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Abstract: Cloud computing and storage processing is a big service for maintaining a large number of data in a centralized server 

to store and retrieve data depending on the use to pay as a service model. Due to increasing storage depending on duplicate copy 

presence during different sceneries, the increased size leads to increased cost. To resolve this problem, we propose a Cross-Layer 

Fragment Indexing (CLFI) based file deduplication using Hyper Spectral Hash Duplicate Filter (HSHDF) for optimized cloud 

storage. Initially, the file storage indexing easy carried out with Lexical Syntactic Parser (LSP) to split the files into blocks. Then 

comparativesector was created based on Chunk staking. Based on the file frequency weight, the relative Indexing was verified 

through Cross-Layer Fragment Indexing (CLFI). Then the fragmented index gets grouped by maximum relative threshold margin 

usingIntra Subset Near-Duplicate Clusters (ISNDC). The hashing is applied to get comparative index points based on hyper 

correlation comparer using Hyper Spectral Hash Duplicate Filter (HSHDF). This filter the near duplicate contentdepending on file 

content difference to identify the duplicates. This proposed system produces high performance compared to the other system. This 

optimizes cloudstorage and has a higher precision rate than other methods. 

Keywords: Cloudstorage; Deduplication;Cross-Layer Fragment Indexing; Syntactic Parser;Near-Duplicate Clusters. 

 

I. Introduction 

A storage system contains redundant copies of data 

within the same File or subfile region. With deductive 

technology, you can use this redundancy to reduce the space 

required to store files on your file system [1]. A scalable and 

reliable distributed system that supports data reduction has 

recently become popular for backup and archival data storage. 

This technology can be used in primary storage. Our research 

aims to develop a file type-aware reduction method to 

improve storage system capacity [2]. 

To understand the relationship between duplicate 

content and file types, we began our research by focusing on 

the relationship between the amount of duplicate content that 

can be extracted between different files [3]. Data 

deduplication is a new technology that introduces ways to 

reduce storage usage and efficiently handle data duplication in 

backup environments. In cloud data storage [4], deductive 

technology plays an important role in virtual machine 

architectures, sharing networks, social media processing of 

structured and unstructured data, and disaster recovery. 

Truncation algorithms are important in deductive scenarios as 

they are the first step in obtaining efficient data reduction rates 

and throughputs [5]. 

Deduplication is a technique that depends on the 

amount of duplicate data. Store duplicate data only once 

instead of repeatedly. An immediate practical question is how 

much duplicate data is created in the data center [6]. These 

issues can lead to poor server and application performance and 

quality, increasing operating costs [7]. So, to solve this 

problem and process the data properly, the data center has a 

dedicated deductive concept. 

The deduction process is the basis of the rate and 

efficiency of the deduction system. Reads the entire existing 

metadata and checks for new chunks. The fragment index 
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table captures all available fragment information [8]. The 

index table is first searched to identify whether the new 

fragment's information is new or old. This process requires a 

lot of computer usage and disk access. 

Deduplication technology recovers files for processes 

at the File or block level. At the file level, the entire File is 

considered a block, but at the block level, the data is divided 

into fixed or variable lengths. Each of these chunks derives a 

unique identifier from the hash method. 

The main challenges are identifying maximum 

duplicate segments and selecting the storage nodes for 

distributing fragments of files. The main contribution is to 

reduce the centralized cloud storage based on finding 

duplicate content and remove the similarity content to improve 

cloud storage management. The contribution of this research 

is based on redundant storage by accessing multiple file 

contents, hashing techniques to achieve a balance between 

cloud storage, file types, volume storage capacity, error 

tolerance requirements, and objective data backup methods to 

improve cloud storage performance [9]. The hash-based 

Indexing semantic relational approach is used to improve the 

deduplication accuracy. 

File-level defragmentation is also called whole-file 

defragmentation. This way, individual files are treated as 

chunks, and files are not split into smaller chunks [10]. Only 

one index is generated for each File and compared to the 

stored metadata. Because only one index is created for each 

File, this copy system reduces the amount of fragment 

metadata stored in memory. 

Compared to other fragment methods, this method 

requires less space and significantly reduces the total number 

of fragments required for comparison. The entire list can be 

stored in the main memory to reduce system resource usage. 

