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Abstract—The Internet of Things (IoT) has experienced phenomenal growth, opening up a wide range of applications in many settings. Due 

to the properties of sound propagation, IoT networks operating in acoustic environments in particular present special difficulties. Data 

compression techniques can be used to minimize overhead and maximize resource utilization in these networks to increase performance. The 

performance of IoT networks in acoustic environments is examined in this study, with a focus on routing overhead, throughput, and typical end-

to-end delay. Lempel-Ziv-Welch (LZW) data compression is used to reduce data size and boost communication effectiveness. Three well-known 

protocols—MQTT, CoAP, and Machine-to-Machine (M2M)—are assessed in relation to acoustic Internet of Things networks. To mimic 

different acoustic conditions and collect performance metrics, a thorough experimental setup is used. Different network topologies, data speeds, 

and compression settings are used in the studies to determine how they affect the performance metrics. According to the analysis's findings, all 

three protocols' routing overhead is greatly decreased by the LZW data compression approach, which enhances network scalability and lowers 

energy usage. Additionally, the compressed data size has a positive impact on network throughput, allowing for effective data transmission in 

acoustic contexts with limited resources. Additionally, using LZW compression is seen to minimize the average end-to-end delay, improving 

real-time communication applications. This study advances knowledge of IoT networks operating in acoustic environments and the effects of 

data reduction methods on their functionality. The results offer useful information for network engineers and system designers to optimize the 

performance of IoT networks in similar situations. Additionally, a comparison of the MQTT, CoAP, and M2M protocols' suitability for acoustic 

IoT deployments is provided, assisting in the choice of protocol for particular application needs. 

Keywords- Underwater IoT, M2M, MQTT, CoAP, Performance Parameters. 

 

I.  INTRODUCTION 

Recent advancements in the IoT have spawned a plethora of 

new applications in a variety of industries, including 

transportation, healthcare, and environmental monitoring [1]. 

These IoT networks frequently operate in difficult conditions, 

such underwater or in acoustically active areas, where 

traditional communication methods encounter substantial 

challenges. To sustain the overall functionality of these 

networks, it is essential to provide efficient and dependable 

data transfer [2]. 

The purpose of this research article is to evaluate the 

performance of IoT networks in acoustic situations using the 

LZW (Lempel-Ziv-Welch) data compression technique. The 

main emphasis is on measuring important performance 

indicators, such as throughput, routing overhead and average 

end-to-end delay. Additionally, the study explores the 

efficiency of three well-known protocols, namely MQTT, 

COAP, and machine-to-machine (M2M) communication, in 

promoting communication within the IoT network. 

For IoT networks, the acoustic environment presents special 

difficulties since sound waves can cause interference and signal 

degradation, which increases packet loss, increases latency, and 

decreases network efficiency [3]. In such acoustic situations, 

the LZW data compression technology provides a potential 

remedy by lowering the size of data packets, improving 

transmission effectiveness, and maximizing network 

performance. 

Several metrics are essential for evaluating the operation of 

IoT networks. In order to maintain network connectivity and 

guarantee dependable message delivery, routing systems 

transmit additional data known as routing overhead [4]. The 

pace at which data may be effectively sent between IoT devices 

is measured by throughput [5], and the time it takes for a packet 
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to travel from its source to its destination is known as average 

end-to-end delay [6]. 

This study examines the efficacy of three protocols—

MQTT, COAP, and machine-to-machine communication—in 

addition to measuring performance characteristics. A 

communications protocol called MQTT was created expressly 

to be small and suited for Internet of Things (IoT) applications. 

COAP, on the other hand, is a unique protocol designed for 

equipment with constrained resources and capabilities. Direct 

device-to-device connection is prioritized in machine-to-

machine communication, doing away with the need for a 

centralized server. The feasibility of these protocols for IoT 

networks operating in acoustic environments can be determined 

by comparing them [7, 8, 9]. 

The results of this study will improve the functionality and 

dependability of IoT networks in acoustic settings by providing 

useful knowledge for the development and improvement of 

communication protocols. The findings could be used to build 

effective deployment techniques for IoT applications in 

situations like undersea monitoring, tracking wildlife, and 

industrial automation, where acoustic conditions are important.  

