested earlier to increase the customer

satisfaction. Customer assigns the highest weight to

requirement which is very important for him.

3 Implementation Complexity: Each requirement may be

analyzed according to how difficult it is to implement. There

are various factors considered during requirement

implementation. So before assigning a priority value to this

factor it is necessary to consider all factors related with that

requirement. The priority value for this factor is the sum of

the priority values assigned to these factors.

TABLE 1. FACTORS CONSIDERED FOR REQUIREMENT PRIORITIZATION

Sr.No. Factors Phase of SDLC Priority value assigned by

1 Requirement Volatility Requirement Analysis Customer

2 Customer Assigned Priority Requirement Analysis Customer

3 Implementation Complexity Design Developer

4 Fault Proneness of Requirements Design Developer

5 Developer assigned priority Requirement Analysis Developer

6 Show Stopper requirements Design Developer

7 Frequency of execution of requirement Requirement Analysis Developer

8 Expected Faults Coding Developer

9 Cost Requirement Analysis Analyst

10 Time Requirement Analysis Analyst

11 Penalty Requirement Analysis Customer

12 Traceability Testing Tester

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7453

Article Received: 16 May 2023 Revised: 03 July 2023 Accepted: 31 July 2023

 428
IJRITCC | August 2023, Available @ http://www.ijritcc.org

There are 3 factors which are taken into consideration as

shown in Figure 2. These 3 factors are discussed below.

Figure 2. Implementation Complexity Factors

Reasoning: The studies [20] show that more complex is the

requirement, more it tends to have faults. So, a priority value

is assigned by the developer to this factor.

Technical Dependency: Technology plays a very important

role in development of any software. Implementation

technique of software is varying from technology to

technology. With the selection of suitable technology

developer can develop less error prone project within target

time and budget. Some time the customer bounds developer

to a particular technology. Sometimes the proposed

requirements are very complex to implement in selected

technology whereas the same requirement can be

implemented in other technology without the much

complexity and less error. So, this factor is considered for

prioritizing the test cases. For this factor a priority value

between 0 and 3 is assigned.

Complexity of Execution Path: Sometimes in the project a

requirement is very simple to implement thereby its

complexity is very low. But to execute that requirement user

must follow the complex path of the execution. So, the long

path of execution also affects the complexity of requirement.

This factor assigned a priority value between 0 and 3.

Dependency Scenario: The studies [21] show that more the

dependency between the modules of a requirement higher is

its complexity. It means if a requirement is covered by more

than one module and the dependency among these modules

is high then higher is the complexity of that requirement.

For this factor a priority value between 0 and 4 is assigned.

4) Fault Proneness of Requirements: Fault proneness

signifies those requirements which are associated with faults

or which shows failures in the previous releases of the

software. If a requirement in an earlier version of the system

has more bugs, then this requirement in the current version

is given more weight.

Reasoning: Fault proneness factor is important because the

requirements which have shown failures in the earliest

release are more faults prone. So, it is important to give

more weight to requirements with high fault proneness so

that they can be tested on higher priority. This factor is valid

for only those requirements which have been implemented

in earlier version of software and not valid for the new

requirements. So, a priority value is assigned accordingly.

5) Developer Assigned Priority: Developer assigns the

priority to every requirement because of the importance of

the requirement. Developer assigns the priority value to each

requirement ranging from 0 to 10.

Reasoning: Developer plays an important role for

successfully completion of a project within target time and

budgeted cost. Studies show that more than 50% project are

not completed in the target time and cost. Here the

developer analyzes each requirement and assigns the weight

to each requirement on the basis of that requirement how

much it is important for the project. It may happen that

lowest priority given by the customer to a particular

requirement is very important for the project. So the

developer gives a weight to each requirement on the basis

how much it contributes towards the success of the project.

Larger value of the weight given to a requirement shows it is

very critical to the project.

6) Show Stopper Requirements: Show stopper requirement

are those requirements based on which software works.

Such requirements are given more importance and assigned

the priority value accordingly.

Reasoning: In every project there are some core

requirements on the basis of which all modules are working.

If these requirements are failed then whole project will stop.

For example, consider online ticket booking website. By

using website user can inquire about the train, see the

available seats in a particular train, cancel out ticket, online

payments to tickets and book tickets. These are the

requirements which are frequently used. Suppose for a

moment the online payment system fails, in this case users

are not able to book the ticket until customer has not paid

for the tickets. So here the online payment system is critical

requirement. There may be more than one requirement on

which the whole project works.

