
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7425

Article Received: 12 May 2023 Revised: 26 June 2023 Accepted: 25 July 2023

 311

IJRITCC | August 2023, Available @ http://www.ijritcc.org

Analysis of the Performance of IoT Networks in

Acoustic Environment by using LZW Data

Compression Technique

Ankur Sisodia1, Dr. Ajay Kumar Yadav2
1Research Scholar

Banasthali Vidyapith,

Rajasthan

ankur22887@gmail.com
2Assistant Professor

Banasthali Vidyapith,

Rajasthan

ajay.iitdhn@gmail.com

Abstract—The Internet of Things (IoT) has experienced phenomenal growth, opening up a wide range of applications in many settings. Due

to the properties of sound propagation, IoT networks operating in acoustic environments in particular present special difficulties. Data

compression techniques can be used to minimize overhead and maximize resource utilization in these networks to increase performance. The

performance of IoT networks in acoustic environments is examined in this study, with a focus on routing overhead, throughput, and typical end-

to-end delay. Lempel-Ziv-Welch (LZW) data compression is used to reduce data size and boost communication effectiveness. Three well-known

protocols—MQTT, CoAP, and Machine-to-Machine (M2M)—are assessed in relation to acoustic Internet of Things networks. To mimic

different acoustic conditions and collect performance metrics, a thorough experimental setup is used. Different network topologies, data speeds,

and compression settings are used in the studies to determine how they affect the performance metrics. According to the analysis's findings, all

three protocols' routing overhead is greatly decreased by the LZW data compression approach, which enhances network scalability and lowers

energy usage. Additionally, the compressed data size has a positive impact on network throughput, allowing for effective data transmission in

acoustic contexts with limited resources. Additionally, using LZW compression is seen to minimize the average end-to-end delay, improving

real-time communication applications. This study advances knowledge of IoT networks operating in acoustic environments and the effects of

data reduction methods on their functionality. The results offer useful information for network engineers and system designers to optimize the

performance of IoT networks in similar situations. Additionally, a comparison of the MQTT, CoAP, and M2M protocols' suitability for acoustic

IoT deployments is provided, assisting in the choice of protocol for particular application needs.

Keywords- Underwater IoT, M2M, MQTT, CoAP, Performance Parameters.

I. INTRODUCTION

Recent advancements in the IoT have spawned a plethora of

new applications in a variety of industries, including

transportation, healthcare, and environmental monitoring [1].

These IoT networks frequently operate in difficult conditions,

such underwater or in acoustically active areas, where

traditional communication methods encounter substantial

challenges. To sustain the overall functionality of these

networks, it is essential to provide efficient and dependable

data transfer [2].

The purpose of this research article is to evaluate the

performance of IoT networks in acoustic situations using the

LZW (Lempel-Ziv-Welch) data compression technique. The

main emphasis is on measuring important performance

indicators, such as throughput, routing overhead and average

end-to-end delay. Additionally, the study explores the

efficiency of three well-known protocols, namely MQTT,

COAP, and machine-to-machine (M2M) communication, in

promoting communication within the IoT network.

For IoT networks, the acoustic environment presents special

difficulties since sound waves can cause interference and signal

degradation, which increases packet loss, increases latency, and

decreases network efficiency [3]. In such acoustic situations,

the LZW data compression technology provides a potential

remedy by lowering the size of data packets, improving

transmission effectiveness, and maximizing network

performance.

Several metrics are essential for evaluating the operation of

IoT networks. In order to maintain network connectivity and

guarantee dependable message delivery, routing systems

transmit additional data known as routing overhead [4]. The

pace at which data may be effectively sent between IoT devices

is measured by throughput [5], and the time it takes for a packet

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7425

Article Received: 12 May 2023 Revised: 26 June 2023 Accepted: 25 July 2023

 312

IJRITCC | August 2023, Available @ http://www.ijritcc.org

to travel from its source to its destination is known as average

end-to-end delay [6].

This study examines the efficacy of three protocols—

MQTT, COAP, and machine-to-machine communication—in

addition to measuring performance characteristics. A

communications protocol called MQTT was created expressly

to be small and suited for Internet of Things (IoT) applications.

COAP, on the other hand, is a unique protocol designed for

equipment with constrained resources and capabilities. Direct

device-to-device connection is prioritized in machine-to-

machine communication, doing away with the need for a

centralized server. The feasibility of these protocols for IoT

networks operating in acoustic environments can be determined

by comparing them [7, 8, 9].

The results of this study will improve the functionality and

dependability of IoT networks in acoustic settings by providing

useful knowledge for the development and improvement of

communication protocols. The findings could be used to build

effective deployment techniques for IoT applications in

situations like undersea monitoring, tracking wildlife, and

industrial automation, where acoustic conditions are important.

