
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 78 – 86

78
IJRITCC | June 2017, Available @ http://www.ijritcc.org

Graph Based Disambiguation of Named Entities using Linked Data

Arpa H. Mirani

Computer Science Department

Visvesvaraya National Institute of Technology

Nagpur, India

miraniarpa@gmail.com

Mansi A. Radke

Computer Science Department

Visvesvaraya National Institute of Technology

Nagpur, India

mansiaradke@gmail.com

Abstract— Identifying entities such as people, organizations, songs, or places in natural language texts is needful for semantic search, machine

translation, and information extraction. A key challenge is the ambiguity of entity names, requiring robust methods to disambiguate names to the

entities registered in a knowledge base. Several approaches aim to tackle this problem, they still achieve poor accuracy. We address this

drawback by presenting a novel knowledge-base-agnostic approach for named entity disambiguation. Our approach includes the HITS algorithm

combined with label expansion strategies and string similarity measure like the n-gram similarity. Based on this combination, we can efficiently

detect the correct URIs for a given set of named entities within an input text.

Keywords-Disambiguation, HITS Algorithm, Linked Data

__*****___

I. INTRODUCTION

In natural language processing, Disambiguation (also called
word sense disambiguation or text disambiguation) is the act of
interpreting an author's intended use of a word that has multiple
meanings or spellings. It is the activity of resolving conflicts
which arise when an article title is ambiguous, mostly because
it refers to more than one subject.

A disambiguation technique is called graph based
disambiguation when it makes use of a graph to resolve the
ambiguity between identified labels in a text. A graph is formed
using the potential candidates and then the correct candidate is
identified using certain measures on the graph.

Named entity disambiguation (NED) is the task of
determining the identity of entities mentioned in text. For
example, given the sentence "Paris is the capital of France", the
idea is to determine that "Paris" refers to the city of Paris and
not to Paris Hilton or any other entity that could be referred as
"Paris". In this example, an NER tool would identify the
entities Paris and France. A high-quality DBpedia-based named
entity disambiguation (NED) approach should use these
already recognized named entities and map the strings Paris
and France to the resources dbr:Paris and dbr:France [17].

Named entity mentions can be highly ambiguous; any entity
linking method must address this inherent ambiguity. Various
approaches to tackle this problem have been tried till date.
However these approaches suffer from two major drawbacks:
First, they perform poorly on Web documents as they contain
resources from different domains within a narrow context. An
accurate processing of Web data is important for the
implementation of the Web of Data. Well-known approaches
such as Spotlight [11] and TagMe 2 [18] have been designed to
work on a particular knowledge base. However, Web data
contains resources from many different domains. Hence, NED
approaches have to be designed in such a way that they are
agnostic of the underlying knowledge base. Second, most state-
of-the-art approaches rely on exhaustive data mining methods
[3,14] or algorithms with non-polynomial time complexity.
However, given the large number of entities that must be
disambiguated when processing Web documents, scalable NED

approaches are of central importance to realize the Semantic
Web vision.

II. LITERATURE REVIEW

NED in web documents is well studied in literature. Several
approaches use Wikipedia or a KB derived from Wikipedia
(like DBpedia and YAGO) as entity collection to look-up for
the appropriate entity for a mention.

One of the earliest approaches was proposed by Bunescu et
al.[2]. They developed a named entity disambiguation
technique that performs disambiguation in two steps. First, it
finds whether a proper name refers to a named entity present in
the dictionary (detection). Second, it disambiguates between
several named entities which can be referred by the same
proper name (disambiguation). Moreover, the authors
developed a similarity measure which compared the context of
a mention with the Wikipedia categories of an entity.

Cucerzan[3] proposed a technique for disambiguating
named entities using information retrieved from Wikipedia and
the web. The technique uses the data associated with the known
surface forms within a document and all their entity
disambiguations so as to obtain a greater similarity between the
context data obtained for the candidate entities and the
information in the context of the document.