However, this method treats the File as a new part. If only a 

small part of the file changes, it will affect the detection 

algorithm. Calculates the hash value of the entire File, not just 

the changed part. 

The inline process first removes duplicate data before 

storing it in storage. Otherwise, the deductive process occurs 

when the received data comes to storage. The post-processing 

method stores the received data on the staging storage disk 

and performs the derivation process. 

II. Related work  

Various works have addressed this deduplication 

methodology to optimize the storage problem. This is 

explained briefly in the literature review section, which 

various methodologies implement. 

Managing cloud storage services is an important 

aspect of information management that stores / retrieve data 

based on distributed data centers [11]. Duplications add 

storage space because data and file structures stored in data 

centers containing identical information are multiple copies. 

Similarity data analysis does not detect duplicate content, so 

systems with potential compression do not perform efficient 

data reduction. This complex nature increases memory 

consumption in terms of cost. 

Most storage services reduce the storage by finding 

duplicate data is essential to managing storage access. [12] 

described Data Deduplication as a more popular technique to 

attain space-efficient finding duplicates [13]. Deduplication 

remains the storage that only identifies those using hash 

values for comparison of a block of data and creates a logical 

pointer to another copy of the redundant data; actual data leads 

be stored as a copy to excess storage data [14]. 

The wrapping storage be optimized with conceptual-

based similar data deduplication technology is recently got 

more attention for finding duplicate content; this is the most 

popular and effective method for the space backup storage 

system. The main challenge of centralized Deduplication is an 

extension of the fingerprint index search [15]. A scalable data 

deduplication system produces higher effectiveness for finding 

non-redundancy data because similar data produce very low 

overhead, lower throughput and balanced load, and stream 

based on storage access. 

Mostly the clustering concepts are used in the 

deduplication file system to host the virtual machine file 

system [16]. This file system doesn't produce efficient storage 

and leads to wasted storage space, including a large number of 

duplicate blocks, increasing the cache footprint of the storage 

array [17]. These problems with deduplication address storing 

a single instance of each unique data block are achieved by 

sharing data among all sources [18]. 

The duplication detection techniques behind the 

forum posts become a problem associated with the increasing 

storage space. In contrast, the conventional method doesn't 

compare the contents of the binding posts to the content of the 

relevant document [19]. 

The content-based duplicate measures the similarity 

by checking the Content present in the File to make the 

subsidiary Intention-Based Segmentation method (CS-IBS) 

implemented by [20]. The content-based segmentation 

increases the probability of finding features with more 

significant terms. This increase the relatedness of non-

relational feature to reduce the deduplication accuracy. 
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III. Proposed System 

Towards the development of efficient Deduplication 

techniques are implemented to reduce the storage. For 

repetitive data, reference pointers are used, and unique data is 

stored in the storage node. This increases the detection rate of 

duplicate data.We propose a Cross-Layer Fragment Indexing 

(CLFI) based file deduplication using Hyper Spectral Hash 

Duplicate Filter (HSHDF) for optimized cloud storage. 

Initially, the file storage indexing easy carried out with 

Lexical Syntactic Parser (LSP) to split the files into blocks. 

Then comparative sector was created based on Chunk staking. 

Based on the file frequency weight, the relative Indexing was 

verified through Cross-Layer Fragment Indexing (CLFI). 

Fragment placement algorithms are used to place fragments on 

different storage nodes. Use de-coloring to select the node. 

They are largely eliminating duplication and providing high 

protection for data fragments. It selects non-adjacent nodes 

preventing unauthorized access to data by other users. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 proposed architecture diagram ISNDC- HSHDF 

Then the fragmented index gets grouped by 

maximum relative threshold margin using Intra Subset Near-

Duplicate Clusters (ISNDC). Figure 1shows the proposed 

architecture diagram ISNDC- HSHDF. The hashing is applied 

to get comparative index points based on hyper correlation 

comparer using Hyper Spectral Hash Duplicate Filter 

(HSHDF). This filter the near duplicate content depending on 

file content difference to identify the duplicates.  

3.1 Lexical Syntactic Parser (LSP) 

In this stage, the preliminaries of the file index are 

verified based on the File's properties and its contents with 

format representation. This checks the intent properties of files 

indexed with staking queries.   