II. UNDERWATER IOT ARCHITECTURE

The Internet of Things (IoT) architecture for underwater

environments typically consists of several layers to facilitate

connectivity, data collecting, and control. Depending on the

particular requirements and technology employed, the

architecture may change [10]. A layered, typical underwater

IoT architecture is shown here in a simplified form:

Figure 1. Underwater IoT Architecture [10]

A. Sensor Layer:

• This layer is made up of numerous sensors created

especially for data gathering and monitoring

underwater. Examples include sensors that monitor

acoustics, salinity, pH, pressure, temperature, and

salinity.

• These sensors translate the ambient information they

collect from the underwater environment into

electrical impulses.

B. Communication Layer:

• Data transmission from the sensor layer to the higher

levels is facilitated by the communication layer.

• Technologies for underwater communication, such

acoustic or optical communication (using LEDs or

lasers, for example), are frequently utilised.

• Through these underwater communication channels,

the sensor data is modulated and transferred.

C. Gateway Layer:

• The gateway layer collects the data transmitted by the

underwater devices and carries out the necessary

protocol conversions and data preparation. It serves as

a bridge between the underwater communication layer

and the surface.

• Signal amplifiers, modulators, demodulators, error-

correcting techniques, and encryption for safe data

transfer may be included in the gateway.

D. Network Layer:

• The network layer builds trustworthy communication

channels, controls network addresses, and makes sure

that data flows effectively between various undersea

equipment and the surface.

• Protocols like IPv6 (Internet Protocol version 6) or

other protocols tailored for underwater networks may

be used by the network layer.

E. Cloud/Server Layer:

• The cloud or server layer manages and processes the

data that is received from the network layer. At this

layer, data analyses, storage, and visualisation are

carried out.

• To glean useful insights from the gathered data,

sophisticated algorithms and machine learning

approaches might be used.

• Through web-based or mobile applications, users can

access the processed data and remotely operate the

underwater equipment.

F. User Interface Layer:

• The user interface layer offers an easy-to-use platform

that makes it possible to engage with the underwater

IoT system without any issues.

• Users can define thresholds, configure devices,

monitor real-time data, and receive alerts or

notifications.

• Depending on the particular needs, the user interface

can be accessed through web portals, mobile apps, or

custom applications.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7425

Article Received: 12 May 2023 Revised: 26 June 2023 Accepted: 25 July 2023

 313

IJRITCC | August 2023, Available @ http://www.ijritcc.org

III. LZW COMPRESSION

A well-liked technique for compressing data without

sacrificing any information is the Lempel-Ziv-Welch (LZW)

compression algorithm. In file compression formats like GIF

and TIFF, it is widely used. Using a dictionary to record

frequently occurring patterns from the input data, LZW

replaces them with shorter codes [11, 17].

The LZW algorithm's step-by-step instructions for coding

(compressing) and decoding (decompressing):

Coding (Compression):

1. Fill a dictionary with all single-character entries that can

be made.

2. Character by character, read the input data.

3. Include the most recent character in the existing pattern.

4. If the dictionary has the current pattern, update it to add

the upcoming character and repeat step 4 if not.

5. If the dictionary does not already include the current

pattern, print the code for the previous pattern, add the

current pattern, and then reset the current pattern to the

character that was most recently read.

6. Carry on with steps 3 through 5 until all of the input data

has been read.

7. Generate the final current pattern's code.

Decoding (Decompression):

1. Fill a dictionary with all single-character entries that can

be made.

2. Read each input code separately.

3. Get the dictionary's entry for the matching pattern for the

present code.

4. Print the pattern's characters.

5. Add the first character of the recovered pattern to the

existing pattern if there are more codes.

6. Add the first character of the obtained pattern to the

existing pattern to create a new item in the dictionary.

7. Set the recovered pattern as the current pattern in step

seven.

8. Continue performing steps 3 through 7 until all input

codes have been handled.

It's important to note that both the coding and decoding

processes should use the same initial dictionary setup.

Figure 2. LZW Compression Flowchart

The basic steps of the LZW compression algorithm are shown

in this flowchart. It begins by reading input data, initializing the

current string, and initializing the dictionary. Then it moves

into a loop and looks for the dictionary's longest matched

string. If the following character is present, the current string

and the new item are both added to the dictionary. Following

the display of the code for the current string, the programmed

sets the following character as the new current string. Up until

all of the input data has been processed, this procedure

continues. The last code for the current string is then outputted,

followed by an end-of-file marker to indicate that the

compressed data has ended [12].