The importance of coherence measure between two entities
in disambiguation was introduced by Kulkarni et al. [4]. In the
same way, Hoffart et al. [5] combined three measures: the prior
probability of an entity being mentioned, the similarity between
the contexts of a mention and a candidate entity, as well as the
coherence among candidate entities for all mentions together.
AIDA [6] is a system built on Hoffart's [5] approach.

Ad-hoc (entity oriented) NED shows yet another direction
in NED research. Ad-hoc entities are not a part of a knowledge
base like DBpedia, YAGO or Freebase. Instead of using a KB,
given the candidate labels of all the target entities, entity
oriented disambiguation techniques determine which ones are
correct mentions of a target entity. Srinivasan et al. proposed a
cross document person name disambiguation technique that
groups documents so that each group contains all and only
those documents addressing the same person. They introduced

http://www.ijritcc.org/
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Ambiguity
https://en.wikipedia.org/wiki/Paris
https://en.wikipedia.org/wiki/Paris_Hilton

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 78 – 86

79
IJRITCC | June 2017, Available @ http://www.ijritcc.org

characteristics based on topic models and also document-level
entity profiles of information that are created for each
ambiguous person in the whole document.

Wang et al. introduced disambiguation strategies that
require no knowledge about the entity mentions except their
names. They proposed a graph-based model called
MentionRank to affect the uniformity constraint and
disambiguate the candidate labels collectively in the document.
Holding the uniformity constraint of the entities is done in three
ways: context similarity, co-mentioned entities, and cross-
document, cross- entity interdependence.

Another approach is DBpedia Spotlight [11], a framework
for annotating and disambiguating Linked Data Resources in
random texts. In comparison to other tools, Spotlight is able to
disambiguate all classes of the DBpedia ontology. Moreover, it
is well-known in the Linked Data community and used in
various projects showing its wide-spread adoption. It is based
on a vector-space model and cosine similarity.

In 2012, Ferragina et al. published a reviewed version of
their disambiguation technique called TagMe 2. The authors
suggest that it is meant for smaller texts, i.e., containing around
30 terms. TagMe 2 is based on an anchor listing (<a> tags on
Wikipedia pages with a certain frequency), a page listing
containing all original Wikipedia pages and an in-link graph.
First, TagMe 2 identifies named entities by matching terms
with the anchor listing and then disambiguates the match using
the in-link graph and the page listing via a collective result of
identified anchors. Lastly, the technique eliminates identified
named entities which are not coherent to the rest of the named
entities in the input text.

In 2014, Babelfy [13] was proposed. It is based on arbitrary
passes and densest sub-graph algorithms to tackle NED and is
evaluated with six datasets, one of them used AIDA dataset. In
contrast to proposed approach, Babelfy differentiates between
word sense disambiguation and entity linking.

III. PROPOSED APPROACH

A. Objective

The objective of this project is to recognize correct
resources from a Knowledge base K for n a-priori determined
named entities N1; : : : ;Nn obtained from a given input text T.
In general, there can be several candidate resources from a
given knowledge base K for a given entity Ni. Out of these
candidate resources only one candidate resource can be the
required resource. Our aim is to find out that resource correctly.
In the result set we get N such resources where each resource
stands for an entity from the given input text.

Similarity functions are applied to calculate similarity
between candidate resources and named entity. Let 𝜓 be the
similarity function, e.g., string similarity. The coherence
function calculates the similarity of the knowledge base K and
candidate resources to ensure dependable relevance. Let Φ be
the coherence function. It is implemented by the HITS
algorithm to compute the closest entities. Given this formal
model, the objective is to find the result R with

𝑅 = 𝑎𝑟𝑔 𝑚𝑎𝑥(𝜓 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒, 𝑛𝑎𝑚𝑒𝑑 𝑒𝑛𝑡𝑖𝑡𝑦

+ 𝜙 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒, 𝐾)

For the purpose of scalability, we compute the result by using
an upper bound of Θ(k .|V |2) on the HITS algorithm, where k
is the number of iterations and |V| is the number of nodes in the
graph. Moreover, using HITS has other advantages like

1) scalability,
2) well explored behavior and
3) the ability to analyze semantic authority.