II. UNDERWATER IOT ARCHITECTURE 

The Internet of Things (IoT) architecture for underwater 

environments typically consists of several layers to facilitate 

connectivity, data collecting, and control. Depending on the 

particular requirements and technology employed, the 

architecture may change [10]. A layered, typical underwater 

IoT architecture is shown here in a simplified form: 

 
Figure 1. Underwater IoT Architecture [10] 

A. Sensor Layer: 

• This layer is made up of numerous sensors created 

especially for data gathering and monitoring 

underwater. Examples include sensors that monitor 

acoustics, salinity, pH, pressure, temperature, and 

salinity. 

• These sensors translate the ambient information they 

collect from the underwater environment into 

electrical impulses. 

B. Communication Layer: 

• Data transmission from the sensor layer to the higher 

levels is facilitated by the communication layer. 

• Technologies for underwater communication, such 

acoustic or optical communication (using LEDs or 

lasers, for example), are frequently utilised. 

• Through these underwater communication channels, 

the sensor data is modulated and transferred. 

C. Gateway Layer: 

• The gateway layer collects the data transmitted by the 

underwater devices and carries out the necessary 

protocol conversions and data preparation. It serves as 

a bridge between the underwater communication layer 

and the surface. 

• Signal amplifiers, modulators, demodulators, error-

correcting techniques, and encryption for safe data 

transfer may be included in the gateway. 

D. Network Layer: 

• The network layer builds trustworthy communication 

channels, controls network addresses, and makes sure 

that data flows effectively between various undersea 

equipment and the surface. 

• Protocols like IPv6 (Internet Protocol version 6) or 

other protocols tailored for underwater networks may 

be used by the network layer. 

E. Cloud/Server Layer: 

• The cloud or server layer manages and processes the 

data that is received from the network layer. At this 

layer, data analyses, storage, and visualisation are 

carried out. 

• To glean useful insights from the gathered data, 

sophisticated algorithms and machine learning 

approaches might be used. 

• Through web-based or mobile applications, users can 

access the processed data and remotely operate the 

underwater equipment. 

F. User Interface Layer: 

• The user interface layer offers an easy-to-use platform 

that makes it possible to engage with the underwater 

IoT system without any issues. 

• Users can define thresholds, configure devices, 

monitor real-time data, and receive alerts or 

notifications. 

• Depending on the particular needs, the user interface 

can be accessed through web portals, mobile apps, or 

custom applications. 
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III. LZW COMPRESSION 

A well-liked technique for compressing data without 

sacrificing any information is the Lempel-Ziv-Welch (LZW) 

compression algorithm. In file compression formats like GIF 

and TIFF, it is widely used. Using a dictionary to record 

frequently occurring patterns from the input data, LZW 

replaces them with shorter codes [11, 17]. 

The LZW algorithm's step-by-step instructions for coding 

(compressing) and decoding (decompressing): 

Coding (Compression): 

1. Fill a dictionary with all single-character entries that can 

be made. 

2. Character by character, read the input data. 

3. Include the most recent character in the existing pattern. 

4. If the dictionary has the current pattern, update it to add 

the upcoming character and repeat step 4 if not. 

5. If the dictionary does not already include the current 

pattern, print the code for the previous pattern, add the 

current pattern, and then reset the current pattern to the 

character that was most recently read. 

6. Carry on with steps 3 through 5 until all of the input data 

has been read. 

7. Generate the final current pattern's code. 

Decoding (Decompression): 

1. Fill a dictionary with all single-character entries that can 

be made. 

2. Read each input code separately. 

3. Get the dictionary's entry for the matching pattern for the 

present code. 

4. Print the pattern's characters. 

5. Add the first character of the recovered pattern to the 

existing pattern if there are more codes. 

6. Add the first character of the obtained pattern to the 

existing pattern to create a new item in the dictionary. 

7. Set the recovered pattern as the current pattern in step 

seven. 

8. Continue performing steps 3 through 7 until all input 

codes have been handled. 

It's important to note that both the coding and decoding 

processes should use the same initial dictionary setup. 