State matrix parser =[

𝐹𝑖1

𝐹𝑖2

⋯
𝐹𝑖𝑛

] [

𝐶𝑖1 𝐶𝑖2 … 𝐶𝑖𝑛

𝐶𝑗1 𝐶𝑗2 … 𝐶𝑛1

… … … …
𝐶𝑛1 𝐶𝑛1 … 𝐶𝑛𝑛

], 

𝑆𝑝𝑛=0 = 1, 2,3 … … . 𝑛 

This creates a state matrix Index, whether the files 

are split into tokenized indexes with original files. The Set of 

lexical tokens is formed based on the file size divided into File 

comparer staking (FCS) and file indexer. They make a 

syntactic rule for the comparison matrix taking Tcs→set={T1, 

T2,……Tn} be compared with other chunks. Each chunk gets 

a Difference matrix to compare blocks to other files. These are 

getting parsed to get the similarity index (Si) 

3.2 Cross Layer Fragment Indexing (CLFI) 

In this stage, the chunks are hashed with an internal 

layer file comparison using the FCS staking. The file indexer 

gets the blocks with other files—a general time complexity 

analysis of the project. Let S be the Staking withTcs set of 

inputs D that have a deterministic S and a stop property for D. 

Let W be the set of input weights, and |d| is a function of the 

size of the input of D. Let t (d) be the time cost function of S. 

On the other hand, the following two conditions apply at each 

size of W. A probability function is defined on the Set of 

inputs of size W and is denoted by PW 

By definition, 

𝐹𝑐𝑠 = 𝑆(𝑇𝑐𝑠) ∑ 𝑃𝑊

|𝑑|=𝑤

= 1 → {𝑊𝑠1, 𝑊𝑠2, … . 𝑊𝐷𝑛} 

Let ‘w’ be the Size of the file Block presented in chunks at the 

maximum comparison to reading the data at the time T is t(d) 

to the input W.mean time of data comparison in match case is, 

𝑇ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑚𝑎𝑡𝑐ℎ𝑐𝑎𝑠𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (𝑤) = ∑ 𝑃𝑤(𝑑) ·|𝑑|=𝑤

𝑡(𝑑) → (𝐻 − 𝑖𝑛𝑑𝑒𝑥). 

This takes the sequential comparison of blocks with respective 

Tw. The probability gets maximum match case count terms is 

related to input file blocks Pwkvwhich is equal to chunk to 

verify the index at K state. 

Let S (w)=

∑ 𝑘(𝑠𝑡𝑎𝑘𝑖𝑛𝑔 (𝑠) ∑ 𝑃𝑤(𝑑)|𝑑|=𝑤,𝑡(𝑑=𝑘) ) →𝑘≥0 (𝑀𝑎𝑥) ∑ 𝑘𝑝𝑤𝑘𝑘≥0 −→

(𝐻 − 𝑖𝑛𝑑𝑒𝑥) 

For each block of file content size S (w) of W, the time 

complexity limit of the input quantity s is equal to the mean 

value E (w) of the random variable TW. A part of the function 

E (w) forms the statistical properties of the time of the 

function. S is characterized by the standard deviation D (w) of 
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the variance functions V (w) and t (•), where w is in the range 

w. 

V(w) = S ∑(𝐾 − 𝑇𝑎𝑣𝑒(𝑤))2

𝑘≥0

𝑃𝑤𝑘 

 A probability function is defined on the Set of inputs of size 

w and is denoted by 

By definition, 

Probability to get file match case at P(s→)∑ 𝑝𝑤=1|𝑑|=𝑤  

For each quantity w of W, the range t (•) of the input of 

quantity w to the time cost function is a random variable. Tw 

denotes it. Assume that the random variable Tw is a natural 

number. Pwk denotes the probability distribution of Tw. For 

an input of size d, TW is the probability equal to k. The 

average time complexity is as follows. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇(𝑤) = ∑ 𝑃𝑤(𝑑) · 𝑡(𝑑)

|𝑑|=𝑤

= ∑ 𝑘 ( ∑ 𝑃𝑤(𝑑)

|𝑑|=𝑤,𝑡(𝑑=𝑘)

)

𝑘≥0

= ∑ 𝑘𝑝𝑤𝑘

𝑘≥0

 

For each size w in W, that is, the average time complexity of S 

for input size w is equal to the mean E(w), the statistical 

properties of the running V(w) and standard deviation D(w) of 

Tw with w ranging over W, where 

V(w) = S ∑(𝐾 − 𝑇𝑎𝑣𝑒(𝑤))2

𝑘≥0

𝑃𝑤𝑘 

This returns the match case vectors for predominate average 

match case content equal to the chunks defined responsibility. 