IV. PROTOCOLS

To facilitate communication between objects and systems,

the Internet of Things (IoT) relies on a number of protocols. In

IoT networks, these protocols make data and information

sharing easier. Here are a few popular Internet of Things

protocols:

MQTT: MQTT, or Message Queuing Telemetry Transport, is

a messaging protocol developed especially for low-resource

devices and unreliable, low-bandwidth networks. It is

frequently used in Internet of Things (IoT) applications and

operates on a publish-subscribe mechanism [13]. The MQTT

protocol's salient features are as follows:

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7425

Article Received: 12 May 2023 Revised: 26 June 2023 Accepted: 25 July 2023

 314

IJRITCC | August 2023, Available @ http://www.ijritcc.org

1 Publish-Subscribe Model: The publish-subscribe

pattern, in which there are publishers and subscribers,

is the foundation of MQTT. Messages are sent to a

subject by publishers (also known as "publishing"),

and messages from certain topics that interest

subscribers are received by subscribers (also known as

"subscribing").

2 Broker: A central message broker acts as a go-

between for publishers and subscribers in MQTT

communication. The way it works is by getting

messages from publishers and sending them to the

right subscribers.

3 Topic: Specific topics serve as communication

channels or categories and are to which messages are

published. Slashes (/) are used to delineate the levels

of a hierarchical structure for topics that are

represented as strings. For instance,

"sensors/temperature" or "home/living-room/lights."

4 Quality of Service (QoS): Messaging Queue

Telemetry Transport (MQTT) provides various

options for ensuring different levels of quality of

service (QoS) during message delivery. There are

three levels:

• QoS 0 (At most once): The communication is

either sent once or not at all, and there is no

confirmation or assurance of its successful

delivery.

• QoS 1 (At least once): The message will be

successfully delivered at least once. The

broker sends an acknowledgment

(PUBACK) to the publisher after receiving

the message and retransmits it until it

receives an acknowledgment from the

subscriber.

• QoS 2 (Exactly once): This statement ensures

that the message will be delivered with

certainty and without duplication. It requires

a sequential four-step interaction between the

publisher, broker, and subscriber to ensure

dependable transmission.

5 Connection: MQTT employs a simple TCP/IP

communication protocol. The client uses a chosen port

(the default is 1883) to create a TCP connection with

the broker. The alternative method of using MQTT is

via a safe SSL/TLS connection (default: 8883).

6 Client Types: MQTT clients can be classified into two

types:

• Publishers: Clients who share messages on

particular subjects.

• Subscribers: This refers to individuals or

systems that opt to receive messages that are

published to specific topics they have

subscribed to.

7 Retained messages, which are messages that are saved

by the broker and are sent to subscribers when they

subscribe to a subject, are another feature of MQTT.

Sending new subscribers the most recent status or

configuration information can be done with the help

of retained messages.

8 Last Will and Testament (LWT): If a client

disconnects suddenly, clients can provide a LWT

message, which the broker automatically publishes.

With the help of this feature, situations in which a

client disconnects itself accidentally can be handled.

9 Compact: MQTT is designed to have a small

footprint, making it suitable for devices with

constrained resources like sensors or microcontrollers.

It uses a small binary payload format for messages,

minimising processing cost and network bandwidth.

10 Wide Language and Platform Support: MQTT is

accessible and simple to integrate into multiple IoT

systems due to the availability of libraries and

implementations in numerous programming

languages.

Machine-to-Machine (M2M): The phrase "Machine-to-

Machine (M2M) protocol" refers to a set of communication

rules and conventions that make it possible for machines to

interact and share data without the need for human

intervention.M2M protocols make it possible for linked devices

to communicate with one another and share information and

carry out coordinated operations [14].

Several protocols are frequently utilised in M2M

communication, including

1 Extensible Messaging and Presence Protocol (XMPP):

Originally developed for instant messaging, XMPP

has now been modified to support machine-to-

machine (M2M) communication. It is an open

communication protocol based on the extensible

markup language (XML). The seamless and fast

transmission of messages and presence information

between multiple devices is made possible via XMPP.

2 AMQP (Advanced Message Queuing Protocol):

AMQP is an open-standard protocol that enables

message exchange between applications. It is

appropriate for M2M communication scenarios

because it offers dependable, secure, and interoperable

communications across several platforms and

programming languages.

3 RESTful APIs (Representational State Transfer):

RESTful APIs are popular for M2M communication

even if they are not a particular protocol. Machines

can communicate with one another using common

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7425

Article Received: 12 May 2023 Revised: 26 June 2023 Accepted: 25 July 2023

 315

IJRITCC | August 2023, Available @ http://www.ijritcc.org

HTTP methods like GET, POST, PUT, and DELETE

thanks to RESTful APIs. They are frequently utilised

in IoT applications and make use of the current web

infrastructure.

Depending on the needs of the devices, the network

environment, and the type of data being shared, these protocols,

among others, offer many alternatives for M2M

communication. The capabilities of the device, bandwidth

constraints, the necessity for security, and the specifications for

system compatibility are only a few of the variables that affect

the choice of a protocol.