3.1.7 Frequency of the Execution: In this factor priority

value to each requirement is assigned on the basis of its

execution frequency. The more priority value is assigned to

the requirements which are frequently used. .

Reasoning: In every project there are some requirements

which are never executed in product and some requirements

Implementation

Complexity

Complexity of

Execution Path
Technical

Dependency

Dependency

Scenario

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7453

Article Received: 16 May 2023 Revised: 03 July 2023 Accepted: 31 July 2023

 429
IJRITCC | August 2023, Available @ http://www.ijritcc.org

are frequently executed. The requirement may be executed

directly or may be through the other requirements.

Therefore, a priority value is assigned to them on the basis

of their frequency of execution. Consider online ticket

booking website. By using website user can inquire about

the train, see the available seats in a particular train, and

cancel the tickets, make online payments to tickets and book

tickets are those requirements which are being frequently

used. But update the fare of tickets, update the timings of the

trains are those requirements which are not frequently used.

8) Expected Fault: This factor identifies the future

implementation faults. In this factor developer analyzes the

causes which make the software error prone.

Reasoning: The study [22] shows that it is not possible to

implement software without faults. The reason that may be

responsible for generating the fault should be considered. As

the studies show if developer analyzes the fault in the initial

phase, then the project will be successfully completed within

the time and the budget. The two factors that we are using

are shown in Figure 3.

 Figure3. Expected Faults

Experience level of developer: The study [23] shows that

skills and experience of a developer play an important role

in success full completion of a project. Lower is the

experience of a developer more is the chance of getting a

bug in the implementation of a particular requirement. A

developer with lower experience may implements a

requirement with higher complexity whereas the experience

developer implements same requirements with less error.

For this type of requirement, a weight between 0 and 5 is

assigned.

New Technology: Sometimes customer bounds the

developing team to use a particular platform to implement

their requirement then if that technology or platform is never

used by the developer then to work on the new platform is

difficult for the developer. So, there are more chances of

bug in the requirement so a priority value between 0 and 5 is

assigned. Higher value is assigned for the very new

technology which is never used and medium value which

has been used in previous projects and zero value for our

current technology used by the developers.

9) Cost: It corresponds to expenditure done to implement

the requirements. Here a cost factor is considered for each

requirement and a weight between 1 and 10 is assigned.

The higher value being assigned to the cost factor shows

that cost to implement the requirement is very high.

Reasoning: The software development cost is difficult to

predict. The study shows [24] that 45 % projects complete

with overrunning the cost. There are many factors which

influence the cost of requirements. These factors are:

complexity of a requirement, the ability to reuse of the code,

amount of testing and the documentation. Generally, the

cost is expressed in the term of the staff effort since for the

implementation of a product new persons should be hired,

trained them, buy new resources, new tools. The cost in

software development is related to the number of hours

spent by the staff for the implementation of the product.

The implementation cost is usually estimated by developing

organization.

10) Time: This factor is the most critical factor in software

development cycle. Since in every organization there is

pressure to complete the product with in specified time. So,

the time for every requirement is estimated and assigned the

priority value accordingly. A higher value of time factor

indicates that it takes higher staff hours to complete the

requirements.

Reasoning: In software industry on every product there is

constraint to complete a product with in time. Time in

software developments is related with number of staff hours.

The development time of requirements is influenced by

many factors such as degree of parallelism in development,

train the staff, need to develop support infrastructure. Time

is directly related with the cost. The more is the time to

develop the requirement the more is the cost to implement

the requirement.

11) Penalty: It is the punishment imposed on organization if

they are not able to deliver the complete product within

budget in the specified time. Penalty is critical factor in

development of a requirement. This factor shows the penalty

associated with each requirement. The higher value of

penalty shows that they incur a high penalty if failed to

deliver the right product. Here a weight between 1 and 10 is

assigned.

Reasoning: - In software development process it may be

possible that a low priority requirement incurs high penalty

if the developer fails to complete the requirement. Penalty

factor is associated with each requirement. It also increases

the quality of product. If a requirement is not fulfilled then it

is possible to evaluate the penalty corresponding to that

Expected Faults

Experience level of

developer

New Technology

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7453

Article Received: 16 May 2023 Revised: 03 July 2023 Accepted: 31 July 2023

 430
IJRITCC | August 2023, Available @ http://www.ijritcc.org

requirement. High penalty value means high penalty of that

requirement.