Our approach for NED consists of three stages.We first
retrieve all named entities from the given input text using a
named entity recognition function (e.g., Stanford NER[7]).
After that, we detect candidates for each of the extracted named
entities. We apply several heuristics at this stage and make use
of known surface forms [11] for resources from the underlying
knowledge base. We then use this list of candidates generated
in the previous step to form a disambiguation graph. For this
we make use of a graph search algorithm(e.g. Breadth First
Search) on the underlying knowledge base to extract context
information. Finally, in the last step, we implement the HITS
algorithm on the obtained disambiguation graph to find most
appropriate candidates for the extracted named entities in our
input text. The candidates with the highest authority values are
the correct resources. All stages in our project have a
polynomial time complexity, leading to overall project also
being polynomial in time complexity. We present each of the
steps of our project in more detail below.

B. String normalization and expansion

An index is created, it is used to search candidates for the
entities identified by Stanford NER. We get a list of possible
candidates from the index. After searching the index, a string
normalization function and an expansion policy is applied to
the input text. The string normalization is a technique to
remove plural and genitive forms(e.g. apostrophe), eliminating
common bound forms like postfixes for corporate labels and
not including candidates with time information(years, dates,
etc.) within their label. For example, the genitive India's is
transformed into India, the postfix of Reliance Ltd. is reduced
to Reliance and the time information of Mumbai 2015 is
ignored.

Named entities are usually mentioned in their full length
only the first time they appear in news and web pages, whereas
the other repetitive mentions only have a substring of the actual
mention due to the concise nature of most news articles. For
example, a text mentioning Narendra Modi's visit to the United
States of America will mostly contain Narendra Modi in the
first mention of him and use strings as Modi later in the same
text as the readers know whom is it referring to from the first
mention of him. According to this perception, we map each
named entity label (e.g., Modi) which is a substring of another
named entity label that was recognized previously (e.g.,
Narendra Modi) to the same resource , i.e., dbr: Narendra
Modi. We choose the shortest expansion if there are several
expansions in the input text. This expansion policy is an
approach to co-reference resolution within the same document,
it is time-efficient and plays a very important role in dealing
with text from the web.

The lists of candidates are then filtered out and most
relevant candidates for each named entity are found out.

C. Filtering the candidates

For this filtration step, measures such as string similarity,
domain check are used. We compare the named entity and each
of the candidates extracted in the previous step using n-gram
similarity measure. We have used trigram similarity, where the
value of n is 3. The domain check measure is used to narrow
down the search space, that is to eliminate the candidates which
do not belong to any of the domains specified for named entity
recognition, because these candidates can simply not be the

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 78 – 86

80
IJRITCC | June 2017, Available @ http://www.ijritcc.org

correct resource for the named entity since their domains are
different. We have limited our technique to named entities
which fall under the categories such as person, organization
and place. So candidates other than these domains are
eliminated in this step. These categories can be changed by the
user according to his purposes. The types are mentioned in
Table 1 for DBpedia and YAGO2 knowledge bases that we
have used. This technique is added to decrease the number of
candidates which in turn increases the accuracy.

Table 1: DBpedia and YAGO2 classes used for
disambiguation classes.

The candidate detection and filtration approach explained

above is summarized in Algorithm 1.

Algorithm 1: Searching candidates for a label.(courtesy [1])
Data: label of a certain named entity Ni, σ trigram similarity

threshold
Result: C candidates found

 C← Ø;

 label ← normalize(label);

 label ← expand(label);

 -C ← searchIndex(label);

 for c ϵ -C do

 if ~c.matches([0-9]+) then

 if trigramSimilarity(c, label) ≥ σ then

 if fitDomain(c) then

 C ← C ∪ c;

So after this step we get a filtered list of candidates out of
which one maybe our required entity.