Constrained Application Protocol (CoAP): Constrained

Application Protocol, or CoAP, is a particular web protocol for

transmitting data. Its main objective is to make it easier for

devices with resource restrictions, like limited power or

reduced capabilities, to communicate with one another. This

protocol, which operates at the application layer, provides

simple communication between networks with constrained

capabilities, such as those used in the Internet of Things (IoT),

and devices with limited resources, such as sensors and

actuators.

CoAP has been developed expressly to have a minimum,

effective, and deployable nature, making it appropriate for use

on devices with limitations on their processing power, memory,

and energy resources. It uses the User Datagram Protocol

(UDP) and offers request/response architecture akin to HTTP

(Hypertext Transfer Protocol). However, HTTP is better suited

for conventional web applications while CoAP is created

expressly for limited contexts [15].

Key features of CoAP include:

1 RESTful Design: CoAP adheres to the

Representational State Transfer (REST) principles,

enabling resources to be found and used using

common HTTP-like operations like GET, POST,

PUT, and DELETE.

2 Resource Discovery: CoAP includes techniques for

resource discovery, allowing devices to declare the

resources they have available and allowing other

devices to find and use those resources.

3 Low Overhead: CoAP has less protocol overhead than

HTTP since it offers efficient message serialisation

and employs compact binary encoding.

4 Request/Response Model: CoAP uses a streamlined

methodology for making and receiving information

requests, allowing clients to submit queries to servers

and receive pertinent responses back. Both dependable

and unreliable messaging modalities are supported.

5 CoAP-to-CoAP Proxying: CoAP can be bridged to

HTTP through proxy servers, enabling integration

with existing web services and applications.

6 Resource Observation: Clients can use CoAP to watch

resources and get alerts when they change.

Applications requiring real-time monitoring can

benefit from this capability.

When resource-constrained devices need to connect with

one another or with backend servers, CoAP is frequently

utilised in IoT applications. It is the perfect solution for

environments with limited resources since it provides a quick

and efficient replacement for established protocols like HTTP.

V. PERFORMANCE PARAMETER

A. Routing overhead: The quantity of extra data or

control information required for the purpose of routing within a

network is referred to as "routing overhead" in the parameter.

Depending on the exact routing protocol or network

architecture under consideration, the mathematical method for

estimating routing overhead may change [16, 18].

Routing Overhead = (Total Routing Information / Total

Data Traffic) x 100 (1)

Total routing information in this formula refers to the

quantity of data or control information transferred during

routing, such as routing tables, routing updates, or signalling

packets. The actual user data or payload being transmitted over

the network is represented by the total data traffic.

B. Throughput: Throughput is a metric that measures

how quickly messages or data are effectively delivered and is

used to assess how effective a communication route or system

is. The context and the units used to measure data transfer

affect the mathematical method for determining throughput

[16, 19].

The formula for throughput would be as follows if we

assume that the throughput is measured in bits per second

(bps), and we represent the total quantity of data transferred

during a given time period as "D" (in bits), and the length of

that time period as "T" (in seconds).

Throughput = D / T (2)

C. Average end to end delay: A performance indicator

called average end-to-end latency is used to determine how

long it typically takes a data packet or message to travel from

its origin to its intended destination inside a communication

network. The specific characteristics of the network and the

protocols used are what determine the average end-to-end

delay. [16].

The average total time it takes for a message to go from the

source to the destination in a straightforward scenario without

any waiting or processing delays can be calculated by adding

together the transmission time and the signal propagation time.

Average End-to-End Delay = Transmission Delay +

Propagation Delay (3)

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7425

Article Received: 12 May 2023 Revised: 26 June 2023 Accepted: 25 July 2023

 316

IJRITCC | August 2023, Available @ http://www.ijritcc.org

The following equation can be used to calculate

transmission delay, which is the time it takes for a packet or

message to go across the network:

Transmission Delay = Packet Size / Transmission Rate (4)

Simply said, "Packet Size" refers to the quantity of data,

expressed in bits or bytes, that is contained in a packet. Similar

to this, "Transmission Rate" refers to the rate in bits per second

or bytes per second at which data is transmitted across a

network link.

The time it takes for a packet or message to get from its

source to its final destination is referred to as propagation

delay. It can be calculated using the following formula:

Propagation Delay = Distance / Propagation Speed (5)

Where Distance is the actual distance travelled from source

to destination and Propagation Speed is the rate at which

signals move across a medium. These two quantities are

typically expressed in meters per second or kilometers per

second.

VI. EXPERIMENTAL SETUP

We describe the hardware setup for implementing our

system as well as the simulation configuration in this section,

as shown in Figure and Figure, respectively. As illustrated in

figure 8, we deployed our IoT network with and without LZW

compression using the NetSim simulator as our simulation

setup. We used sensors, an Arduino board, and programmed it

with and without LZW compression for the hardware

implementation.