This returns the average match case blocks of files returned to 

the content  

3.3 Intra Subset Near-Duplicate Clusters (ISNDC)  

In this content analysis, the average vectors are 

scaled into File content comparative features, and relative 

features are grouped into clusters to make Indexing. Then 

comparing the cluster with one another, be scaled into Intra 

subset values. Based on the feature dependencies, the Blocks 

are input depending on the file content size. This estimates the 

probability function is pointed by the input size w and is 

denoted by PCB.  By the definition, 

∑ 𝑃𝑤𝐵|𝑑|=𝑤 = 1,2, … . 𝑛                                                                                                         

(1) 

For each size w in W, the restriction of the time cost function 

t(·) to inputs of size w is a random variable;Tw.the random 

variable Tw denotes it assumes natural numbers are valid. The 

probability that for an input d of size w, Tw is equal to k. 

Notice that the average time complexity is 

𝑀𝐴𝑥(𝑤) = ∑ 𝑃𝑤(𝑑) · 𝑡(𝑑) =|𝑑|=𝑤

∑ 𝑘(∑ 𝑃𝑤(𝑑)|𝑑|=𝑤,𝑡(𝑑=𝑘) )𝑘≥0 = ∑ 𝑘𝑝𝑤𝑘𝑘≥0   (2) 

For each size w in W, that is the average time complexity of S 

for input size w is equal to the mean value E(w) of the random 

variance function V(w) and standard deviation D(w) of Tw with 

w ranging over W, where 

V(w) = S ∑ (𝐾 − 𝑇𝑎𝑣𝑒(𝑤))2
𝑘≥0 𝑃𝑤𝑘                (3) 

𝐷(𝑤)√𝑉(𝑤)                                                    (4) 

These quantities determine how much the random variables Tw 

are concentrated around their mean values. the smaller the 

standard deviation, the better concentration of Tw around its 

mean value is  

To find the statistical quantities E(w), V(w), and D(w), the 

method of generating function is used. the generating function 

for random variables Tw is 

𝑃𝑤(𝑧) = ∑ 𝑃𝑤𝑘𝑧𝑘

𝑘≥0

 

With arguments and values being real numbers.therefore, 

𝑃𝑤
′ (1) = (∑ 𝐾𝑝𝑤𝑘

𝑘≥0

𝑧𝑘−1) (1) = ∑ 𝑘𝑝𝑤𝑘

𝑘≥0

 

From the above equation, the content similarity at exponential 

levels, 𝐸(𝑤) = 𝑃𝑤
′ (1) 

 Next 

𝑃𝑤
" (1) = ∑ 𝑘(𝑘 − 1)𝑃𝑤𝑘

𝑘≥0

𝑧𝑘−2(1) = ∑ 𝑘(𝑘 − 1)𝑃𝑤𝑘

𝑘≥0

 

From the above equation, we get vectored equivalence of 

content match case, 𝑉(𝑤) = ∑ (𝑘 − 𝑝𝑤
′ (1))2𝑃𝑤𝑘𝑘≥0 =

𝑃𝑤
" (1) + 𝑃𝑤

′ (1) + 𝑃𝑤
′ (1)2 

Based on the estimated weight, the duplicate files are 

discarded, and only one index will be created of all the files 

from which the original file index is to be created. 

Algorithm:  

Input: The dataset D= {d1, d2, d3,..dn} with co-reference 

resolved. 

Output: paired redundant reduction data:  

 Step 1: compute dataset forums: 

  For each cluster document d in D, do create byte 

stream 

   For each document w in d do  
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 Check the semantic cluster terms compared with other 

cluster groups based on 

distance flow. 

                                      From the distance flow weight, each 

cluster is ordered into Indexing 

 Step 2:  Finding a semantic group pair of the most similar 

clusters and merging index values 

 If cluster Count ==1 on compression 

  Substitute the manuscript size 

by corresponding cluster id 

   End if  

 Step 3: Calculate cosine transformation on the discrete 

document by byte streams 

   If document index count > 1 document 

similar 

                                           Simulate the singular document 

compressed from D 

Other non-similar data to compressed data Cd 

                           End if 

 Step 4: If the terminal index is singular as the compressed 

cluster, else repeating 

Select the compacted 

similarity value as a suitable 

sense  

Substitute the document w 

Cd by matching cluster 

based on the recognized 

intellect data singular 

compression.  