 

Figure 2. LZW Compression Flowchart 

The basic steps of the LZW compression algorithm are shown 

in this flowchart. It begins by reading input data, initializing the 

current string, and initializing the dictionary. Then it moves 

into a loop and looks for the dictionary's longest matched 

string. If the following character is present, the current string 

and the new item are both added to the dictionary. Following 

the display of the code for the current string, the programmed 

sets the following character as the new current string. Up until 

all of the input data has been processed, this procedure 

continues. The last code for the current string is then outputted, 

followed by an end-of-file marker to indicate that the 

compressed data has ended [12]. 

IV. PROTOCOLS 

To facilitate communication between objects and systems, 

the Internet of Things (IoT) relies on a number of protocols. In 

IoT networks, these protocols make data and information 

sharing easier. Here are a few popular Internet of Things 

protocols: 

MQTT: MQTT, or Message Queuing Telemetry Transport, is 

a messaging protocol developed especially for low-resource 

devices and unreliable, low-bandwidth networks. It is 

frequently used in Internet of Things (IoT) applications and 

operates on a publish-subscribe mechanism [13]. The MQTT 

protocol's salient features are as follows: 
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1 Publish-Subscribe Model: The publish-subscribe 

pattern, in which there are publishers and subscribers, 

is the foundation of MQTT. Messages are sent to a 

subject by publishers (also known as "publishing"), 

and messages from certain topics that interest 

subscribers are received by subscribers (also known as 

"subscribing"). 

2 Broker: A central message broker acts as a go-

between for publishers and subscribers in MQTT 

communication. The way it works is by getting 

messages from publishers and sending them to the 

right subscribers. 

3 Topic: Specific topics serve as communication 

channels or categories and are to which messages are 

published. Slashes (/) are used to delineate the levels 

of a hierarchical structure for topics that are 

represented as strings. For instance, 

"sensors/temperature" or "home/living-room/lights." 

4 Quality of Service (QoS): Messaging Queue 

Telemetry Transport (MQTT) provides various 

options for ensuring different levels of quality of 

service (QoS) during message delivery. There are 

three levels: 

• QoS 0 (At most once): The communication is 

either sent once or not at all, and there is no 

confirmation or assurance of its successful 

delivery. 

• QoS 1 (At least once): The message will be 

successfully delivered at least once. The 

broker sends an acknowledgment 

(PUBACK) to the publisher after receiving 

the message and retransmits it until it 

receives an acknowledgment from the 

subscriber. 

• QoS 2 (Exactly once): This statement ensures 

that the message will be delivered with 

certainty and without duplication. It requires 

a sequential four-step interaction between the 

publisher, broker, and subscriber to ensure 

dependable transmission. 

5 Connection: MQTT employs a simple TCP/IP 

communication protocol. The client uses a chosen port 

(the default is 1883) to create a TCP connection with 

the broker. The alternative method of using MQTT is 

via a safe SSL/TLS connection (default: 8883). 

6 Client Types: MQTT clients can be classified into two 

types: 

• Publishers: Clients who share messages on 

particular subjects. 

• Subscribers: This refers to individuals or 

systems that opt to receive messages that are 

published to specific topics they have 

subscribed to. 

7 Retained messages, which are messages that are saved 

by the broker and are sent to subscribers when they 

subscribe to a subject, are another feature of MQTT. 

Sending new subscribers the most recent status or 

configuration information can be done with the help 

of retained messages. 

8 Last Will and Testament (LWT): If a client 

disconnects suddenly, clients can provide a LWT 

message, which the broker automatically publishes. 

With the help of this feature, situations in which a 

client disconnects itself accidentally can be handled. 

9 Compact: MQTT is designed to have a small 

footprint, making it suitable for devices with 

constrained resources like sensors or microcontrollers. 

It uses a small binary payload format for messages, 

minimising processing cost and network bandwidth. 

10 Wide Language and Platform Support: MQTT is 

accessible and simple to integrate into multiple IoT 

systems due to the availability of libraries and 

implementations in numerous programming 

languages. 

Machine-to-Machine (M2M): The phrase "Machine-to-

Machine (M2M) protocol" refers to a set of communication 

rules and conventions that make it possible for machines to 

interact and share data without the need for human 

intervention.M2M protocols make it possible for linked devices 

to communicate with one another and share information and 

carry out coordinated operations [14].  