12) Traceability: Traceability is the factor when a

requirement is traceable to its test cases or not.

Reasoning: If there are pre-prepared test cases available

then it is very beneficial for the developer organization and

if the test case is not available then test cases must be

designed for testing the requirements. If there are set of test

cases corresponding to the requirements then assign zero

priority value to this factor.

For each requirement, based on these 12 factors a

Requirement Prioritization factor value (RPFV) is calculated

by using Formula 1.

 RPFV = 
=

n

j

jij pfweightpfvalue
1

)*(---------(1)

Here i represent number of requirements and j represents

number of factors.

In Formula 1 the RPFV represents the prioritization factor

value for a requirement which is the summation of the

product of priority value of a factor and the project factor

weight. pfvlaue represents the value for factor for ith

requirements and pfweight represents the factor weight for

the jth factor for a particular project.

By using the Formula 1, the weight prioritization factor

RPFV for every requirement can be calculated. Table 2

shows the prioritization of four sample requirements based

on the RPFV for each requirement. In Table 2, R2 has

highest RPFV among all the requirements. So, prioritization

orders of these requirements are R2, R3, R4, and R1.

TABLE 2. REQUIREMENTS PRIORITIZATION

Factor R1 R2 R3 R4 Weight

factor

 Customer Assigned

Priority

8 10 9 9 0.02

Developer

Assigned Priority

8 9 9 8 .08

Requirements

Volatility

3 0 0 2 0.1

Fault Proneness 0 0 0 0 0.15

Expected Faults 2 3 4 2 .10

Implementation

Complexity

3 4 5 3 .10

Execution

Frequency

5 10 9 6 .05

Traceability 0 0 0 0 .05

Show Stopper

Requirements

0 9 6 0 .2

Penalty 1 4 3 3 .05

Time 3 6 5 4 .05

Cost 4 7 6 6 .05

RPFV 2.25 4.77 4.15 2.47 1.0

The value of the RPFV depends on the value of the pfvalue

and the pfweight. The value of the RPFV will vary with a

change in the factor weights and the factor value.

As shown in Table 2 weights to each factor are assigned by

the stakeholders of the project. The factor weight is assigned

by the developer for each factor. Total factor weight

assigned by the developer to the all factors should not more

than one. In this approach the developer can analyze the

complexity of a requirement based on the factor weight

assigned to that requirement.

B. Prioritization of Module

In the process of prioritization of module mapping between

the chosen prioritized requirement and its corresponding

modules are performed. If there is more than one module

the modules are prioritized. The criteria for module

prioritization are based on the cyclomatic complexity and

non dc path. Higher the cyclomatic complexity and non dc

path of the module higher is the priority of that module. The

test cases of the higher priority module are prioritized first

and execute. For each module a module prioritization value

(MPV) is calculated by adding the cyclomatic complexity and

the number of non-dc paths.

TABLE 3. MODULE PRIORITIZATION

Factors M1 M2 M3 M4

Cyclomatic

Complexity

8 4 4 5

Non-Dc path 7 5 6 3

MPV 15 9 10 8

Table 3 shows the prioritization of four sample modules

since MPV for each module. The order of prioritization of

modules on the basis of MPV is M1, M3, M2 and M4.

C. 3.3 Test Case Prioritization Process

The test case prioritization process is used to prioritize and

schedule the test cases corresponding to prioritized modules.

In this test case prioritization process, there are some

practical weight factors. On the basis of these practical

weight factors process of the test case prioritization is

performed These factors are test Impact, test case

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7453

Article Received: 16 May 2023 Revised: 03 July 2023 Accepted: 31 July 2023

 431
IJRITCC | August 2023, Available @ http://www.ijritcc.org

complexity, requirements coverage and the dependency of

the test cases as discussed below.

1) Test Case Complexity: Complexity of test case shows

that how difficult is a test case to execute. It shows how

much efforts are required to execute the test case. After

analyzing the complexity of test case, the value of this factor

is assigned between the value 1 and 10.

2) Requirement Coverage: This factor shows that how

many requirements are covered by executing the test case.

This factor is scaled between the value from 1to 10. The

higher value shows the maximum requirements being

covered by the test case. Higher the number of requirements

coverage higher the priority of the test case to be executed

first.