 Step 5 End if  

  End for  

  End for  

The cosine transformation checks the index values by 

checking the stream of files in the cluster. This makes the 

redundant comparison to improve the Deduplication. Finally, 

only one index file-sized value is compared with all indexed 

clusters to find the duplicates.This returns the vector weight of 

each block represented to the comparative chunk with the 

content match case. 

3.4 Hyper Spectral Hash Duplicate Filter (HSHDF) 

In this stage, Hyper spectral Deduplication makes an 

index-based search model to find the duplicate content and 

exploits stream of file content to make blocks. This Hashed 

Indexing creates a locality index to filter duplicate files. Such 

that needs the data filtering criteria performing the similarity 

content based on clustering to find the inconsistencies in data 

chunks depending on metadata forums.Let us consider T 

(n).assume that h(x) =j when an unsuccessful search for x 

happens. Denoting by Pnkthe probability that the list H[j] has 

length k, we have 

𝑃𝑛𝑘 = (
𝑛

𝑘
) (

1

𝑀
)

𝑘

(1 −
1

𝑀
)

𝑛−𝑘

 

Since the value j appears k times in a sequence h1,….,hn with 

the probability defined by the Bernoulli schema, now we have 

𝑃𝑛
−(𝑍) = ∑ 𝑃𝑛𝑘𝑍𝑘+1

𝑘≥0

 

Which can easily be transformed into a simpler form 

𝑃𝑛
−(𝑍) = (

𝑧

𝑀
+ 1 −

1

𝑀
)

𝑛

𝑧 

By different (12), we have 

𝑃𝑛
−1(𝑍) = (

𝑧

𝑀
+ 1 −

1

𝑀
)

𝑛−1

(
𝑛𝑧

𝑀
+

𝑧

𝑀
+ 1 −

1

𝑀
) 

𝑃𝑛
−"(𝑍) = (

𝑧

𝑀
+ 1 −

1

𝑀
)

𝑛−2

(
𝑛 − 1

𝑀
(

𝑛𝑧

𝑀
+

𝑧

𝑀
+ 1 −

1

𝑀
)

+ (
𝑧

𝑀
+ 1 −

1

𝑀
) (

𝑛

𝑀
+

1

𝑀
)) 

Based on the above equation, we get redundancy to check the 

file properties of equivalent content. We get,  𝑃𝑛
−1(𝐼) =

𝑛

𝑀
+ 1 

Similarly, the Inverse comparison of each chinks is referred as 

𝑃𝑛
−"(𝐼) =

𝑛(𝑛−1)

𝑀2 +
2𝑛

𝑀
 and the exponential blocks comparison 

rate is,  

𝐸−(𝑛) = 𝑃𝑛
−1(1) =

𝑛

𝑀
+ 1 

𝑉−(𝑛) = 𝑃𝑛
−"(1)+𝑃𝑛

−1(1)-(𝑃𝑛
−1(1))

2
 

             =   
𝑛(𝑛−1)

𝑀2 +
2𝑛

𝑀
+ (

𝑛

𝑀
+ 1) − (

𝑛

𝑀
+ 1)

2

 

             =   
𝑛(𝑛−1)

𝑀2  

 And denoting by α=𝑛
𝑀⁄ , that is, the 

definition of table H, we obtain 

𝐸−(𝑛) =α+1,𝑉−(𝑛) ≅ α,𝐷−(𝑛) ≅ √α, 

To estimate𝐸+(𝑛), that is, the average cost in a successful 

case, consider the function 𝑛𝐸+(𝑛). Its value equals the 
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number of steps performed when all n elements of ‘A’ are 

searched for. But the list of length k contributes 
1

2
𝑘(𝑘 + 1) 

Steps to the total. Consequently, since there are M lists, we 

have 

𝑛𝐸+(𝑛) = 𝑀 ∑
𝑘(𝑘 + 1)

2
𝑘≥0

𝑃𝑛𝑘 

and according to the definition of 𝑃𝑛
−1(𝑍), we obtain 

𝐸+(𝑛) =
𝑀

2𝑛
∑ 𝑘(𝑘 + 1)

𝑘≥0

𝑃𝑛𝑘 =
𝑀

2𝑛
𝑃𝑛

−"(1) =
𝑛 − 1

2𝑀
+ 1

≅
1

2
α + 𝐼 

By this evaluation, the block size results related to 

other similarity files are indexed as duplicated and match case 

similarity levels. I.e., 𝐸+(𝑛) produce higher results in 

comparative definition rate for each chunk. 