Several protocols are frequently utilised in M2M 

communication, including 

1 Extensible Messaging and Presence Protocol (XMPP): 

Originally developed for instant messaging, XMPP 

has now been modified to support machine-to-

machine (M2M) communication. It is an open 

communication protocol based on the extensible 

markup language (XML). The seamless and fast 

transmission of messages and presence information 

between multiple devices is made possible via XMPP. 

2 AMQP (Advanced Message Queuing Protocol): 

AMQP is an open-standard protocol that enables 

message exchange between applications. It is 

appropriate for M2M communication scenarios 

because it offers dependable, secure, and interoperable 

communications across several platforms and 

programming languages. 

3 RESTful APIs (Representational State Transfer): 

RESTful APIs are popular for M2M communication 

even if they are not a particular protocol. Machines 

can communicate with one another using common 
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HTTP methods like GET, POST, PUT, and DELETE 

thanks to RESTful APIs. They are frequently utilised 

in IoT applications and make use of the current web 

infrastructure. 

Depending on the needs of the devices, the network 

environment, and the type of data being shared, these protocols, 

among others, offer many alternatives for M2M 

communication. The capabilities of the device, bandwidth 

constraints, the necessity for security, and the specifications for 

system compatibility are only a few of the variables that affect 

the choice of a protocol. 

Constrained Application Protocol (CoAP): Constrained 

Application Protocol, or CoAP, is a particular web protocol for 

transmitting data. Its main objective is to make it easier for 

devices with resource restrictions, like limited power or 

reduced capabilities, to communicate with one another. This 

protocol, which operates at the application layer, provides 

simple communication between networks with constrained 

capabilities, such as those used in the Internet of Things (IoT), 

and devices with limited resources, such as sensors and 

actuators. 

CoAP has been developed expressly to have a minimum, 

effective, and deployable nature, making it appropriate for use 

on devices with limitations on their processing power, memory, 

and energy resources. It uses the User Datagram Protocol 

(UDP) and offers request/response architecture akin to HTTP 

(Hypertext Transfer Protocol). However, HTTP is better suited 

for conventional web applications while CoAP is created 

expressly for limited contexts [15]. 

Key features of CoAP include: 

1 RESTful Design: CoAP adheres to the 

Representational State Transfer (REST) principles, 

enabling resources to be found and used using 

common HTTP-like operations like GET, POST, 

PUT, and DELETE. 

2 Resource Discovery: CoAP includes techniques for 

resource discovery, allowing devices to declare the 

resources they have available and allowing other 

devices to find and use those resources. 

3 Low Overhead: CoAP has less protocol overhead than 

HTTP since it offers efficient message serialisation 

and employs compact binary encoding. 

4 Request/Response Model: CoAP uses a streamlined 

methodology for making and receiving information 

requests, allowing clients to submit queries to servers 

and receive pertinent responses back. Both dependable 

and unreliable messaging modalities are supported. 

5 CoAP-to-CoAP Proxying: CoAP can be bridged to 

HTTP through proxy servers, enabling integration 

with existing web services and applications. 

6 Resource Observation: Clients can use CoAP to watch 

resources and get alerts when they change. 

Applications requiring real-time monitoring can 

benefit from this capability. 

When resource-constrained devices need to connect with 

one another or with backend servers, CoAP is frequently 

utilised in IoT applications. It is the perfect solution for 

environments with limited resources since it provides a quick 

and efficient replacement for established protocols like HTTP.  

V. PERFORMANCE PARAMETER 

A. Routing overhead: The quantity of extra data or 

control information required for the purpose of routing within a 

network is referred to as "routing overhead" in the parameter. 

Depending on the exact routing protocol or network 

architecture under consideration, the mathematical method for 

estimating routing overhead may change [16, 18]. 

Routing Overhead = (Total Routing Information / Total 

Data Traffic) x 100                  (1) 

Total routing information in this formula refers to the 

quantity of data or control information transferred during 

routing, such as routing tables, routing updates, or signalling 

packets. The actual user data or payload being transmitted over 

the network is represented by the total data traffic. 

B. Throughput: Throughput is a metric that measures 

how quickly messages or data are effectively delivered and is 

used to assess how effective a communication route or system 

is. The context and the units used to measure data transfer 

affect the mathematical method for determining throughput 

[16, 19]. 

The formula for throughput would be as follows if we 

assume that the throughput is measured in bits per second 

(bps), and we represent the total quantity of data transferred 

during a given time period as "D" (in bits), and the length of 

that time period as "T" (in seconds). 