3) Dependency: This factor shows the dependency of test

case on some pre-requisites. It shows how many pre-

requisites are required for each test case before the

execution of the test case. The value of dependency factor is

assigned between the values from 1 to 10.

4) Test Impact: Test impact is the most critical factor in test

case prioritization. It shows the impact of test case on a

system if it is not executed. So, this factor assesses the

importance of the test cases. Here a value between the 1 and

10 is assigned.

After assigning the prioritize factor value to each factor as

discussed above TCWP (Test case weight prioritization) is

computed using Formula 2.

 TCWP = 
=

n

j

jij fweightfvalue
1

)*(----(2)

Where TCWP is weight Prioritization for each test case

calculated from the four factors. fvalue is value assigned to

each test case, fweight is a weight assigned to each factor.

After calculating the weight of each test case. The test cases

are ordered by TCWP such that maximum TCWP gives a

test case the highest priority and executed it first.

Consider a set of four sample test cases TC1, TC2, TC3, and

TC4 which are to be prioritized.

For these test cases TCWP is calculated by Formula 2 and

are prioritized on the basis of the value of TCWP (See Table

4).

TABLE 4. TEST CASE PRIORITIZATION

S.No. Factors TC1 TC2 TC3 TC4 Weight

1 Test Impact 4 8 7 9 0.4

2 Test case Complexity 8 7 5 9 0.3

3 Requirement

coverage

6 2 4 4 0.2

4 Dependency 7 6 6 8 0.1

 TCWP 5.90 6.30 5.70 7.90 1.0

Now the order of the test case for the execution is TC4,

TC2, TC1, and TC3. If the TCWP of the two test cases are

same then we pick randomly from these two test cases.

IV. RESULTS AND ANALYSIS OF PROPOSED HSTCP

APPROACH

To analyze the effectiveness of A Hierarchical system test

case prioritization technique based on requirements

approach, it was applied to the income tax calculator

software which is used to calculate the tax on the income

[1]. The software consists of 1160 lines of code and has

nine modules named, Income details non salaried, Income

details salaried, Savings, Tax deductions, Male Tax, Female

tax, Senior tax and generate tax. All types of bugs like

critical, major, and medium and minor bugs were introduced

intentionally so that testing can be performed on the

software using proposed HSTCP approach. Income tax

software is based on following requirements.

• Accept Personal detail (APD)

• Accept income detail (AID)

• Accept tax deduction (ATD)

• Accept Savings and Donatation details (ASD)

• Generate tax detail (GTD)

Now considering the twelve factors for requirements

prioritization discussed in Section 3, the corresponding

weight values for each requirement was calculated as shown

in Table 5.

Based on computation of RPFV the requirements prioritized

list of the requirements is GTD, ATD, AID, ASD and APD

Now the requirements were mapped to their corresponding

modules. The cyclomatic complexity, number of non dc

paths and the number of test cases of the modules are shown

in Table 6.

In the table cyclomatic complexity, non-DC paths and the

number of test cases for testing of each module are shown.

Here GTD requirement has the highest priority. There are

four modules corresponding to this requirement. On the

basis of the values of cyclomatic complexity and non dc

paths, the MPV value for Tax module is more as compared

to other three modules. So, the test cases of the tax module

must be prioritized. Table 7 shows the values for different

factors for six test cases and the weight assigned.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7453

