
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7239

Article Received: 25 April 2023 Revised: 18 June 2023 Accepted: 01 July 2023

 565
IJRITCC | July 2023, Available @ http://www.ijritcc.org

Cross-Layer Fragment Indexing based File

Deduplication using Hyper Spectral Hash Duplicate

Filter (HSHDF) for Optimized Cloud Storage

K. Geetha1*, Dr. A. Vijaya2
1Research Scholar (PT), PG and Research Department of Computer Science

Periyar University, Salem-636011

Mail-id: geethagacslm7@gmail.com
2Asst. Professor and Head, Department of Computer Applications

Sri Meenakshi Government Arts College For Women

Madurai-625002

Mail-id: vijayakathiravan@gmail.com

Abstract: Cloud computing and storage processing is a big service for maintaining a large number of data in a centralized server

to store and retrieve data depending on the use to pay as a service model. Due to increasing storage depending on duplicate copy

presence during different sceneries, the increased size leads to increased cost. To resolve this problem, we propose a Cross-Layer

Fragment Indexing (CLFI) based file deduplication using Hyper Spectral Hash Duplicate Filter (HSHDF) for optimized cloud

storage. Initially, the file storage indexing easy carried out with Lexical Syntactic Parser (LSP) to split the files into blocks. Then

comparativesector was created based on Chunk staking. Based on the file frequency weight, the relative Indexing was verified

through Cross-Layer Fragment Indexing (CLFI). Then the fragmented index gets grouped by maximum relative threshold margin

usingIntra Subset Near-Duplicate Clusters (ISNDC). The hashing is applied to get comparative index points based on hyper

correlation comparer using Hyper Spectral Hash Duplicate Filter (HSHDF). This filter the near duplicate contentdepending on file

content difference to identify the duplicates. This proposed system produces high performance compared to the other system. This

optimizes cloudstorage and has a higher precision rate than other methods.

Keywords: Cloudstorage; Deduplication;Cross-Layer Fragment Indexing; Syntactic Parser;Near-Duplicate Clusters.

I. Introduction

A storage system contains redundant copies of data

within the same File or subfile region. With deductive

technology, you can use this redundancy to reduce the space

required to store files on your file system [1]. A scalable and

reliable distributed system that supports data reduction has

recently become popular for backup and archival data storage.

This technology can be used in primary storage. Our research

aims to develop a file type-aware reduction method to

improve storage system capacity [2].

To understand the relationship between duplicate

content and file types, we began our research by focusing on

the relationship between the amount of duplicate content that

can be extracted between different files [3]. Data

deduplication is a new technology that introduces ways to

reduce storage usage and efficiently handle data duplication in

backup environments. In cloud data storage [4], deductive

technology plays an important role in virtual machine

architectures, sharing networks, social media processing of

structured and unstructured data, and disaster recovery.

Truncation algorithms are important in deductive scenarios as

they are the first step in obtaining efficient data reduction rates

and throughputs [5].

Deduplication is a technique that depends on the

amount of duplicate data. Store duplicate data only once

instead of repeatedly. An immediate practical question is how

much duplicate data is created in the data center [6]. These

issues can lead to poor server and application performance and

quality, increasing operating costs [7]. So, to solve this

problem and process the data properly, the data center has a

dedicated deductive concept.

The deduction process is the basis of the rate and

efficiency of the deduction system. Reads the entire existing

metadata and checks for new chunks. The fragment index

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7239

Article Received: 25 April 2023 Revised: 18 June 2023 Accepted: 01 July 2023

 566
IJRITCC | July 2023, Available @ http://www.ijritcc.org

table captures all available fragment information [8]. The

index table is first searched to identify whether the new

fragment's information is new or old. This process requires a

lot of computer usage and disk access.

Deduplication technology recovers files for processes

at the File or block level. At the file level, the entire File is

considered a block, but at the block level, the data is divided

into fixed or variable lengths. Each of these chunks derives a

unique identifier from the hash method.

The main challenges are identifying maximum

duplicate segments and selecting the storage nodes for

distributing fragments of files. The main contribution is to

reduce the centralized cloud storage based on finding

duplicate content and remove the similarity content to improve

cloud storage management. The contribution of this research

is based on redundant storage by accessing multiple file

contents, hashing techniques to achieve a balance between

cloud storage, file types, volume storage capacity, error

tolerance requirements, and objective data backup methods to

improve cloud storage performance [9]. The hash-based

Indexing semantic relational approach is used to improve the

deduplication accuracy.

File-level defragmentation is also called whole-file

defragmentation. This way, individual files are treated as

chunks, and files are not split into smaller chunks [10]. Only

one index is generated for each File and compared to the

stored metadata. Because only one index is created for each

File, this copy system reduces the amount of fragment

metadata stored in memory.

Compared to other fragment methods, this method

requires less space and significantly reduces the total number

of fragments required for comparison. The entire list can be

stored in the main memory to reduce system resource usage.