Throughput = D / T                            (2)                                                         

C. Average end to end delay: A performance indicator 

called average end-to-end latency is used to determine how 

long it typically takes a data packet or message to travel from 

its origin to its intended destination inside a communication 

network. The specific characteristics of the network and the 

protocols used are what determine the average end-to-end 

delay. [16]. 

The average total time it takes for a message to go from the 

source to the destination in a straightforward scenario without 

any waiting or processing delays can be calculated by adding 

together the transmission time and the signal propagation time. 

Average End-to-End Delay = Transmission Delay + 

Propagation Delay                         (3) 
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The following equation can be used to calculate 

transmission delay, which is the time it takes for a packet or 

message to go across the network: 

Transmission Delay = Packet Size / Transmission Rate      (4) 

Simply said, "Packet Size" refers to the quantity of data, 

expressed in bits or bytes, that is contained in a packet. Similar 

to this, "Transmission Rate" refers to the rate in bits per second 

or bytes per second at which data is transmitted across a 

network link. 

The time it takes for a packet or message to get from its 

source to its final destination is referred to as propagation 

delay. It can be calculated using the following formula: 

Propagation Delay = Distance / Propagation Speed         (5) 

Where Distance is the actual distance travelled from source 

to destination and Propagation Speed is the rate at which 

signals move across a medium. These two quantities are 

typically expressed in meters per second or kilometers per 

second.  

VI. EXPERIMENTAL SETUP 

We describe the hardware setup for implementing our 

system as well as the simulation configuration in this section, 

as shown in Figure and Figure, respectively. As illustrated in 

figure 8, we deployed our IoT network with and without LZW 

compression using the NetSim simulator as our simulation 

setup. We used sensors, an Arduino board, and programmed it 

with and without LZW compression for the hardware 

implementation.  

Simulation Setup: 

Several parameters and configurations need to be taken into 

account while setting up a simulation for an underwater IoT 

network using the NetSim simulator. A potential simulation 

configuration is as follows: 

1 Network Size: Calculate the subaquatic network's 

dimensions in accordance with your requirements. You 

might specify the network's node count or the area in 

square meters, for instance. 

2 Number of Nodes: Establish the number of nodes in the 

network, which may vary depending on the size of the 

simulation and the desired level of complexity. Take into 

account factors like node density and distribution across 

the network. 4. Routing Protocols: 

3 Bandwidth: Identify the amount of bandwidth the 

undersea network has available for communication. The 

maximum data transfer rate possible between nodes is 

determined by this number. 

4 Choose the ones that are appropriate for communication 

underwater. Opportunistic Routing and Store-Carry-

Forward (SCF) are two popular protocols for underwater 

networks. Depending on the details of your simulation 

scenario, select the relevant routing protocols. 

5 Packet Size: Identify the size of the network packets 

being transmitted. This value has an impact on the 

bandwidth that is accessible as well as the effectiveness 

of data transport. When choosing the packet size, take 

into account the communication restrictions underwater. 

6 Packet Rates: Specify how quickly packets are created 

and sent over the network. This parameter has an impact 

on network congestion and traffic load. To reflect actual 

conditions, set a reasonable packet creation rate. 

7 Simulation Time: Calculate the length of the simulation 

in units of simulated time. We may watch the network 

behaviour evolve over time by setting this parameter, 

which also determines how long the simulation will run. 

8 Pause Time: To imitate real-world settings, include 

pauses or idle times in between simulation actions. For a 

true representation of the behaviour of underwater IoT 

networks, you may, for instance, incorporate times of low 

activity or sporadic communication. 

9 Node Placement: Specify where nodes should be located 

in the underwater network. Think about the possible 

deployment possibilities, such random placement or a 

particular pattern. Make sure the node distribution 

accurately reflects the situation in real life you are 

attempting to imitate. 

We defined these parameters in table 1 and set up the 

NetSim simulator to construct and run our simulation in 

accordance with those settings. The network is simulated with 

and without compression using the NetSim simulator, and the 

results are shown in fig. Figure with and without compression 

depicts the hardware implementation of this network using a 

sensor, LCD display, Arduino board, and other components. 