Simulation Setup:

Several parameters and configurations need to be taken into

account while setting up a simulation for an underwater IoT

network using the NetSim simulator. A potential simulation

configuration is as follows:

1 Network Size: Calculate the subaquatic network's

dimensions in accordance with your requirements. You

might specify the network's node count or the area in

square meters, for instance.

2 Number of Nodes: Establish the number of nodes in the

network, which may vary depending on the size of the

simulation and the desired level of complexity. Take into

account factors like node density and distribution across

the network. 4. Routing Protocols:

3 Bandwidth: Identify the amount of bandwidth the

undersea network has available for communication. The

maximum data transfer rate possible between nodes is

determined by this number.

4 Choose the ones that are appropriate for communication

underwater. Opportunistic Routing and Store-Carry-

Forward (SCF) are two popular protocols for underwater

networks. Depending on the details of your simulation

scenario, select the relevant routing protocols.

5 Packet Size: Identify the size of the network packets

being transmitted. This value has an impact on the

bandwidth that is accessible as well as the effectiveness

of data transport. When choosing the packet size, take

into account the communication restrictions underwater.

6 Packet Rates: Specify how quickly packets are created

and sent over the network. This parameter has an impact

on network congestion and traffic load. To reflect actual

conditions, set a reasonable packet creation rate.

7 Simulation Time: Calculate the length of the simulation

in units of simulated time. We may watch the network

behaviour evolve over time by setting this parameter,

which also determines how long the simulation will run.

8 Pause Time: To imitate real-world settings, include

pauses or idle times in between simulation actions. For a

true representation of the behaviour of underwater IoT

networks, you may, for instance, incorporate times of low

activity or sporadic communication.

9 Node Placement: Specify where nodes should be located

in the underwater network. Think about the possible

deployment possibilities, such random placement or a

particular pattern. Make sure the node distribution

accurately reflects the situation in real life you are

attempting to imitate.

We defined these parameters in table 1 and set up the

NetSim simulator to construct and run our simulation in

accordance with those settings. The network is simulated with

and without compression using the NetSim simulator, and the

results are shown in fig. Figure with and without compression

depicts the hardware implementation of this network using a

sensor, LCD display, Arduino board, and other components.

Table 1: Underwater IoT Network Simulation Parameters

Parameter Value

Network Size 900*900m

Number of nodes 50 to 300

Bandwidth 3 Mbps

Routing Protocols M2M, MQTT, CoAP

Packet Size 1024 bytes

Packet Rates 7 Packets/sec

Simulation Time 350-850 sec

Pause Time 20 sec

Node Placement Random

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7425

Article Received: 12 May 2023 Revised: 26 June 2023 Accepted: 25 July 2023

 317

IJRITCC | August 2023, Available @ http://www.ijritcc.org

Figure 3. Underwater IoT Network Simulation

Hardware Implementation

To build an IoT underwater hardware model consisting of a

5V power supply, DHT11 sensor, LDR sensor, IR sensor, and

LCD display on both the sender and receiver ends, following

components are used as shown in figure 4:

Components:

• Arduino board (e.g., Arduino Uno)

• 5V power supply or battery pack

• DHT11 temperature and humidity sensor

• LDR (Light Dependent Resistor) sensor

• IR (Infrared) sensor

• LCD display (compatible with Arduino)

• Jumper wires and breadboard for circuit connections

Steps:

1 Power Supply:

• Connect the 5V power supply or battery pack to

the Arduino board.

• Make sure the power supply is suitable for

underwater use and waterproofed.

2 DHT11 Sensor:

• Connect the DHT11 sensor to the Arduino board.

• Use jumper wires to connect the DHT11 sensor's

data pin to a digital pin on the Arduino board.

3 LDR Sensor:

• Connect the LDR sensor to the Arduino board.

• Use jumper wires to connect the LDR sensor's

output pin to another digital pin on the Arduino

board.

4 IR Sensor:

• Connect the IR sensor to the Arduino board.

• Use jumper wires to connect the IR sensor's output

pin to a digital pin on the Arduino board.

5 LCD Display:

• Connect the LCD display to the Arduino board.

• Follow the specific instructions for your LCD

display to connect the necessary pins (typically,

power, ground, data, and control pins).

6 Code:

• Write the Arduino code to read data from the

DHT11, LDR, and IR sensors.

• Use appropriate libraries for each sensor and

LCD display (e.g., DHT sensor library,

LiquidCrystal library).

• The code should collect sensor data, display it on

the LCD, and transmit it to the receiver.

7 Sender and Receiver Setup:

• Place the Arduino board, sensors, and LCD

display for the sender.