However, this method treats the File as a new part. If only a

small part of the file changes, it will affect the detection

algorithm. Calculates the hash value of the entire File, not just

the changed part.

The inline process first removes duplicate data before

storing it in storage. Otherwise, the deductive process occurs

when the received data comes to storage. The post-processing

method stores the received data on the staging storage disk

and performs the derivation process.

II. Related work

Various works have addressed this deduplication

methodology to optimize the storage problem. This is

explained briefly in the literature review section, which

various methodologies implement.

Managing cloud storage services is an important

aspect of information management that stores / retrieve data

based on distributed data centers [11]. Duplications add

storage space because data and file structures stored in data

centers containing identical information are multiple copies.

Similarity data analysis does not detect duplicate content, so

systems with potential compression do not perform efficient

data reduction. This complex nature increases memory

consumption in terms of cost.

Most storage services reduce the storage by finding

duplicate data is essential to managing storage access. [12]

described Data Deduplication as a more popular technique to

attain space-efficient finding duplicates [13]. Deduplication

remains the storage that only identifies those using hash

values for comparison of a block of data and creates a logical

pointer to another copy of the redundant data; actual data leads

be stored as a copy to excess storage data [14].

The wrapping storage be optimized with conceptual-

based similar data deduplication technology is recently got

more attention for finding duplicate content; this is the most

popular and effective method for the space backup storage

system. The main challenge of centralized Deduplication is an

extension of the fingerprint index search [15]. A scalable data

deduplication system produces higher effectiveness for finding

non-redundancy data because similar data produce very low

overhead, lower throughput and balanced load, and stream

based on storage access.

Mostly the clustering concepts are used in the

deduplication file system to host the virtual machine file

system [16]. This file system doesn't produce efficient storage

and leads to wasted storage space, including a large number of

duplicate blocks, increasing the cache footprint of the storage

array [17]. These problems with deduplication address storing

a single instance of each unique data block are achieved by

sharing data among all sources [18].

The duplication detection techniques behind the

forum posts become a problem associated with the increasing

storage space. In contrast, the conventional method doesn't

compare the contents of the binding posts to the content of the

relevant document [19].

The content-based duplicate measures the similarity

by checking the Content present in the File to make the

subsidiary Intention-Based Segmentation method (CS-IBS)

implemented by [20]. The content-based segmentation

increases the probability of finding features with more

significant terms. This increase the relatedness of non-

relational feature to reduce the deduplication accuracy.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7239

Article Received: 25 April 2023 Revised: 18 June 2023 Accepted: 01 July 2023

 567
IJRITCC | July 2023, Available @ http://www.ijritcc.org

III. Proposed System

Towards the development of efficient Deduplication

techniques are implemented to reduce the storage. For

repetitive data, reference pointers are used, and unique data is

stored in the storage node. This increases the detection rate of

duplicate data.We propose a Cross-Layer Fragment Indexing

(CLFI) based file deduplication using Hyper Spectral Hash

Duplicate Filter (HSHDF) for optimized cloud storage.

Initially, the file storage indexing easy carried out with

Lexical Syntactic Parser (LSP) to split the files into blocks.

Then comparative sector was created based on Chunk staking.

Based on the file frequency weight, the relative Indexing was

verified through Cross-Layer Fragment Indexing (CLFI).

Fragment placement algorithms are used to place fragments on

different storage nodes. Use de-coloring to select the node.

They are largely eliminating duplication and providing high

protection for data fragments. It selects non-adjacent nodes

preventing unauthorized access to data by other users.

Figure 1 proposed architecture diagram ISNDC- HSHDF

Then the fragmented index gets grouped by

maximum relative threshold margin using Intra Subset Near-

Duplicate Clusters (ISNDC). Figure 1shows the proposed

architecture diagram ISNDC- HSHDF. The hashing is applied

to get comparative index points based on hyper correlation

comparer using Hyper Spectral Hash Duplicate Filter

(HSHDF). This filter the near duplicate content depending on

file content difference to identify the duplicates.

3.1 Lexical Syntactic Parser (LSP)

In this stage, the preliminaries of the file index are

verified based on the File's properties and its contents with

format representation. This checks the intent properties of files

indexed with staking queries.

State matrix parser =[

𝐹𝑖1

𝐹𝑖2

⋯
𝐹𝑖𝑛

] [

𝐶𝑖1 𝐶𝑖2 … 𝐶𝑖𝑛

𝐶𝑗1 𝐶𝑗2 … 𝐶𝑛1

… … … …
𝐶𝑛1 𝐶𝑛1 … 𝐶𝑛𝑛

],

𝑆𝑝𝑛=0 = 1, 2,3 … … . 𝑛

This creates a state matrix Index, whether the files

are split into tokenized indexes with original files. The Set of

lexical tokens is formed based on the file size divided into File

comparer staking (FCS) and file indexer. They make a

syntactic rule for the comparison matrix taking Tcs→set={T1,

T2,……Tn} be compared with other chunks. Each chunk gets

a Difference matrix to compare blocks to other files. These are

getting parsed to get the similarity index (Si)

3.2 Cross Layer Fragment Indexing (CLFI)

In this stage, the chunks are hashed with an internal

layer file comparison using the FCS staking. The file indexer

gets the blocks with other files—a general time complexity

analysis of the project. Let S be the Staking withTcs set of

inputs D that have a deterministic S and a stop property for D.