Table 1: Underwater IoT Network Simulation Parameters 

Parameter Value 

Network Size 900*900m 

Number of nodes 50 to 300 

Bandwidth 3 Mbps 

Routing Protocols M2M, MQTT, CoAP 

Packet Size 1024 bytes 

Packet Rates 7 Packets/sec 

Simulation Time 350-850 sec 

Pause Time 20 sec 

Node Placement Random 
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Figure 3. Underwater IoT Network Simulation 

Hardware Implementation 

To build an IoT underwater hardware model consisting of a 

5V power supply, DHT11 sensor, LDR sensor, IR sensor, and 

LCD display on both the sender and receiver ends, following 

components are used as shown in figure 4: 

Components: 

• Arduino board (e.g., Arduino Uno) 

• 5V power supply or battery pack 

• DHT11 temperature and humidity sensor 

• LDR (Light Dependent Resistor) sensor 

• IR (Infrared) sensor 

• LCD display (compatible with Arduino) 

• Jumper wires and breadboard for circuit connections 

Steps: 

1 Power Supply: 

• Connect the 5V power supply or battery pack to 

the Arduino board. 

• Make sure the power supply is suitable for 

underwater use and waterproofed. 

2 DHT11 Sensor: 

• Connect the DHT11 sensor to the Arduino board. 

• Use jumper wires to connect the DHT11 sensor's 

data pin to a digital pin on the Arduino board. 

3 LDR Sensor: 

• Connect the LDR sensor to the Arduino board. 

• Use jumper wires to connect the LDR sensor's 

output pin to another digital pin on the Arduino 

board. 

4 IR Sensor: 

• Connect the IR sensor to the Arduino board. 

• Use jumper wires to connect the IR sensor's output 

pin to a digital pin on the Arduino board. 

5 LCD Display: 

• Connect the LCD display to the Arduino board. 

• Follow the specific instructions for your LCD 

display to connect the necessary pins (typically, 

power, ground, data, and control pins). 

6 Code: 

• Write the Arduino code to read data from the 

DHT11, LDR, and IR sensors. 

• Use appropriate libraries for each sensor and 

LCD display (e.g., DHT sensor library, 

LiquidCrystal library). 

• The code should collect sensor data, display it on 

the LCD, and transmit it to the receiver. 

7 Sender and Receiver Setup: 

• Place the Arduino board, sensors, and LCD 

display for the sender. 

• Repeat the same setup for the receiver, ensuring it 

has its placed properly. 

8 Underwater Data Transmission: 

• Establish a wireless communication method 

suitable for underwater use (e.g., acoustic 

communication, underwater radio, etc.). 

• Implement the communication protocol and 

hardware necessary for data transmission between 

the sender and receiver. 

• Modify the Arduino code to include the data 

transmission part, adhering to the specific 

communication protocol. 

 
Figure 4. Hardware Model 

VII. RESULTS 

A. IoT Network with and without Compression 

1 Routing Overhead: 

The M2M, CoAP, and MQTT routing protocols were 

assessed for "routing overhead" in both the context of data 

compression and without data compression, as illustrated in 

Figures 5 and 6. The findings imply that regardless of data 

compression usage, routing overhead generally increases with 

node density. 

When examining the routing overhead of each protocol 

independently, it was discovered that when data compression is 
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not used, the routing cost is larger than when it is. Here are 

some specific findings provided in the research paper: 

 

 
Figure 5. Routing Overhead without Data Compression 

 
Figure 6. Routing Overhead with Data Compression 

1 M2M Protocol: 

• With 50 nodes: 

o Without data compression: 2 bps 

o With data compression: 1.5 bps 

2 CoAP Protocol: 

• With 150 nodes: 

o Without data compression: 8.8 bps 

o With data compression: 7.8 bps 

3 MQTT Protocol: 

• With 300 nodes: 

o Without data compression: 18 bps 

o With data compression: 15.3 bps 

These findings suggest that data compression significantly 

lowers the routing overhead for each of the three protocols. In 

comparison to situations when data compression is not utilised, 

the routing overhead is smaller when data compression is 

implemented. 

2 Throughput 

Throughput is the rate at which messages or data are 

successfully transmitted across a communication channel or 

system. The throughput for three protocols—M2M, CoAP, and 

MQTT—is compared in Figures 7 and 8 for each protocol with 

and without data compression. 