• Repeat the same setup for the receiver, ensuring it

has its placed properly.

8 Underwater Data Transmission:

• Establish a wireless communication method

suitable for underwater use (e.g., acoustic

communication, underwater radio, etc.).

• Implement the communication protocol and

hardware necessary for data transmission between

the sender and receiver.

• Modify the Arduino code to include the data

transmission part, adhering to the specific

communication protocol.

Figure 4. Hardware Model

VII. RESULTS

A. IoT Network with and without Compression

1 Routing Overhead:

The M2M, CoAP, and MQTT routing protocols were

assessed for "routing overhead" in both the context of data

compression and without data compression, as illustrated in

Figures 5 and 6. The findings imply that regardless of data

compression usage, routing overhead generally increases with

node density.

When examining the routing overhead of each protocol

independently, it was discovered that when data compression is

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7425

Article Received: 12 May 2023 Revised: 26 June 2023 Accepted: 25 July 2023

 318

IJRITCC | August 2023, Available @ http://www.ijritcc.org

not used, the routing cost is larger than when it is. Here are

some specific findings provided in the research paper:

Figure 5. Routing Overhead without Data Compression

Figure 6. Routing Overhead with Data Compression

1 M2M Protocol:

• With 50 nodes:

o Without data compression: 2 bps

o With data compression: 1.5 bps

2 CoAP Protocol:

• With 150 nodes:

o Without data compression: 8.8 bps

o With data compression: 7.8 bps

3 MQTT Protocol:

• With 300 nodes:

o Without data compression: 18 bps

o With data compression: 15.3 bps

These findings suggest that data compression significantly

lowers the routing overhead for each of the three protocols. In

comparison to situations when data compression is not utilised,

the routing overhead is smaller when data compression is

implemented.

2 Throughput

Throughput is the rate at which messages or data are

successfully transmitted across a communication channel or

system. The throughput for three protocols—M2M, CoAP, and

MQTT—is compared in Figures 7 and 8 for each protocol with

and without data compression.

Figure 7. Throughput without Data Compression

Figure 8. Throughput with Data Compression

1 M2M:

• For 50 nodes:

o Without data compression: 2.98 bps

o With data compression: 3.1235 bps

2 CoAP:

• For 150 nodes:

o Without data compression: 2.155

bps

o With data compression: 3.453 bps

3 MQTT:

• For 300 nodes:

o Without data compression: 1.323

bps

o With data compression: 0.195 bps

Based on the provided results, we can observe the

following:

• For M2M, the throughput increases slightly from 2.98

bps to 3.1235 bps when data compression is enabled

for 50 nodes.

• For CoAP, the throughput increases significantly from

2.155 bps to 3.453 bps when data compression is

enabled for 150 nodes.

0

5

10

15

20

50 100 150 200 250 300

R
o

u
ti

n
g

O
ve

rh
e

ad
 (

p

ac
ke

ts
 in

 1
0

3
)

No. of Nodes

M2M

CoAP

MQTT

0

5

10

15

20

50 100 150 200 250 300

R
o

u
ti

n
g

O
ve

rh
e

ad

(p
ac

ke
ts

 in
 1

0
3)

No. of Nodes

M2M

CoAP

MQTT

0

0.5

1

1.5

2

2.5

3

50 100 150 200 250 300

Th
ro

u
gh

p
u

t
(B

P
S)

No. of Nodes

M2M

CoAP

MQTT

0

1

2

3

4

50 100 150 200 250 300

Th
ro

u
gh

p
u

t
(B

P
S)

No. of Nodes

M2M

CoAP

MQTT

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7425

Article Received: 12 May 2023 Revised: 26 June 2023 Accepted: 25 July 2023

 319

IJRITCC | August 2023, Available @ http://www.ijritcc.org

• For MQTT, the throughput decreases dramatically

from 1.323 bps to 0.195 bps when data compression is

enabled for 300 nodes.

Additionally, we can observe that MQTT has the lowest

throughput among the three protocols.

3 Average End to End Delay

The performance of the M2M, CoAP, and MQTT routing

protocols was evaluated in terms of the "end-to-end delay"

parameter, taking into account the usage of data compression,

based on the information shown in figures 9 and 10. The results

show that there is an observed rise in the end-to-end delay as

the number of packets increases from 50 nodes to 300 nodes.

However, compared to situations when data compression is not

used, the end-to-end delay decreases when data compression is

used. This decrease in latency can be due to the smaller data

packet sizes brought about by the use of data compression

techniques.