Article Received: 16 May 2023 Revised: 03 July 2023 Accepted: 31 July 2023

 432
IJRITCC | August 2023, Available @ http://www.ijritcc.org

TABLE 5. REQUIREMENTS PRIORITIZATION

Requirements APD AID ATD ASD GTD Weight factor

Factors

 Customer Assigned Priority 8 10 9 9 10 0.02

Developer Assigned Priority 8 9 9 8 10 .08

Requirements Volatility 3 0 3 2 8 0.1

Fault Proneness 0 0 0 0 0 0.15

Expected Faults 2 3 4 2 3 .10

 Implementation Complexity 3 4 5 3 6 .10

Execution frequency 5 10 9 6 10 .05

Traceability 0 0 0 0 0 .05

Show Stopper Requirements 0 9 8 0 10 .2

Penalty 1 4 6 3 8 .05

Time 3 6 7 4 6 .05

Cost 4 7 8 6 7 .05

RPFV 2.25 4.77 5.20 2.47 6.25 1.0

TABLE 6. MODULE PRIORITIZATION

Requirements Module C complexity Non dc path No. of test cases MPV

APD Main module 8

AID NON salary

Salary

8

12

7

10

4

6

15

22

ATD Deduction 16 17 10 33

ASD Saving 8 5 4 13

GTD Male Tax

Female Tax

Senior Tax

Tax module

4

4

4

6

0

0

0

0

4

4

4

6

4

4

4

6

TABLE 7. TEST CASE PRIORITIZATION FOR TEST CASES OF TAX MODULE

S.No. Factors TC1 TC2 TC3 TC4 TC5 TC6 Weight

1 Test Impact 4 7 7 9 8 7 0.4

2 Test case Complexity 8 7 8 9 8 9 0.3

3 Requirement coverage 0 0 0 0 0 0 0.2

4 Dependency 2 2 2 2 2 2 0.1

 TCWP 4.2 5.1 5.4 6.5 4.8 5.7 1.0

1) Experimented Results

The Tables (Table 8 to Table 13) shows the number of the

faults detected by the test cases of all prioritized

requirements.

TABLE 8 . FAULT DETECTION IN GENERATE TAX DETAILS (GTD)

REQUIREMENT

Test ID Critical

Fault

Major

fault

Medium

fault

Minor

fault

1 1 1 0 1

2 0 1 0 1

3 0 1 0 1

4 0 3 0 1

5 0 2 0 0

6 0 2 0 1

TABLE 9. FAULT DETECTION IN INCOME TAX DEDUCTION (ATD)

REQUIREMENT

Test ID Critical

Fault

Major

fault

Medium

fault

Minor

fault

1 0 1 0 1

2 0 0 0 1

3 0 0 0 0

4 0 0 1 0

5 0 0 1 0

6 0 0 1 0

7 0 0 1 1

8 0 1 1 0

9 0 0 0 0

10 0 2 4 3

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7453

Article Received: 16 May 2023 Revised: 03 July 2023 Accepted: 31 July 2023

 433
IJRITCC | August 2023, Available @ http://www.ijritcc.org

TABLE 10. FAULT DETECTION IN ACCEPT SAVINGS AND DONATION

DETAILS (ASD)

Test ID Critical

Fault

Major

fault

Medium

fault

Minor

fault

1 0 1 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 1 1

INCOME DETAIL (AID)TABLE 11. FAULT DETECTION IN INCOME DETAIL

MODULE OF ACCEPT

Test ID Critical

Fault

Major

fault

Medium

fault

Minor fault

1 0 1 0 3

2 0 0 0 1

3 0 0 0 1

4 0 1 0 1

TABLE 12. FAULT DETECTION IN INCOME DETAIL SALARIED MODULE OF

ACCEPT INCOME DETAIL (AID) REQUIREMENT

Test ID Critical

Fault

Major

fault

Medium

fault

Minor

fault

1 0 1 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 1 0 0

6 0 2 0 0

TABLE 13. FAULT DETECTION ACCEPT PERSONAL DETAIL (APD)

Test ID Critical

Fault

Major

fault

Medium

fault

Minor

fault

1 0 1 1 0

2 0 1 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 1

6 0 0 0 0

7 0 0 0 1

8 0 0 0 0

Table 14 shows the total faults severity of each requirement.

Faults severity is calculated using the Formula 3.

Fault severity = 4* no. of critical bugs+ 3* no of major

bugs+2* no of medium bugs+1* no of minor bugs ----------

---------------------------(3)

TABLE 14. NUMBER AND TYPE OF FAULTS DETECTED BY ALL

REQUIREMENTS

Requirement Critical

Faults

Major

Faults

Medium

Faults

Minor

Faults

 Total

Faults

severity

GTD 1 10 0 5 39

ATD 0 4 9 6 36

AID 0 6 0 6 24

ASD 0 2 2 1 11

APD 0 2 1 2 11

The fault severity corresponding to various prioritized

requirements using HSTCP approach is shown below in

Figure 4.

Figure 4. Graph for Proposed HSTCP approach based on requirements

A comparison of the proposed HSTCP approach was also

performed with random as well as PORT [5] approach as

shown in Figure 5 and Figure 6.