D. Construction of graph

Once we have a filtered list of candidates for each named
entity we start constructing a disambiguation graph. For this we
use search algorithm like breadth first search which is applied
on the knowledge base to get context of the candidate nodes.
Our knowledge base is in the form of a directed graph, where
there are edges between the resources which are the nodes and
(subject; predicate; object) is an RDF triple in the KB. In the
beginning our graph contains all the candidates as its nodes and
set of edges is set to null. To expand the graph we search for
contextually related nodes to our candidate node for each
named entity one by one. The extension of the graph is defined
below,

Vi+1=Vi ∪ {y|∃x which is a node in the disambiguation

graph∧ (subject, object) is an edgein the KB}

Ei+1 = {(subject, object) is an edge in the KB | x, y are the
added nodes}

We iterate the extension step d times on the initial graph to

obtain the final disambiguation graph. This depth d for the

number of iterations can be set according to the required

accuracy.

Fig. 1: A simple directed graph using JUNG2

For construction of graph we have used the JUNG

framework in java as shown in fig. 1.

E. HITS algorithm

Hyperlink-Induced Topic Search is an algorithm developed

by Jon Kleinberg. It is a link analysis algorithm that ranks web

pages. The idea about Hubs and Authorities came up from a

perception of the formation of web pages when the Internet

was originally being created; that is, some web pages, called

as hubs, performed the task of large directories which were

not actually reliable for the information that they contained,

but were used as collections of a wide prospectus of

information that helped users to reach authoritative pages. So

we can conclude that, a good hub constituted a page that

directed to several other pages, and a good authority

constituted a page that was directed to by several different

hubs.

The algorithm therefore gives two scores for every page:

authority score, which rates the importance of the matter of

the page, and hub score, which rates the importance of its

links to other pages.

In the HITS algorithm, the starting thing is to extract the

most relevant pages to the given query. This set is referred as

the root set and we can get it by taking the top pages returned

by a text-based search algorithm. A base set is generated by

extending the root set to add all the web pages that are

connected from it and the pages that link to it. The web pages

in the base set along with all the hyperlinks among those

pages form a focused sub-graph. The HITS calculation is done

only on this focused sub-graph.

Authority and hub values are calculated in terms of each

another in a mutual recursion. An authority value is calculated

as the sum of the normalized hub values that point to that

page. A hub value is the sum of the scaled authority values of

the pages it points to.

The algorithm performs a number of iterations, each

consisting of two basic steps:

Authority Update: Update each node's Authority

score which is equal to the sum of the Hub Scores of each

node that links to it. That is, a node gets a high authority score

by being pointed from pages that are identified as Hubs for

information.

Hub Update: Update each node's Hub Score which is equal

http://www.ijritcc.org/
https://en.wikipedia.org/wiki/Jon_Kleinberg
https://en.wikipedia.org/wiki/Link_analysis
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Mutual_recursion

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 78 – 86

81
IJRITCC | June 2017, Available @ http://www.ijritcc.org

to the sum of the Authority Scores of each node that it links

to. That is, a node is given a high hub score by pointing to

nodes that are considered to be authorities on the subject.

HITS, like PageRank method, is an iterative

algorithm based on the connections of the documents on the

web. But it is query dependent, that is, the search terms affect

the Hub and Authority scores obtained from the link analysis.

Using the HITS algorithm we compute authority scores xa;

ya and hub scores xh; yh for all x; y which are nodes in the

disambiguation graph. We initialize the authority and hub

scoresand afterwards repeat the equationk times as given

below:

∀𝑥 ∈ 𝑉𝑑 , 𝑥𝑎 = 𝑥ℎ =
1

|𝑉𝑑 |

𝑥𝑎 ← 𝑦ℎ

(𝑦,𝑥)𝜖𝐸𝑑

, 𝑦ℎ ← 𝑥𝑎

(𝑦 ,𝑥)𝜖𝐸𝑑

We have chosen k according to Kleinberg [10], i.e., the value

of k is set to 20, which are sufficient to achieve convergence

in most cases. Then we find the candidate with the highest

authority value among the list of candidates as correct

resource for a given named entity. The whole procedure is

presented in Algorithm 2.