Let W be the set of input weights, and |d| is a function of the

size of the input of D. Let t (d) be the time cost function of S.

On the other hand, the following two conditions apply at each

size of W. A probability function is defined on the Set of

inputs of size W and is denoted by PW

By definition,

𝐹𝑐𝑠 = 𝑆(𝑇𝑐𝑠) ∑ 𝑃𝑊

|𝑑|=𝑤

= 1 → {𝑊𝑠1, 𝑊𝑠2, … . 𝑊𝐷𝑛}

Let ‘w’ be the Size of the file Block presented in chunks at the

maximum comparison to reading the data at the time T is t(d)

to the input W.mean time of data comparison in match case is,

𝑇ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑚𝑎𝑡𝑐ℎ𝑐𝑎𝑠𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (𝑤) = ∑ 𝑃𝑤(𝑑) ·|𝑑|=𝑤

𝑡(𝑑) → (𝐻 − 𝑖𝑛𝑑𝑒𝑥).

This takes the sequential comparison of blocks with respective

Tw. The probability gets maximum match case count terms is

related to input file blocks Pwkvwhich is equal to chunk to

verify the index at K state.

Let S (w)=

∑ 𝑘(𝑠𝑡𝑎𝑘𝑖𝑛𝑔 (𝑠) ∑ 𝑃𝑤(𝑑)|𝑑|=𝑤,𝑡(𝑑=𝑘)) →𝑘≥0 (𝑀𝑎𝑥) ∑ 𝑘𝑝𝑤𝑘𝑘≥0 −→

(𝐻 − 𝑖𝑛𝑑𝑒𝑥)

For each block of file content size S (w) of W, the time

complexity limit of the input quantity s is equal to the mean

value E (w) of the random variable TW. A part of the function

E (w) forms the statistical properties of the time of the

function. S is characterized by the standard deviation D (w) of

Hash File

Indexer

ISNDC- HSHDF

Input logs

Lexical Syntactic

Parser (LSP)

Cross-Layer Fragment

Indexing (CLFI)

Intra Subset Near-

Duplicate Clusters

(ISNDC)

Cloud Data

Logs

Hyper Spectral Hash Duplicate

Filter (HSHDF)

 Optimized storage

File

indexer

Chunks

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7239

Article Received: 25 April 2023 Revised: 18 June 2023 Accepted: 01 July 2023

 568
IJRITCC | July 2023, Available @ http://www.ijritcc.org

the variance functions V (w) and t (•), where w is in the range

w.

V(w) = S ∑(𝐾 − 𝑇𝑎𝑣𝑒(𝑤))2

𝑘≥0

𝑃𝑤𝑘

 A probability function is defined on the Set of inputs of size

w and is denoted by

By definition,

Probability to get file match case at P(s→)∑ 𝑝𝑤=1|𝑑|=𝑤

For each quantity w of W, the range t (•) of the input of

quantity w to the time cost function is a random variable. Tw

denotes it. Assume that the random variable Tw is a natural

number. Pwk denotes the probability distribution of Tw. For

an input of size d, TW is the probability equal to k. The

average time complexity is as follows.

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇(𝑤) = ∑ 𝑃𝑤(𝑑) · 𝑡(𝑑)

|𝑑|=𝑤

= ∑ 𝑘 (∑ 𝑃𝑤(𝑑)

|𝑑|=𝑤,𝑡(𝑑=𝑘)

)

𝑘≥0

= ∑ 𝑘𝑝𝑤𝑘

𝑘≥0

For each size w in W, that is, the average time complexity of S

for input size w is equal to the mean E(w), the statistical

properties of the running V(w) and standard deviation D(w) of

Tw with w ranging over W, where

V(w) = S ∑(𝐾 − 𝑇𝑎𝑣𝑒(𝑤))2

𝑘≥0

𝑃𝑤𝑘

This returns the match case vectors for predominate average

match case content equal to the chunks defined responsibility.

This returns the average match case blocks of files returned to

the content

3.3 Intra Subset Near-Duplicate Clusters (ISNDC)

In this content analysis, the average vectors are

scaled into File content comparative features, and relative

features are grouped into clusters to make Indexing. Then

comparing the cluster with one another, be scaled into Intra

subset values. Based on the feature dependencies, the Blocks

are input depending on the file content size. This estimates the

probability function is pointed by the input size w and is

denoted by PCB. By the definition,

∑ 𝑃𝑤𝐵|𝑑|=𝑤 = 1,2, … . 𝑛

(1)

For each size w in W, the restriction of the time cost function

t(·) to inputs of size w is a random variable;Tw.the random

variable Tw denotes it assumes natural numbers are valid. The

probability that for an input d of size w, Tw is equal to k.