Figure 5: Graph obtained using PORT approach

Proposed Approch

0

5

10

15

20

25

30

35

40

45

GTD ATD AID ASD APD

Requirements

F
au

lt
 S

ev
er

it
y

PORT APPROACH

0

5

10

15

20

25

30

35

40

45

GTD ATD ASD APD AID

Requirements

Fa
ul

t S
ev

er
ity

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7453

Article Received: 16 May 2023 Revised: 03 July 2023 Accepted: 31 July 2023

 434
IJRITCC | August 2023, Available @ http://www.ijritcc.org

Figure 6: Graph for non – Prioritized test suite

APFD=1- TF1+TF2+…………….+TFm + 1

 n*m 2n

--(4)

where n is the number of faults and m is the number of

requirements

By using the formula 4 the APFD for the all approaches of

test case prioritization were calculated as given below.

Table 15 shows the faults detected by various prioritized

requirements by HSTCP approach.

TABLE 15. PRIORITIZED REQUIREMENTS OBTAINED BY HSTCP APPROACH

Type of Faults GTD ATD AID ASD APD

Critical 1 0 0 0 0

Major 10 4 6 2 2

Medium 0 9 0 2 1

Minor 5 6 6 1 2

APFD For proposed HSTCP approach:

APFD= 1- (16+38+36+20+25) + 1

 57*5 2*5

APFD= 1-135/285+1/10

APFD= 63%

Table 16 shows the faults detected by various prioritized

requirements by PORT approach.

TABLE 16. PRIORITIZED REQUIREMENTS OBTAINED BY PORT APPROACH

Type of

Faults

GTD ATD ASD APD AID

Critical 1 0 0 0 0

Major 10 4 2 2 6

Medium 0 9 2 1 0

Minor 5 6 1 2 6

APFD For PORT Approach:

APFD= 1- (16+38+15+20+60) + 1

 57*5 2*5

APFD= 1-149/285+1/10

APFD= 58%

Table 17 shows the faults detected by various prioritized

requirements by Random approach.

TABLE 17. PRIORITIZED REQUIREMENTS OBTAINED BY RANDOM

APPROACH

Type of Faults APD ASD GTD ATD AID

Critical 0 0 1 0 0

Major 2 2 10 4 6

Medium 1 2 0 9 0

Minor 2 1 5 6 6

APFD for Random Approach:

APFD= 1- (05+10+48+76+60) + 1

 57*5 2*5

APFD= 1-199/285+1/10

APFD= 41%

2) Analysis of Proposed HSTCP Approach

The comparison is drawn between proposed approach, non –

prioritized and PORT approach. It indicates that value

obtained for proposed approach is more than the previous

methods, thereby showing the efficacy of prioritized

method. In this way the proposed Hierarchical system test

case prioritization technique (HSTCP) based on

requirements approach proves to be more effective as

compared to other two approaches as shown in Figure 7.

Figure 7 Comparison between Random, PORT, and Proposed HSTCP

approach

Random Approach

0

5

10

15

20

25

30

35

40

45

APD ASD GTD ATD AID

Requirements

F
a
u

lt
 S

e
v
e
ti

ry

0%

20%

40%

60%

80%

100%

120%

2
0

%

4
0

%

6
0

%

8
0

%

1
0

0
%p
e

rc
e

n
ta

ge
 o

f
Fa

u
lt

s
Se

ve
ri

ty

d
e

te
ct

e
d

Percentage of Requirements Executed

PORT APRCH
(APFD = 47%)

HSTCP APRCH
(APFD=53%)

RANDOM
APRCH (APFD
= 27%)

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7453

Article Received: 16 May 2023 Revised: 03 July 2023 Accepted: 31 July 2023

 435
IJRITCC | August 2023, Available @ http://www.ijritcc.org

V. IMPLEMENTATION

To implement the proposed approach a tool known as

Hierarchical Test Case Prioritization (HSTCP) has been

developed in JAVA language. This tool will help in prioritizing

the requirements and further the modules and test cases in

hierarchical manner. Using this tool, the tester is able to execute

the test cases in highly prioritized order, so that test cases may

detect critical bugs earlier. Some of the snapshots of the tool

developed are shown in Figures 8 to Figure 13.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12

Figure 13

VI. CONCLUSION

A hierarchical system test case prioritization technique has

been presented in this research paper. The proposed

technique maps the requirement to its corresponding design

modules and further mapped to the corresponding test cases.

This approach can be used to improve the rate of severe fault

detection for system testing. An experimental study of

income tax calculator software is presented for comparing

the effectiveness of proposed approach with previous

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7453

Article Received: 16 May 2023 Revised: 03 July 2023 Accepted: 31 July 2023

 436
IJRITCC | August 2023, Available @ http://www.ijritcc.org

approach (PORT) and with random prioritization approach.