Figure 9. End to End delay without Data Compression

Figure 10. End to End delay with Data Compression

The research paper provides specific results to support this

observation:

1. M2M Protocol:

• With 200 nodes:

o Without data compression: 0.8s

o With data compression: 0.6s

2. CoAP Protocol:

• With 250 nodes:

o Without data compression: 2.95s

o With data compression: 1.98s

3. MQTT Protocol:

• With 300 nodes:

o Without data compression: 4.9s

o With data compression: 3.7s

These results lead to the conclusion that using data

compression helps all three protocols' end-to-end latency be

reduced. Compression reduces the size of data packets, which

improves performance by cutting down on the time it takes to

transmit and process the packets.

VIII. CONCLUSION

In conclusion, this study used the Lempel-Ziv-Welch (LZW)

data compression method to examine the performance of IoT

networks operating in an acoustic environment. Throughput,

routing overhead, and average end-to-end delay were taken

into account as performance metrics. Additionally, three

protocols—MQTT, CoAP, and machine-to-machine (M2M)—

were assessed as part of the study.

The LZW data compression technique showed promising

results in enhancing the functionality of IoT networks in the

acoustic environment, according to the findings. By efficiently

reducing the routing overhead through data compression, it

improved the utilisation of resources and lessened network

congestion. Throughput across the whole network was

increased as a result of this decrease in routing overhead.

The average amount of time it takes to transmit data from the

source to the destination was also significantly reduced as a

result of the use of LZW compression. The compression

technique decreased the time needed for data transmission by

reducing the size of the communicated data, resulting in lower

latency and faster connection between IoT devices.

In terms of protocols, this study assessed MQTT, CoAP, and

M2M. Each protocol highlighted particular advantages and

disadvantages. For IoT devices with limited resources, MQTT

has shown to be a dependable and small-footprint protocol that

offers effective message transport. On the other hand, CoAP

showed outstanding support for low-power and lossy

networks, allowing for effective resource discovery and

communication. Direct device-to-device communication is the

main goal of M2M, which increased connectivity and

decreased reliance on centralised servers.

Overall, the study's findings highlight the significance of using

efficient data compression methods, like LZW, in IoT

networks that operate in acoustic settings. Compression

techniques allow for significant improvements to be made in

terms of data transfer speeds, routing burdens, and the average

amount of time it takes for information to travel from its

0

1

2

3

4

5

6

50 100 150 200 250 300

En
d

 t
o

 E
n

d
 D

e
la

y
(S

e
c)

No. of Nodes

M2M

CoAP

MQTT

0

1

2

3

4

50 100 150 200 250 300

En
d

 t
o

 E
n

d
 D

e
la

y
(S

e
c)

No. of Nodes

M2M

CoAP

MQTT

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7425

Article Received: 12 May 2023 Revised: 26 June 2023 Accepted: 25 July 2023

 320

IJRITCC | August 2023, Available @ http://www.ijritcc.org

source to its destination. Additionally, choosing the right

protocols while taking into account the unique needs and

limitations of the network is essential for assuring optimal

performance in IoT deployments.

REFERENCES

[1] Darabkh, K. A., Amro, O. M., Al-Zubi, R. T., & Salameh, H. B.

(2021). Yet efficient routing protocols for half-and full-duplex

cognitive radio Ad-Hoc Networks over IoT environment.

Journal of Network and Computer Applications, 173, 102836.

[2] Azar, J., Makhoul, A., Couturier, R., & Demerjian, J. (2020).

Robust IoT time series classification with data compression and

deep learning. Neurocomputing, 398, 222-234.

[3] Han, M., Duan, J., Khairy, S., & Cai, L. X. (2020). Enabling

sustainable underwater IoT networks with energy harvesting: a

decentralized reinforcement learning approach. IEEE Internet of

Things Journal, 7(10), 9953-9964.

[4] Robinson, Y. H., Krishnan, R. S., Julie, E. G., Kumar, R., &

Thong, P. H. (2019). Neighbor knowledge-based rebroadcast

algorithm for minimizing the routing overhead in mobile ad-hoc

networks. Ad Hoc Networks, 93, 101896.

[5] Meier-Kolthoff, J. P., & Göker, M. (2019). TYGS is an

automated high-throughput platform for state-of-the-art genome-

based taxonomy. Nature communications, 10(1), 2182.

[6] Venkataramanan, A. R. ., Kanimozhi, K. V. ., Valarmathia, K. .,

Therasa, M. ., Hemalatha, S. ., Thangamani, M. ., & Gulati, K. .

(2023). A Survey on Covid-19 & Its Impacts. International

Journal of Intelligent Systems and Applications in Engineering,

11(3s), 129 –. Retrieved from

https://ijisae.org/index.php/IJISAE/article/view/2550

[7] Gorbunova, A. V., Vishnevsky, V. M., & Larionov, A. A.