Notice that the average time complexity is

𝑀𝐴𝑥(𝑤) = ∑ 𝑃𝑤(𝑑) · 𝑡(𝑑) =|𝑑|=𝑤

∑ 𝑘(∑ 𝑃𝑤(𝑑)|𝑑|=𝑤,𝑡(𝑑=𝑘))𝑘≥0 = ∑ 𝑘𝑝𝑤𝑘𝑘≥0 (2)

For each size w in W, that is the average time complexity of S

for input size w is equal to the mean value E(w) of the random

variance function V(w) and standard deviation D(w) of Tw with

w ranging over W, where

V(w) = S ∑ (𝐾 − 𝑇𝑎𝑣𝑒(𝑤))2
𝑘≥0 𝑃𝑤𝑘 (3)

𝐷(𝑤)√𝑉(𝑤) (4)

These quantities determine how much the random variables Tw

are concentrated around their mean values. the smaller the

standard deviation, the better concentration of Tw around its

mean value is

To find the statistical quantities E(w), V(w), and D(w), the

method of generating function is used. the generating function

for random variables Tw is

𝑃𝑤(𝑧) = ∑ 𝑃𝑤𝑘𝑧𝑘

𝑘≥0

With arguments and values being real numbers.therefore,

𝑃𝑤
′ (1) = (∑ 𝐾𝑝𝑤𝑘

𝑘≥0

𝑧𝑘−1) (1) = ∑ 𝑘𝑝𝑤𝑘

𝑘≥0

From the above equation, the content similarity at exponential

levels, 𝐸(𝑤) = 𝑃𝑤
′ (1)

 Next

𝑃𝑤
" (1) = ∑ 𝑘(𝑘 − 1)𝑃𝑤𝑘

𝑘≥0

𝑧𝑘−2(1) = ∑ 𝑘(𝑘 − 1)𝑃𝑤𝑘

𝑘≥0

From the above equation, we get vectored equivalence of

content match case, 𝑉(𝑤) = ∑ (𝑘 − 𝑝𝑤
′ (1))2𝑃𝑤𝑘𝑘≥0 =

𝑃𝑤
" (1) + 𝑃𝑤

′ (1) + 𝑃𝑤
′ (1)2

Based on the estimated weight, the duplicate files are

discarded, and only one index will be created of all the files

from which the original file index is to be created.

Algorithm:

Input: The dataset D= {d1, d2, d3,..dn} with co-reference

resolved.

Output: paired redundant reduction data:

 Step 1: compute dataset forums:

 For each cluster document d in D, do create byte

stream

 For each document w in d do

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7239

Article Received: 25 April 2023 Revised: 18 June 2023 Accepted: 01 July 2023

 569
IJRITCC | July 2023, Available @ http://www.ijritcc.org

 Check the semantic cluster terms compared with other

cluster groups based on

distance flow.

 From the distance flow weight, each

cluster is ordered into Indexing

 Step 2: Finding a semantic group pair of the most similar

clusters and merging index values

 If cluster Count ==1 on compression

 Substitute the manuscript size

by corresponding cluster id

 End if

 Step 3: Calculate cosine transformation on the discrete

document by byte streams

 If document index count > 1 document

similar

 Simulate the singular document

compressed from D

Other non-similar data to compressed data Cd

 End if

 Step 4: If the terminal index is singular as the compressed

cluster, else repeating

Select the compacted

similarity value as a suitable

sense

Substitute the document w

Cd by matching cluster

based on the recognized

intellect data singular

compression.

 Step 5 End if

 End for

 End for

The cosine transformation checks the index values by

checking the stream of files in the cluster. This makes the

redundant comparison to improve the Deduplication. Finally,

only one index file-sized value is compared with all indexed

clusters to find the duplicates.This returns the vector weight of

each block represented to the comparative chunk with the

content match case.