Algorithm 2: Disambiguation Algorithm based on HITS and

Linked Data.(courtesy [1])

Data: N = {N1; N2 : : : Nn} named entities, σ trigramsimilarity

threshold, d depth, k number of iterations

Result: C = {C1; C2 : : : Cn} identified candidates for named

 entities

 E ← Ø;

 V ← insertCandidates(N, σ);

 G ← (V, E);

 G ← breadthFirstSearch(G; d);

HITS(G(V,E),k);

sortAccordingToAuthority(V);

 for Ni ϵ N do

 for v ϵ V do

 if v is a candidate for Ni then

 store(Ni, v);

 break;

To improve accuracy we have added a few more steps.

F. Using the Wikipedia Disambiguation Pages

Following are the categories of Wikipedia pages :

Article titles (Title) : The title of the article. The first letter of

Wikipedia titles is case-insensitive and by default given in the

uppercase form. For the articles having the special lowercase

starting letter (like in gzip, iPod), we retrieve this alias with its

first alphabet lowercased.

Redirect titles (Redirect): Wikipedia provides a redirect

technique to automatically forward a user from non-authorized

titles — such as variant or wrong spellings, short forms,

different language titles etc. — to the relevant article. e.g. for

articles with lowercase title, if the redirect title begins with the

first word of the authorized title, its first letter is also

lowercased (e.g., IPods becomes iPods).

Disambiguation page titles (DABTitle): Disambiguation pages

are used to list the articles which may be represented to by an

ambiguous title. The heading of a disambiguation page (e.g.,

an abbreviation or a surname) is thus taken as another name of

the pages it disambiguates. Disambiguation pages commonly

consist of more than one list, where each item of the list links

to a candidate referent of the disambiguated name. However,

such links are not limited only to candidates, so we only

consider links that appear at the top of a list item. All

descendants of the Disambiguation pages category are referred

as disambiguation pages. We have shown an example of a

disambiguation page below.

We are already using the redirect pages to get the correct

candidate even if there is a spelling mistake or typographical

error in the label occurring in the given web page.

Fig. 2: Wikipedia Disambiguation page for Kashmir

To add candidates that have been missed out due to the high

trigram similarity threshold requirement, we have made use of

the disambiguation pages. The trigram similarity threshold for

these mentions is slightly low to qualify as a candidate for the

label. This increases accuracy and decreases the chance of

NIL entity. The algorithm for this is mentioned below.

Algorithm 3: Use of Disambiguation pages

G. Context Similarity

Usually a text revolves around some context. Even if the

whole text does not point towards the same topic, the labels in

the same sentence or within a threshold distance have context

common between them. We have made use of this fact to

increase the accuracy of this project.

If a possible candidate to an entity is found in the context of

another entity, we add that as a candidate for the particular

entity if it is not already present in the list of candidates. Due

to this the missed out candidate which has a greater chance of

http://www.ijritcc.org/
https://en.wikipedia.org/wiki/PageRank
https://en.wikipedia.org/wiki/Iterative_algorithm
https://en.wikipedia.org/wiki/Iterative_algorithm
https://en.wikipedia.org/wiki/Iterative_algorithm
https://en.wikipedia.org/wiki/Weblink
https://en.wikipedia.org/wiki/Weblink
https://en.wikipedia.org/wiki/Weblink

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 78 – 86

82
IJRITCC | June 2017, Available @ http://www.ijritcc.org

being the correct candidate is added in the list. The algorithm

for the same is mentioned below.

Algorithm 4: Context Similarity

H. Modified HITS algorithm

The idea behind the HITS algorithm can be understood from

the following qualitative recursive definition: "A good

authority is the one which is pointed to by many good hubs,

and a good hub is the one which points to many good

authorities". Thus, the value of some page p as an authority

(obtained by the authority weight of page p) depends on the

value of the pages that point to p as hubs (obtained by the hub

weight of the pages), and vice versa. Kleinberg proposed to

compute the hub and authority values using the addition

operation. The authority weight of a page is obtained by the

sum of the hub weights of the pages that link to p, and the hub

weight of the page is defined to be the sum of the authority

weights of the pages that are linked to by it. Two properties

can be inferred from this definition. First, it is symmetric,

because both hub and authority scores are calculated in the

same way. If we change the direction of the edges, then

authority and hub weights are interchanged. Second, while

computing the hub weight of some page p, the authority

weights of the pages that are linked to by page p are all

considered equal (similarly while computing the authority

weights).