The experimental results show that proposed new

prioritization technique is promising in terms of ordering

requirements so that faults are detected earlier in the testing

phase. A tool is also developed for demonstrating the

proposed HSTCP approach.

REFRENCES

[1] Dr. Naresh Chauhan, Software Testing - Principle and

Practices, Oxford university press, 2010.

[2] Harish Kumar and Naresh Chauhan, Identifying and

analyzing the research challenges in test case prioritization,

journal of intelligent computing and application, Serial

Publication,2012.

[3] H. Srikanth, L. Williams, J. Osborne, Towards the

Prioritization of system test cases, North Carolina State

University TR-2005-44, 2005

[4] R.Kavitha, Dr. N. Suresh Kumar , Factors oriented test case

prioritization technique in Regression testing, European

Journal of Scientific Research ISSN 1450-216X Vol.55

No.2(2011), pp.261-274.

[5] Berander Patrik, Andrews Anneliese, Requirements

Prioritization. In: Aurum, Aybüke (Hrsg.);Wohlin, Claes

(Hrsg.): Engineering and Managing Software Requirements.

Berlin, Deutschland: Springer Verlag, 2005, S. 69-94

[6] Andrea Hermann, Maya Daneva, Requirement Prioritization

based on Benefit and Cost Prediction: An Agenda of Future

Research, 16th IEEE International Requirement Engineering

Conference.

[7] Siripong Roongruangsuwan and Jirapun Daengdej, A Test

Case Prioritization Method with Practical Weight Factors,

Journal of Software Engg. 4(3): 193 - 214, 2010.

[8] Thillaikarasi Muthusamy, Seetharaman.K, A New Effective

Test Case Prioritization for Regression Testing based on

Prioritization Algorithm, International Journal of Applied

Information Systems (IJAIS) – ISSN: 2249-0868 Foundation of

Computer Science FCS, New York, USA Volume 6– No. 7,

January 2014.

[9] M.Kalaiyarasan, Dr.H.Yasminroja , Version Specific Test Suite

Prioritization using Dataflow Testing, International Journal of

Recent Engineering Science (IJRES), ISSN:2349-7157, volume

1 issue 4 April,2014.

[10] Johanna Ahmad and Salmi Baharom, Factor Determination

in Prioritizing Test Cases for Event Sequences: A Systematic

Literature Review, Journal of Telecommunication, Electronic

and Computer Engineering e-ISSN: 2289-8131 Vol. 10 No.

1-4

[11] Ms. Manaswini B, Rama Mohan Reddy A, A Cat Swarm

Optimization Based Test Case Prioritization Technique to

Perform Regression Testing, International Journal of Recent

Technology and Engineering (IJRTE) ISSN: 2277-3878,

Volume-8, Issue-1, May 2019

[12] Ms. Manaswini B, Rama Mohan Reddy A, A Shuffled Frog

Leap Algorithm Based Test Case Prioritization Technique to

perform Regression Testing, International Journal of

Engineering and Advanced Technology (IJEAT) ISSN:

2249-8958, Volume- 8 Issue-5, June 2019

[13] Remo Lachmann, Manuel Nieke, Christoph Seidl, Ina

Schaefer, System-Level Test Case Prioritization Using

Machine Learning, 2016 15th IEEE International Conference

on Machine Learning and Applications

[14] Tyagi, R. ., K. Shastri, R. ., M., K. ., Ramkumar Prabhu, M.

., Laavanya, M. ., & C. Pawar, U. . (2023). Undecimated

Wavelet Transform Technique for the Security Improvement

In the Medical Images for the Atatck Prevention.

International Journal of Intelligent Systems and Applications

in Engineering, 11(3s), 211–217. Retrieved from

https://ijisae.org/index.php/IJISAE/article/view/2563

[15] G. Bhavyasri , A. AnandaRao, P. Radhika Raju, Enhancing

the Performance of Coverage-Based Techniques in Test Case

Prioritization, International Journal of Scientific Research

in Computer Science, Engineering and Information

Technology © 2017 IJSRCSEIT | Volume 2 | Issue 5 | ISSN :

2456-3307

[16] Rayapureddy Kalyani, Padmanabhuni Sai Mounika, Ravipati

Naveen, Gnaneswari Maridu, Test Case Prioritization Using

Requirements Clustering, International Journal of Applied

Engineering Research ISSN 0973-4562 Volume 13, Number

15 (2018) pp. 11776-11780 Research India Publications.

http://www.ripublication.com

[17] Manoj Kumar Sahu, Aloka Natha, Test Case Prioritization

for Regression Testing, International Journal of Advanced

Research in Computer Engineering & Technology

(IJARCET) Volume 3 Issue 8, August 2014

[18] Prof. Amruta Bijwar. (2016). Design and Analysis of High

Speed Low Power Hybrid Adder Using Transmission Gates.