 
Figure 7. Throughput without Data Compression 

 
Figure 8. Throughput with Data Compression 

1 M2M: 

• For 50 nodes: 

o Without data compression: 2.98 bps 

o With data compression: 3.1235 bps 

2 CoAP: 

• For 150 nodes: 

o Without data compression: 2.155 

bps 

o With data compression: 3.453 bps 

3 MQTT: 

• For 300 nodes: 

o Without data compression: 1.323 

bps 

o With data compression: 0.195 bps 

Based on the provided results, we can observe the 

following: 

• For M2M, the throughput increases slightly from 2.98 

bps to 3.1235 bps when data compression is enabled 

for 50 nodes. 

• For CoAP, the throughput increases significantly from 

2.155 bps to 3.453 bps when data compression is 

enabled for 150 nodes. 
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• For MQTT, the throughput decreases dramatically 

from 1.323 bps to 0.195 bps when data compression is 

enabled for 300 nodes. 

Additionally, we can observe that MQTT has the lowest 

throughput among the three protocols.  

3 Average End to End Delay 

The performance of the M2M, CoAP, and MQTT routing 

protocols was evaluated in terms of the "end-to-end delay" 

parameter, taking into account the usage of data compression, 

based on the information shown in figures 9 and 10. The results 

show that there is an observed rise in the end-to-end delay as 

the number of packets increases from 50 nodes to 300 nodes. 

However, compared to situations when data compression is not 

used, the end-to-end delay decreases when data compression is 

used. This decrease in latency can be due to the smaller data 

packet sizes brought about by the use of data compression 

techniques. 

 

 
Figure 9. End to End delay without Data Compression 

 
Figure 10. End to End delay with Data Compression 

The research paper provides specific results to support this 

observation: 

1. M2M Protocol: 

• With 200 nodes: 

o Without data compression: 0.8s 

o With data compression: 0.6s 

2. CoAP Protocol: 

• With 250 nodes: 

o Without data compression: 2.95s 

o With data compression: 1.98s 

3. MQTT Protocol: 

• With 300 nodes: 

o Without data compression: 4.9s 

o With data compression: 3.7s 

These results lead to the conclusion that using data 

compression helps all three protocols' end-to-end latency be 

reduced. Compression reduces the size of data packets, which 

improves performance by cutting down on the time it takes to 

transmit and process the packets. 

VIII. CONCLUSION 

In conclusion, this study used the Lempel-Ziv-Welch (LZW) 

data compression method to examine the performance of IoT 

networks operating in an acoustic environment. Throughput, 

routing overhead, and average end-to-end delay were taken 

into account as performance metrics. Additionally, three 

protocols—MQTT, CoAP, and machine-to-machine (M2M)—

were assessed as part of the study. 

The LZW data compression technique showed promising 

results in enhancing the functionality of IoT networks in the 

acoustic environment, according to the findings. By efficiently 

reducing the routing overhead through data compression, it 

improved the utilisation of resources and lessened network 

congestion. Throughput across the whole network was 

increased as a result of this decrease in routing overhead. 

The average amount of time it takes to transmit data from the 

source to the destination was also significantly reduced as a 

result of the use of LZW compression. The compression 

technique decreased the time needed for data transmission by 

reducing the size of the communicated data, resulting in lower 

latency and faster connection between IoT devices. 

In terms of protocols, this study assessed MQTT, CoAP, and 

M2M. Each protocol highlighted particular advantages and 

disadvantages. For IoT devices with limited resources, MQTT 

has shown to be a dependable and small-footprint protocol that 

offers effective message transport. On the other hand, CoAP 

showed outstanding support for low-power and lossy 

networks, allowing for effective resource discovery and 

communication. Direct device-to-device communication is the 

main goal of M2M, which increased connectivity and 

decreased reliance on centralised servers. 

Overall, the study's findings highlight the significance of using 

efficient data compression methods, like LZW, in IoT 

networks that operate in acoustic settings. Compression 

techniques allow for significant improvements to be made in 

terms of data transfer speeds, routing burdens, and the average 

amount of time it takes for information to travel from its 
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source to its destination. Additionally, choosing the right 

protocols while taking into account the unique needs and 

limitations of the network is essential for assuring optimal 

performance in IoT deployments. 
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