3.4 Hyper Spectral Hash Duplicate Filter (HSHDF)

In this stage, Hyper spectral Deduplication makes an

index-based search model to find the duplicate content and

exploits stream of file content to make blocks. This Hashed

Indexing creates a locality index to filter duplicate files. Such

that needs the data filtering criteria performing the similarity

content based on clustering to find the inconsistencies in data

chunks depending on metadata forums.Let us consider T

(n).assume that h(x) =j when an unsuccessful search for x

happens. Denoting by Pnkthe probability that the list H[j] has

length k, we have

𝑃𝑛𝑘 = (
𝑛

𝑘
) (

1

𝑀
)

𝑘

(1 −
1

𝑀
)

𝑛−𝑘

Since the value j appears k times in a sequence h1,….,hn with

the probability defined by the Bernoulli schema, now we have

𝑃𝑛
−(𝑍) = ∑ 𝑃𝑛𝑘𝑍𝑘+1

𝑘≥0

Which can easily be transformed into a simpler form

𝑃𝑛
−(𝑍) = (

𝑧

𝑀
+ 1 −

1

𝑀
)

𝑛

𝑧

By different (12), we have

𝑃𝑛
−1(𝑍) = (

𝑧

𝑀
+ 1 −

1

𝑀
)

𝑛−1

(
𝑛𝑧

𝑀
+

𝑧

𝑀
+ 1 −

1

𝑀
)

𝑃𝑛
−"(𝑍) = (

𝑧

𝑀
+ 1 −

1

𝑀
)

𝑛−2

(
𝑛 − 1

𝑀
(

𝑛𝑧

𝑀
+

𝑧

𝑀
+ 1 −

1

𝑀
)

+ (
𝑧

𝑀
+ 1 −

1

𝑀
) (

𝑛

𝑀
+

1

𝑀
))

Based on the above equation, we get redundancy to check the

file properties of equivalent content. We get, 𝑃𝑛
−1(𝐼) =

𝑛

𝑀
+ 1

Similarly, the Inverse comparison of each chinks is referred as

𝑃𝑛
−"(𝐼) =

𝑛(𝑛−1)

𝑀2 +
2𝑛

𝑀
 and the exponential blocks comparison

rate is,

𝐸−(𝑛) = 𝑃𝑛
−1(1) =

𝑛

𝑀
+ 1

𝑉−(𝑛) = 𝑃𝑛
−"(1)+𝑃𝑛

−1(1)-(𝑃𝑛
−1(1))

2

 =
𝑛(𝑛−1)

𝑀2 +
2𝑛

𝑀
+ (

𝑛

𝑀
+ 1) − (

𝑛

𝑀
+ 1)

2

 =
𝑛(𝑛−1)

𝑀2

 And denoting by α=𝑛
𝑀⁄ , that is, the

definition of table H, we obtain

𝐸−(𝑛) =α+1,𝑉−(𝑛) ≅ α,𝐷−(𝑛) ≅ √α,

To estimate𝐸+(𝑛), that is, the average cost in a successful

case, consider the function 𝑛𝐸+(𝑛). Its value equals the

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7239

Article Received: 25 April 2023 Revised: 18 June 2023 Accepted: 01 July 2023

 570
IJRITCC | July 2023, Available @ http://www.ijritcc.org

number of steps performed when all n elements of ‘A’ are

searched for. But the list of length k contributes
1

2
𝑘(𝑘 + 1)

Steps to the total. Consequently, since there are M lists, we

have

𝑛𝐸+(𝑛) = 𝑀 ∑
𝑘(𝑘 + 1)

2
𝑘≥0

𝑃𝑛𝑘

and according to the definition of 𝑃𝑛
−1(𝑍), we obtain

𝐸+(𝑛) =
𝑀

2𝑛
∑ 𝑘(𝑘 + 1)

𝑘≥0

𝑃𝑛𝑘 =
𝑀

2𝑛
𝑃𝑛

−"(1) =
𝑛 − 1

2𝑀
+ 1

≅
1

2
α + 𝐼

By this evaluation, the block size results related to

other similarity files are indexed as duplicated and match case

similarity levels. I.e., 𝐸+(𝑛) produce higher results in

comparative definition rate for each chunk.

Performance evaluation and its outcomes

The outcome of the deduplication system efficiency

is based on the duplication ratio. Figure 1.9 explains the key

process outcome results. It is calculated based on the total

number of sizes before and after the Deduplication, as shown

in equation 1.1.

A good deduplication system provides a more

effective ratio and detects more duplication elements. The

throughput is calculated based on the number of Hits on the

main memory for the index lookup, as shown in equation 1.2.

Data Skew concepts are purely used in the data directing

nodes. It is calculated on Max node utilization divided by the

average node utilization as shown in equation 1.3.

Hit ratio is more, and I/O access less means the

deduplication system's throughput is more. Data Skew

concepts are purely used in the data directing nodes. It is

calculated on Max node utilization divided by the average

node utilization as shown in equation 1.3. Hit ratio is more,

and I/O access less means the deduplication system's

throughput is more.

In the distributed or cluster model system, the data

traversal between the node is challengeable, and it can affect

the data deduplication performance. So the Data Skew also

needs to be handled properly. The efficiency of the system is

based on the total Deduplication and Data Skew, as shown in

the equation.

IV. Results and Discussion

 The results are tested with an Amazon web service

(AWS) cloud environment, making it an EC2 server instance

with EBS storage. The collected content files are grouped into

the duplicate dataset to make fixed storage for

deduplicationredundancy. The proposed

HSHDFimplementation applies the block-based comparison

with indexed hash table files called lookup indexing tables.