Fig.3: A bad example for HITS algorithm.

These two things may sometimes lead to unexpected results.

Consider, for example, the graph in Figure 3. In this graph,

there are two components. The a part of the figure has a single

authority linked to by a large number of hubs. The b part of

the figure has a single hub that links to a large number of

authorities. When the number of part b authorities is larger

than the number of part a hubs, the HITS algorithm will

allocate all authority weight to the part b authorities, while

giving zero weight to the part a authority. The reason for this

is that the part b hub is declared to be the best hub, thus

causing the part b authorities to receive more weight.

However, logically the part a authority is better than the part b

authorities and should be ranked higher. In this example, the

two properties of the HITS algorithm result in an unexpected

result. Equality means that all authority weights of the nodes

that are linked to by a hub serve equally to the hub weight of

the node. As a result, quantity becomes quality. The hub

weight of the part b hub increases simply because it points to

many weak authorities. This leads us to question the definition

of the hub weight and thus, the other symmetric nature of

HITS. Symmetry assumes that hubs and authorities are

qualitatively the same. However, there is a difference between

the two. For example, logically a node with high in-degree is

likely to be a good authority while, a node with high out-

degree is not necessarily a good hub. If it was true, then it

would be very simple to increase the hub quality of a page,

just by adding links to random pages. Thus it means that we

should treat hubs and authorities differently.

Borodin proposed a modification of the HITS algorithm to

solve this problem. The Hub-Averaging algorithm updates the

authority weights like the HITS algorithm, but it sets the hub

weight of some node i to the average authority weight of the

authorities pointed to by hub i. Thus, for some node i, we have

The logic behind the HUBAVG algorithm is that a good hub

should point only to good authorities, rather than to both good

and bad authorities. Note that in the example in Figure 3,

HUBAVG assigns the same weight to both part a and part b

hubs, and it identifies the part a authority as the best authority.

The HUBAVG algorithm is shown below.

Algorithm 5: The HUBAVG (courtesy[19])

Initialize authority weights to 1

Repeat until the weights converge:

 For every hub i ϵ H

 ℎ𝑖 =
1

|𝐹 𝑖 |
Σ𝑎𝑗

 For every authority i ϵ A

 𝑎𝑖 = Σℎ𝑗
 Normalize

The HUBAVG algorithm can be seen as a mixture of

the HITS and SALSA algorithms. The averaging of the

weights of the authorities linked to by a hub is similar to

dividing the weight of a hub between the authorities it links to.

Therefore, the HUBAVG algorithm performs the calculation

of authority weights like the HITS algorithm and the

calculation of hub weights like the SALSA algorithm. This

absence of symmetry in the calculation of hubs and authorities

is influenced by the qualitative difference between hubs and

authorities explained previously.

I. Pre-processing step before HITS

As we know the data in the world is large today and

there can be a number of candidates for a single entity. So the

disambiguation graph that is formed is very large in size. To

reduce the graph size we have added a pre-processing step

before passing the graph to HITS algorithm.

The idea of this step is to remove those nodes from the

graph which will not affect the output largely and are far away

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 78 – 86

83
IJRITCC | June 2017, Available @ http://www.ijritcc.org

from the candidates in context as well as depth in the graph.

After applying this step many nodes are removed without

affecting the result and thus the HITS algorithm has to be

applied on a comparatively smaller graph which in turn

increases the accuracy.

Fig. 4: Flow Diagram of the Proposed Approach

To explain the proposed approach with an example, we use a

input text shown in fig 5.

Fig. 5: Input text

J. Explanation using an example

Step 1: Named Entity Recognition (NER)

The named entities are identified from the given input text

shown in fig. 5.