Performance evaluation and its outcomes 

The outcome of the deduplication system efficiency 

is based on the duplication ratio. Figure 1.9 explains the key 

process outcome results. It is calculated based on the total 

number of sizes before and after the Deduplication, as shown 

in equation 1.1. 

 

A good deduplication system provides a more 

effective ratio and detects more duplication elements. The 

throughput is calculated based on the number of Hits on the 

main memory for the index lookup, as shown in equation 1.2. 

Data Skew concepts are purely used in the data directing 

nodes. It is calculated on Max node utilization divided by the 

average node utilization as shown in equation 1.3. 

 

Hit ratio is more, and I/O access less means the 

deduplication system's throughput is more. Data Skew 

concepts are purely used in the data directing nodes. It is 

calculated on Max node utilization divided by the average 

node utilization as shown in equation 1.3. Hit ratio is more, 

and I/O access less means the deduplication system's 

throughput is more. 

 

In the distributed or cluster model system, the data 

traversal between the node is challengeable, and it can affect 

the data deduplication performance. So the Data Skew also 

needs to be handled properly. The efficiency of the system is 

based on the total Deduplication and Data Skew, as shown in 

the equation. 

IV. Results and Discussion 

 The results are tested with an Amazon web service 

(AWS) cloud environment, making it an EC2 server instance 

with EBS storage. The collected content files are grouped into 

the duplicate dataset to make fixed storage for 

deduplicationredundancy. The proposed 

HSHDFimplementation applies the block-based comparison 

with indexed hash table files called lookup indexing tables. 

This result test with a confusion matrix to test the efficiency as 

precision, Recall, false rate, and storage optimization accuracy 

compared with other methodsSiLo, CFBC, andEHFDD. Table 

1 below shows the parameters and values processed for 

Deduplication in the cloud. 

Table 1: parameters and values processed 

Parameters  Values processed 

Cloud environment AWS, EBS cloud storage 

Data used and size Content file type,=<= 5Gb 

Simulation framework Visual Studio/ c#.net , VS 4.5 

Output type definition Redundant storage space 

 

 The presentation of the technique has been restrained in 

gathering correctness, time complexity, and Recall to produce 

the best performance under different levels of testing. 
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Figure 3: Analysis of precision rate 

 Figure 3 shows the precision performances from testing 

the various data sizes using different methods. The proposed 

SLCSD produces the best performance up to 93.8 % compared 

to the methods by testing 5 GB of data, RB-FDESLI produces 

93.6 %, SiLoproduces 76.3 %, CFBCproduces 87.3 %, and 

EHFDD produces 89.1 %. 

  

 

Table 2: Analysis of precision rate 

Analysis of precision rate in % 

Storage 

/methods 

SiLo CFBC EHF RB-FDESLI HDF 

5GB 76.3 87.3 89.1 93.2 93.8 

10 GB 74.8 84.6 85.4 94.6 95.4 

20 GB 73.2 85.5 86.8 96.3 96.9 

  

Table 2 shows the performances result in a comparison of the 

accuracy of produce in various ways. The proposed 

HSHDFperforms the best accuracy in precision rate compared 

to the other methods. 

 

Figure 4: Analysis of recall rate 
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Figure 4 shows that Recall performance has been measured in 

various ways. The proposed RB-FDESLI produces the best 

performance up to 93.5% compared to the methods by testing 

5 GB of data, the SiLoproduces 75.3 %, CFBC produces 85.3 

%, and EHFDD produces 91.3 %. And the the proposed 

HSHDFalgorithm attain improved Recall performance is 

higher than other methods.  