This result test with a confusion matrix to test the efficiency as

precision, Recall, false rate, and storage optimization accuracy

compared with other methodsSiLo, CFBC, andEHFDD. Table

1 below shows the parameters and values processed for

Deduplication in the cloud.

Table 1: parameters and values processed

Parameters Values processed

Cloud environment AWS, EBS cloud storage

Data used and size Content file type,=<= 5Gb

Simulation framework Visual Studio/ c#.net , VS 4.5

Output type definition Redundant storage space

 The presentation of the technique has been restrained in

gathering correctness, time complexity, and Recall to produce

the best performance under different levels of testing.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7239

Article Received: 25 April 2023 Revised: 18 June 2023 Accepted: 01 July 2023

 571
IJRITCC | July 2023, Available @ http://www.ijritcc.org

Figure 3: Analysis of precision rate

 Figure 3 shows the precision performances from testing

the various data sizes using different methods. The proposed

SLCSD produces the best performance up to 93.8 % compared

to the methods by testing 5 GB of data, RB-FDESLI produces

93.6 %, SiLoproduces 76.3 %, CFBCproduces 87.3 %, and

EHFDD produces 89.1 %.

Table 2: Analysis of precision rate

Analysis of precision rate in %

Storage

/methods

SiLo CFBC EHF RB-FDESLI HDF

5GB 76.3 87.3 89.1 93.2 93.8

10 GB 74.8 84.6 85.4 94.6 95.4

20 GB 73.2 85.5 86.8 96.3 96.9

Table 2 shows the performances result in a comparison of the

accuracy of produce in various ways. The proposed

HSHDFperforms the best accuracy in precision rate compared

to the other methods.

Figure 4: Analysis of recall rate

50

55

60

65

70

75

80

85

90

95

100

SiLo CFBC EHFDD RB-FDESLI HSHDF

p
er

fo
rm

a
n

ce

in
 %

Prposed Methods

Analysis of precision rate

5GB

10 GB

20 GB

50 60 70 80 90 100 110

SiLo

CFBC

EHFDD

RB-FDESLI

HSHDF

performance in %

Analysis of recall rate

20 GB 10 GB 5GB

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7239

Article Received: 25 April 2023 Revised: 18 June 2023 Accepted: 01 July 2023

 572
IJRITCC | July 2023, Available @ http://www.ijritcc.org

Figure 4 shows that Recall performance has been measured in

various ways. The proposed RB-FDESLI produces the best

performance up to 93.5% compared to the methods by testing

5 GB of data, the SiLoproduces 75.3 %, CFBC produces 85.3

%, and EHFDD produces 91.3 %. And the the proposed

HSHDFalgorithm attain improved Recall performance is

higher than other methods.

Table 3: comparison of Recall

Impact of Recall in %

Storage

/methods

SiLo CFBC EHF RB-

FDESLI

HDF

5GB 75.3 85.3 91.3 93.5 94.2

10 GB 74.1 84.6 92.2 94.2 95.1

20 GB 72.2 83.5 94.6 97.3 97.8

Table 3 recounts a variety of state comparison techniques. The

proposed HSHDFsystem creates a high return state with a

maximum rating of 97.8 % compared to another system.

Figure: 5 Analysis of false classification rate

Figure: 5 shows the measure of the rate of incorrect

redundancy rate production by various methods, it is

presented. The proposedHSHDF and RB-FDESLI produce

the best performance up to 4.1 % compared to the methods by

testing 5 GB of data, the SiLoproduces 6.6 %, CFBC produces

5.3 %, and EHFDD produces 5.2 %. The results of the

proposed HSHDFalgorithm show that it produces a false

classification rate less than other methods.

Table 4: Analysis of false rate

Analysis of false rate %

Storage

/methods

SiLo CFBC EHF RB-

FDESLI

HDF

5GB 6.6 5.3 5.2 4.1 3.6

10 GB 8.8 4.6 4.4 3.6 3.2

20 GB 11.3 6.5 5.6 2.9 2.6

To measure the rate of incorrect rate production by various

methods is presented in table 4. The results of the proposed

SLCSDalgorithm show that it produces a false classification

rate less than other methods.

0

2

4

6

8

10

12

SiLo CFBC EHFDD RB-FDESLI HSHDF

F
a

ls
e

C
la

ss
if

ic
a

ti
o

n
 i

n
 %

Analysis of false rate

5GB 10 GB 20 GB

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7239

Article Received: 25 April 2023 Revised: 18 June 2023 Accepted: 01 July 2023

 573
IJRITCC | July 2023, Available @ http://www.ijritcc.org

Figure 6: storage performance rate

 Figure 6 presents the results of various methods' storage

performance rates in memory of performance analysis. The

proposed HSHDFproduces the best performance up to 72.6 %

compared to the methods by testing 5 GB of data, the

SiLoproduces 56.1 %, CFBC produces 59.2 %, and EHFDD

produces 63.2 %. The proposed HSHDFmethod minimizes

data replication and reduces memory consumption.