The output of this step is shown in fig. 6

Fig. 6: Output after NER

Step 2: Candidate Generation

The Lucene index is searched and candidates are found for

each of the identified label in the text.

The screenshots for candidates of each of the entities are

shown below in fig 7,8,9.

Fig.7: Candidates for entity Bulls

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 78 – 86

84
IJRITCC | June 2017, Available @ http://www.ijritcc.org

Fig. 8: Candidates for entity Jordan

Fig. 9: Candidates for entity Space Jam

Step 3. Candidate Filtration

In this step n-gram similarity, FitDomain(), context similarity

etc are applied and the final list of candidates is prepared.

The output after this step is shown in fig. 10.

Fig. 10: Candidate Filtration output

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 78 – 86

85
IJRITCC | June 2017, Available @ http://www.ijritcc.org

Step 4. BFS on KB to form Disambiguation graph

The final list of candidates and KB are used and a

disambiguation graph is formed.

The nodes of the graph are printed in the figure11.

Fig. 11: Output after BFS

Step 5. Pre-processing step

The nodes which do not affect the output largely are removed

and the minimized graph is shown in Fig. 12.

Fig. 12: Output after pre-processing step

Step 6. HITS Algorithm

Lastly, HITS algorithm is performed on the minimized graph

and result set is obtained which contains the identified

resources from the knowledge base for each entity in the input

text.

The result set is shown in fig. 13.

Fig. 1: Final Output

Fig. 13: Final Output of proposed approach

IV. EXPERIMENTS AND RESULTS

For the experimental analysis, we have used the following

datasets.

1. AIDA/CO-NLL-TestB : This dataset is derived from

the Cornolti et al. benchmarks and begins from the

evaluation of AIDA [9]. This dataset was derived

from the CO-NLL 2003 shared task[15] and contains

1,393 news articles that were manually annotated.

The second test part of the Cornolti et al.'s benchmark

comprises of 231 documents having 19.4 entities in

each document on an average.

2. AQUAINT : In this dataset, only the first mention of

an entity is annotated. It consists of 50 documents

which are on average longer than the AIDA/CO-

NLL-TestB documents. Every document has 14.5

annotated elements on an average. The documents are

from different news services, e.g. Associated Press

and have been annotated using voter agreement. The

dataset was created by Milne et al.

Table 2: Test corpora specification

Table 3: Performance of Proposed Approach, DBpedia

Spotlight and TagMe 2 on the datasets using micro F-measure

(F1).

We compared our approach with TagMe 2 and DBpedia

using these datasets which were already implemented in the
Cornolti et al framework. Proposed approach has used a
breadth-first search with depth d = 2 and a trigram similarity
with a threshold of 0.82. All the approaches that have been
used above disambiguate using the English DBpedia.

V. CONCLUSION AND FUTURE WORK

We have presented a novel named entity disambiguation
approach in this project. Our approach combines the Hypertext-
Induced Topic Search (HITS) algorithm with label expansion
strategies and string similarity measures. It is a graph based
approach for named entity disambiguation. Our approach has
been tested on two datasets, namely, AIDA/CONLL-TESTB

Result:
{67=http://dbpedia.org/resource/Space_Jam,

37=http://dbpedia.org/resource/Michael_Jordan
}

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 78 – 86

86
IJRITCC | June 2017, Available @ http://www.ijritcc.org

and AQUAINT datasets from the Cornolti. et al benchmark. It
outperforms the state-of-the-art algorithms TagMe2, and
DBpedia Spotlight while remaining quadratic in its time
complexity. We achieve 0.636 F1-measure for the
AIDA/CONLL-TESTB dataset and 0.576 F1-measure for the
AQUAINT dataset.
For future work, following modifications can be done .

Our approach can be extended to implement a paragraph wise

disambiguation policy. It performs disambiguation on whole

documents. Large number of resources in the documents thus

causes our approach to generate very large disambiguation

graphs. The number of errors in these graphs leads to an

overall low performance disambiguation. This drawback can

be dealt with in future work by fitting our approach with a

preprocessor which is able to extract paragraphs from input

texts.