International Journal of New Practices in Management and

Engineering, 5(03), 07 - 12. Retrieved from

http://ijnpme.org/index.php/IJNPME/article/view/46

[19] Zubair Rashid Bhat, Mudasir Ahmed Mutto , An Hybrid

Approach of Test-Case Prioritization: Review , IJISET -

International Journal of Innovative Science, Engineering &

Technology, Vol. 3 Issue 8, August 2016 ISSN (Online)

2348 – 7968 | Impact Factor (2015) - 4.332”

[20] Song Wang, Jaechang Nam, Lin Tan, QTEP: Quality-Aware

Test Case Prioritization, Foundations of Software

Engineering, Paderborn, Germany, September 4–8, 2017

(ESEC/FSE’17).

[21] Vedpal and N. Chauhan, "Role of Machine Learning in

Software Testing," 2021 5th International Conference on

Information Systems and Computer Networks (ISCON),

Mathura, India, 2021, pp. 1-5, doi:

10.1109/ISCON52037.2021.9702427.

[22] Rongqi Pan, Mojtaba Bagherzadeh, Taher A. Ghaleb, Lionel

Briand “Test case selection and prioritization using machine

learning: a systematic literature review” Empirical Software

Engineering (2022)

[23] Cristina Maria tiutin, Andeer Vescan “Test case prioritization

based on neural networks classification“AISTA 2022:

Proceedings of the 2nd ACM International Workshop on AI

and Software Testing/Analysis

[24] Jijo Joseph C George, D. Peter Augustine “Automation of Test

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7453

Article Received: 16 May 2023 Revised: 03 July 2023 Accepted: 31 July 2023

 437
IJRITCC | August 2023, Available @ http://www.ijritcc.org

Case Prioritization: A Systematic Literature Review and

Current Trends” Journal of Theoretical and Applied

Information Technology, 15th February 2023. Vol.101. No 3

ISSN: 1992-8645

[25] Taylor, D., Roberts, R., Rodriguez, A., González, M., & Pérez,

L. Efficient Course Scheduling in Engineering Education using

Machine Learning. Kuwait Journal of Machine Learning, 1(2).

Retrieved from

http://kuwaitjournals.com/index.php/kjml/article/view/121

[26] Ali Samad, Hairulnizam Bin Mahdin, Rafaqat Kazmi, Rosziati

Ibrahim, Zirawani Baharum “Multiobjective Test Case

Prioritization Using Test Case Effectiveness: Multicriteria

Scoring Method” Hindawi Scientific Programming Volume

2021, Article ID 9988987

[27] Elinda Kajo Mece, Hakik Paci Kleona Binjaku “The

Application of Machine Learning In Test Case Prioritization -

A Review” EJECE, European Journal ofElectrical and

Computer Engineering Vol. 4, No. 1, January2020

[28] J. Michael Spector, M. David Merrill, Jan Elen, Handbook of

Research on Educational Communications and Technology,

Springer Publisher, 2013.

[29] Luca Ferrari, Deep Learning Techniques for Natural Language

Translation , Machine Learning Applications Conference

Proceedings, Vol 2 2022.

[30] Jean Arlat et.al, Comparison of Physical and Software

Implemented Fault Injection Techniques”, IEEE Transactions

on computers, VOL. 52, NO. 9, September 2003.

[31] A K Munns and B F Bjeirmi, the role of project management in

achieving project success, International Journal of Project

Management Vol. 14, No. 2, pp. 81-87, 1996.

[32] Michael Bloch, Sven Blumberg & Jurgen Laartz, Delivering

large-scale IT projects on time, on budget, and on value,

October ,2012.

[33] K.K. Aggarwal, Yogesh Singh, Software Engineering, New

Age International (P) Ltd., 2001.

http://www.ijritcc.org/