Table 5: storage performance rate

storage Redundant performance rate in %

Storage

/methods

SiLo CFBC EHF RB-FDESLI HDF

5GB 56.1 59.2 63.2 72.6 68.1

10 GB 59.2 62.3 64,8 74.8 71.2

20 GB 62.6 64.2 68.6 73.2 72.3

Table 5 shows the changes in the data set of measures that

were compared, analyzing the performance of the amount

storage performance rate. As a result of the comparison, the

proposedHSHDF system reduces storage consumption more

than other methods.

Figure 7: Analysis of the time process

50

55

60

65

70

75

80

85

SiLo CFBC EHFDD RB-FDESLI HSHDFst
o

ra
g

e
m

em
o

ry
 c

o
n

su
m

p
ti

o
n

in

%
Storage performance improvement

5GB 10 GB 20 GB

0 2 4 6 8 10 12

SiLo

CFBC

EHFDD

RB-FDESLI

HSHDF

Analysis of time process

20 GB 10 GB 5GB

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7239

Article Received: 25 April 2023 Revised: 18 June 2023 Accepted: 01 July 2023

 574
IJRITCC | July 2023, Available @ http://www.ijritcc.org

 The above figure 7 shows the Measuring the time

process preparation by different methods. The

proposedHSHDF, RB-FDESLI produces the best performance

up to 8.3 (s) compared to the methods by testing 5 GB of data,

the SiLoproduces 6.3 (s), CFBC produces 5.3 (s), and EHFDD

produces 4.7 (s). The proposed HSHDFalgorithm presents less

time compared to the other methods reduced.

Table 6: Analysis of the time process

Analysis of time process (s)

Storage /methods SiLo CFBC EHF RB-

FDESLI

HDF

5GB 6.3 5.3 4.7 3.8 3.6

10 GB 8.8 6.6 5.2 4.3 3.8

20 GB 10.3 8.5 7.1 6.2 4.2

Table 6 shows the time process in different storage spaces,

and the variety of proposed method options are compared to

prove the performance. Applying the projected process

HSHDFalso creates less time to process files and higher

performance of up to 5.8 ms.

V. Conclusion

 To conclude, the proposed resultant performance and

deduplication improvement produce the best performance to

optimize the storage space. The new Cross Layer Fragment

Indexing based file deduplication using Hyper Spectral Hash

Duplicate Filter (HSHDF)attains high performanceto reduce

the cloud storage.The clusters are further prepared for

Deduplication remain the cosine transformation for

redundancy to make singular byte stream compression. This

implementation proves the data redundancy to reduce the

storage space and improved results to improve the quality of

memory management and service cost reduction in distributed

cloud storage.This potential deduplication system makes

efficient data reduction to find similar data analysis using the

parsing methods.This resultant of proposed HSHDF proves

the best evaluation in recall rate up to 97.8%, precision rate up

to 96.9 %, and storage optimization 82.3 % improved as well

as other methods.

Reference

[1] Y. Tan et al., "Improving the Performance of Deduplication-

Based Storage Cache via Content-Driven Cache Management

Methods," in IEEE Transactions on Parallel and Distributed

Systems, vol. 32, no. 1, pp. 214-228, 1 Jan. 2021, DOI:

10.1109/TPDS.2020.3012704.

[2] X. Yang, R. Lu, J. Shao, X. Tang, and A. A. Ghorbani,

"Achieving Efficient Secure Deduplication With User-Defined

Access Control in Cloud," in IEEE Transactions on Dependable

and Secure Computing, vol. 19, no. 1, pp. 591-606, 1 Jan.-Feb.

2022, DOI: 10.1109/TDSC.2020.2987793.

[3] B. Wang et al., "A Data Structure for Efficient File

Deduplication in Cloud Storage," 2020 11th IEEE Annual

Ubiquitous Computing, Electronics & Mobile Communication

Conference (UEMCON), 2020, pp. 0071-0077, DOI:

10.1109/UEMCON51285.2020.9298159.

[4] B. Wang et al., "A Data Structure for Efficient File

Deduplication in Cloud Storage," 2020 11th IEEE Annual

Ubiquitous Computing, Electronics & Mobile Communication

Conference (UEMCON), 2020, pp. 0071-0077, DOI:

10.1109/UEMCON51285.2020.9298159.

[5] F. Rashid, A. Miri, and I. Wolfgang, "Proof of Storage for

Video Deduplication in the Cloud," 2015 IEEE International

Congress on Big Data, 2015, pp. 499-505, DOI:

10.1109/BigDataCongress.2015.79.

[6] J. Ren, Z. Yao, J. Xiong, Y. Zhang, and A. Ye, "A Secure Data

Deduplication Scheme Based on Differential Privacy," 2016

IEEE 22nd International Conference on Parallel and Distributed

Systems (ICPADS), 2016, pp. 1241-1246, DOI:

10.1109/ICPADS.2016.0169.