(2020). Evaluation of the end-to-end delay of a multiphase

queuing system using artificial neural networks. In Distributed

Computer and Communication Networks: 23rd International

Conference, DCCN 2020, Moscow, Russia, September 14–18,

2020, Revised Selected Papers 23 (pp. 631-642). Springer

International Publishing.

[8] Dinculeană, D., & Cheng, X. (2019). Vulnerabilities and

limitations of MQTT protocol used between IoT devices.

Applied Sciences, 9(5), 848.

[9] Bansal, M., & Priya. (2021). Performance comparison of MQTT

and CoAP protocols in different simulation environments.

Inventive Communication and Computational Technologies:

Proceedings of ICICCT 2020, 549-560.

[10] Railkar, P. N., Mahalle, P. N., & Shinde, G. R. (2021). Scalable

Trust Management model for Machine To Machine

communication in Internet of Things using Fuzzy approach.

Turkish Journal of Computer and Mathematics Education

(TURCOMAT), 12(6), 2483-2495.

[11] Qiu, T., Zhao, Z., Zhang, T., Chen, C., & Chen, C. P. (2019).

Underwater Internet of Things in smart ocean: System

architecture and open issues. IEEE transactions on industrial

informatics, 16(7), 4297-4307.

[12] Safieh, M., & Freudenberger, J. (2019). Efficient VLSI

architecture for the parallel dictionary LZW data compression

algorithm. IET Circuits, Devices & Systems, 13(5), 576-583.

[13] Mohammadi, H., Ghaderzadeh, A., & Sheikh Ahmadi, A.

(2022). A Novel Hybrid Medical Data Compression Using

Huffman Coding and LZW in IoT. IETE Journal of Research, 1-

15.

[14] Ms. Mohini Dadhe, Ms. Sneha Miskin. (2015). Optimized

Wireless Stethoscope Using Butterworth Filter. International

Journal of New Practices in Management and Engineering,

4(03), 01 - 05. Retrieved from

http://ijnpme.org/index.php/IJNPME/article/view/37

[15] Khan, M. A., Khan, M. A., Jan, S. U., Ahmad, J., Jamal, S. S.,

Shah, A. A., ... & Buchanan, W. J. (2021). A deep learning-

based intrusion detection system for mqtt enabled iot. Sensors,

21(21), 7016.

[16] Ahammad, D. S. K. H. (2022). Microarray Cancer Classification

with Stacked Classifier in Machine Learning Integrated Grid L1-

Regulated Feature Selection. Machine Learning Applications in

Engineering Education and Management, 2(1), 01–10. Retrieved

from

http://yashikajournals.com/index.php/mlaeem/article/view/18

[17] Esposito, M., Kowalska, A., Hansen, A., Rodríguez, M., &

Santos, M. Optimizing Resource Allocation in Engineering

Management with Machine Learning. Kuwait Journal of

Machine Learning, 1(2). Retrieved from

http://kuwaitjournals.com/index.php/kjml/article/view/115

[18] Tyagi, D., Agrawal, R., & Singh, H. M. (2018, October). A

survey on MAC layer protocols for machine to machine

communication. In 2018 International Conference on Advances

in Computing, Communication Control and Networking

(ICACCCN) (pp. 285-288). IEEE.

[19] Larmo, A., Ratilainen, A., & Saarinen, J. (2018). Impact of

CoAP and MQTT on NB-IoT system performance. Sensors,

19(1), 7.

[20] Sisodia, A., & Kundu, S. (2019, November). Enrichment of

performance of operation based routing protocols of WSN using

data compression. In 2019 8th International Conference System

Modeling and Advancement in Research Trends (SMART) (pp.

193-199). IEEE.

[21] Ahmed Ali, Anaïs Dupont,Deep Generative Models for Image

Synthesis and Style Transfer , Machine Learning Applications

Conference Proceedings, Vol 2 2022.

[22] Sisodia, A., & Yadav, A. K. (2022). Confabulation of Different

IoT Approaches with and without Data Compression. Computer

Integrated Manufacturing Systems, 28(11), 963-981.

[23] Sisodia, A., & Swati, H. H. (2020). Incorporation of non-

fictional applications in wireless sensor networks. International

Journal of Innovative Technology and Exploring Engineering

(IJITEE), 9(11).

[24] Sisodia, A., Vishnoi, S., & Yadav, A. K. (2023). To Brace

Society 5.0: Enhanced Reliability with a Cost-Effective Protocol

for Underwater Wireless Sensor Network. In Sustainable

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9s

DOI: https://doi.org/10.17762/ijritcc.v11i9s.7425

Article Received: 12 May 2023 Revised: 26 June 2023 Accepted: 25 July 2023

 321

IJRITCC | August 2023, Available @ http://www.ijritcc.org

Computing: Transforming Industry 4.0 to Society 5.0 (pp. 171-

185). Cham: Springer International Publishing.

http://www.ijritcc.org/