 

 

 

 

 

Table 3: comparison of Recall 

Impact of Recall in % 

Storage 

/methods 

SiLo CFBC EHF RB-

FDESLI 

HDF 

5GB 75.3 85.3 91.3 93.5 94.2 

10 GB 74.1 84.6 92.2 94.2 95.1 

20 GB 72.2 83.5 94.6 97.3 97.8 

 

Table 3 recounts a variety of state comparison techniques. The 

proposed HSHDFsystem creates a high return state with a 

maximum rating of 97.8 % compared to another system. 

 

Figure: 5 Analysis of false classification rate

 

Figure: 5 shows the measure of the rate of incorrect 

redundancy rate production by various methods, it is 

presented. The proposedHSHDF and  RB-FDESLI produce 

the best performance up to 4.1 % compared to the methods by 

testing 5 GB of data, the SiLoproduces 6.6 %, CFBC produces 

5.3 %, and EHFDD produces 5.2 %. The results of the 

proposed HSHDFalgorithm show that it produces a false 

classification rate less than other methods. 

 

 

 

 

Table 4: Analysis of false rate 

Analysis of false  rate % 

Storage 

/methods 

SiLo CFBC EHF RB-

FDESLI 

HDF 

5GB 6.6 5.3 5.2 4.1 3.6 

10 GB 8.8 4.6 4.4 3.6 3.2 

20 GB 11.3 6.5 5.6 2.9 2.6 

 

To measure the rate of incorrect rate production by various 

methods is presented in table 4. The results of the proposed 

SLCSDalgorithm show that it produces a false classification 

rate less than other methods.  
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Figure 6: storage performance rate 

 Figure 6 presents the results of various methods' storage 

performance rates in memory of performance analysis. The 

proposed HSHDFproduces the best performance up to 72.6 % 

compared to the methods by testing 5 GB of data, the 

SiLoproduces 56.1 %, CFBC produces 59.2 %, and EHFDD 

produces 63.2 %. The proposed HSHDFmethod minimizes 

data replication and reduces memory consumption. 

Table 5: storage performance rate 

storage Redundant performance rate in % 

Storage 

/methods 

SiLo CFBC EHF RB-FDESLI HDF 

5GB 56.1 59.2 63.2 72.6 68.1 

10 GB 59.2 62.3 64,8 74.8 71.2 

20 GB 62.6 64.2 68.6 73.2 72.3 

 

Table 5 shows the changes in the data set of measures that 

were compared, analyzing the performance of the amount 

storage performance rate. As a result of the comparison, the 

proposedHSHDF system reduces storage consumption more 

than other methods. 

 

 

Figure 7: Analysis of the time process 
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 The above figure 7 shows the Measuring the time 

process preparation by different methods. The 

proposedHSHDF, RB-FDESLI produces the best performance 

up to 8.3 (s) compared to the methods by testing 5 GB of data, 

the SiLoproduces 6.3 (s), CFBC produces 5.3 (s), and EHFDD 

produces 4.7 (s). The proposed HSHDFalgorithm presents less 

time compared to the other methods reduced. 

Table 6: Analysis of the time process 

Analysis of time process (s) 

Storage /methods SiLo CFBC EHF RB-

FDESLI 

HDF 

5GB 6.3 5.3 4.7 3.8 3.6 

10 GB 8.8 6.6 5.2 4.3 3.8 

20 GB 10.3 8.5 7.1 6.2 4.2 

 

Table 6 shows the time process in different storage spaces, 

and the variety of proposed method options are compared to 

prove the performance. Applying the projected process 

HSHDFalso creates less time to process files and higher 

performance of up to 5.8 ms. 

V. Conclusion 

 To conclude, the proposed resultant performance and 

deduplication improvement produce the best performance to 

optimize the storage space. The new Cross Layer Fragment 

Indexing based file deduplication using Hyper Spectral Hash 

Duplicate Filter (HSHDF)attains high performanceto reduce 

the cloud storage.The clusters are further prepared for 

Deduplication remain the cosine transformation for 

redundancy to make singular byte stream compression. This 

implementation proves the data redundancy to reduce the 

storage space and improved results to improve the quality of 

memory management and service cost reduction in distributed 

cloud storage.This potential deduplication system makes 

efficient data reduction to find similar data analysis using the 

parsing methods.This resultant of proposed HSHDF proves 

the best evaluation in recall rate up to 97.8%, precision rate up 

to 96.9 %, and storage optimization 82.3 % improved as well 

as other methods. 
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