[7] M. Aman, P. Verma, and D. Rajeswari, "Secure Cloud Data

Deduplication with Efficient Re-Encryption," 2021 International

Conference on Intelligent Technologies (CONIT), 2021, pp. 1-4,

DOI: 10.1109/CONIT51480.2021.9498487.

[8] K. Vijayalakshmi and V. Jayalakshmi, "Analysis on data

deduplication techniques of storage of big data in cloud," 2021

5th International Conference on Computing Methodologies and

Communication (ICCMC), 2021, pp. 976-983, DOI:

10.1109/ICCMC51019.2021.9418445.

[9] N. Chhabra and M. Bala, "A Comparative Study of Data

Deduplication Strategies," 2018 First International Conference

on Secure Cyber Computing and Communication (ICSCCC),

2018, pp. 68-72, DOI: 10.1109/ICSCCC.2018.8703363.

[10] Yong-Ting Wu, Min-Chieh Yu, Jenq-ShiouLeu, Eau-Chung Lee

and Tian Song, "Design and implementation of various file

deduplication schemes on storage devices," 2015 11th

International Conference on Heterogeneous Networking for

Quality, Reliability, Security and Robustness (QSHINE), 2015,

pp. 80-84.

[11] Kulkarni, L. . (2022). High Resolution Palmprint Recognition

System Using Multiple Features. Research Journal of Computer

Systems and Engineering, 3(1), 07–13. Retrieved from

https://technicaljournals.org/RJCSE/index.php/journal/article/vi

ew/35

[12] P. Bartus and E. Arzuaga, "Using file-aware deduplication to

improve capacity in storage systems," 2017 IEEE Colombian

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7239

Article Received: 25 April 2023 Revised: 18 June 2023 Accepted: 01 July 2023

 575
IJRITCC | July 2023, Available @ http://www.ijritcc.org

Conference on Communications and Computing (VOLCOM),

2017, pp. 1-6, DOI: 10.1109/ColComCon.2017.8088193.

[13] L. Conde-Canencia and B. Hamoum, "Deduplication algorithms

and models for efficient data storage," 2020 24th International

Conference on Circuits, Systems, Communications and

Computers (CSCC), 2020, pp. 23-28, DOI:

10.1109/CSCC49995.2020.00013.

[14] Y. Tan et al., "Improving the Performance of Deduplication-

Based Storage Cache via Content-Driven Cache Management

Methods," in IEEE Transactions on Parallel and Distributed

Systems, vol. 32, no. 1, pp. 214-228, 1 Jan. 2021, DOI:

10.1109/TPDS.2020.3012704.

[15] W. Xia et al., "The Design of Fast Content-Defined Chunking

for Data Deduplication Based Storage Systems," in IEEE

Transactions on Parallel and Distributed Systems, vol. 31, no. 9,

pp. 2017-2031, 1 Sept. 2020, DOI:

10.1109/TPDS.2020.2984632.

[16] Y. Won, K. Lim and J. Min, "MUCH: Multithreaded Content-

Based File Chunking," in IEEE Transactions on Computers, vol.

64, no. 5, pp. 1375-1388, 1 May 2015, DOI:

10.1109/TC.2014.2322600.

[17] B. Wang et al., "A Data Structure for Efficient File

Deduplication in Cloud Storage," 2020 11th IEEE Annual

Ubiquitous Computing, Electronics & Mobile Communication

Conference (UEMCON), 2020, pp. 0071-0077, DOI:

10.1109/UEMCON51285.2020.9298159.

[18] N. Chhabra and M. Bala, "A Comparative Study of Data

Deduplication Strategies," 2018 First International Conference

on Secure Cyber Computing and Communication (ICSCCC),

2018, pp. 68-72, DOI: 10.1109/ICSCCC.2018.8703363.

[19] K. Vijayalakshmi and V. Jayalakshmi, "Analysis on data

deduplication techniques of storage of big data in cloud," 2021

5th International Conference on Computing Methodologies and

Communication (ICCMC), 2021, pp. 976-983, DOI:

10.1109/ICCMC51019.2021.9418445.

[20] Y. Tan et al., "Improving the Performance of Deduplication-

Based Storage Cache via Content-Driven Cache Management

Methods," in IEEE Transactions on Parallel and Distributed

Systems, vol. 32, no. 1, pp. 214-228, 1 Jan. 2021, DOI:

10.1109/TPDS.2020.3012704.

[21] N. Sharma, A. V. Krishna Prasad and V. Kakulapati, "File-level

Deduplication by using text files – Hive integration," 2021

International Conference on Computer Communication and

Informatics (ICCCI), 2021, pp. 1-6, DOI:

10.1109/ICCCI50826.2021.9402465.

http://www.ijritcc.org/