REFERENCES

[1] Usbeck, Ricardo, et al. "AGDISTIS-graph-based

disambiguation of named entities using linked

data." International Semantic Web Conference. Springer

International Publishing, 2014.

[2] Bunescu, Razvan C., and Marius Pasca. "Using Encyclopedic

Knowledge for Named entity Disambiguation." Eacl. Vol. 6.

2006.

[3] Cucerzan, Silviu. "Large-scale named entity disambiguation

based on Wikipedia data." (2007).

[4] Kulkarni, Sayali, et al. "Collective annotation of Wikipedia

entities in web text." Proceedings of the 15th ACM SIGKDD

international conference on Knowledge discovery and data

mining. ACM, 2009.

[5] Hoffart, Johannes, et al. "Robust disambiguation of named

entities in text." Proceedings of the Conference on Empirical

Methods in Natural Language Processing. Association for

Computational Linguistics, 2011.

[6] Yosef, Mohamed Amir, et al. "Aida: An online tool for

accurate disambiguation of named entities in text and

tables." Proceedings of the VLDB Endowment 4.12 (2011):

1450-1453.

[7] Finkel, Jenny Rose, Trond Grenager, and Christopher

Manning. "Incorporating non-local information into

information extraction systems by gibbs

sampling." Proceedings of the 43rd annual meeting on

association for computational linguistics. Association for

Computational Linguistics, 2005.

[8] B. Adida, I. Herman, M. Sporny, and M. Birbeck. RDFa 1.1

Primer. Technical report, World Wide Web Consortium,

http://www.w3.org/TR/2012/NOTE-rdfaprimer-20120607/,

June 2012.

[9] Cornolti, Marco, Paolo Ferragina, and Massimiliano Ciaramita.

"A framework for benchmarking entity-annotation

systems." Proceedings of the 22nd international conference

on World Wide Web. ACM, 2013.

[10] Kleinberg, Jon M. "Authoritative sources in a hyperlinked

environment." Journal of the ACM (JACM) 46.5 (1999): 604-

632.

[11] Mendes, Pablo N., et al. "DBpedia spotlight: shedding light

on the web of documents." Proceedings of the 7th

international conference on semantic systems. ACM, 2011.

[12] Milne, David, and Ian H. Witten. "Learning to link with

wikipedia." Proceedings of the 17th ACM conference on

Information and knowledge management. ACM, 2008.

[13] Moro, Andrea, Alessandro Raganato, and Roberto Navigli.

"Entity linking meets word sense disambiguation: a unified

approach." Transactions of the Association for

Computational Linguistics 2 (2014): 231-244.

[14] Ratinov, Lev, et al. "Local and global algorithms for

disambiguation to wikipedia." Proceedings of the 49th

Annual Meeting of the Association for Computational

Linguistics: Human Language Technologies-Volume 1.

Association for Computational Linguistics, 2011.

[15] Tjong Kim Sang, Erik F., and Fien De Meulder. "Introduction

to the CoNLL-2003 shared task: Language-independent

named entity recognition." Proceedings of the seventh

conference on Natural language learning at HLT-NAACL

2003-Volume 4. Association for Computational Linguistics,

2003.

[16] Mihalcea, Rada, and Andras Csomai. "Wikify!: linking

documents to encyclopedic knowledge." Proceedings of the

sixteenth ACM conference on Conference on information and

knowledge management. ACM, 2007.

[17] Lehmann, Jens, et al. "DBpedia–a large-scale, multilingual

knowledge base extracted from Wikipedia." Semantic

Web 6.2 (2015): 167-195.

[18] Ferragina, Paolo, and Ugo Scaiella. "Fast and accurate

annotation of short texts with wikipedia pages." IEEE

software 29.1 (2012): 70-75.

[19] Borodin, Allan, et al. "Link analysis ranking: algorithms,

theory, and experiments." ACM Transactions on Internet

Technology (TOIT) 5.1 (2005): 231-297.

http://www.ijritcc.org/

