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Abstract— Identifying entities such as people, organizations, songs, or places in natural language texts is needful for semantic search, machine 

translation, and information extraction. A key challenge is the ambiguity of entity names, requiring robust methods to disambiguate names to the 

entities registered in a knowledge base. Several approaches aim to tackle this problem, they still achieve poor accuracy. We address this 

drawback by presenting a novel knowledge-base-agnostic approach for named entity disambiguation. Our approach includes the HITS algorithm 

combined with label expansion strategies and string similarity measure like the n-gram similarity. Based on this combination, we can efficiently 

detect the correct URIs for a given set of named entities within an input text. 
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I.  INTRODUCTION 

In natural language processing, Disambiguation (also called 
word sense disambiguation or text disambiguation) is the act of 
interpreting an author's intended use of a word that has multiple 
meanings or spellings. It is the activity of resolving conflicts 
which arise when an article title is ambiguous, mostly because 
it refers to more than one subject.  

A disambiguation technique is called graph based 
disambiguation when it makes use of a graph to resolve the 
ambiguity between identified labels in a text. A graph is formed 
using the potential candidates and then the correct candidate is 
identified using certain measures on the graph.  

Named entity disambiguation (NED)  is the task of 
determining the identity of entities mentioned in text. For 
example, given the sentence "Paris is the capital of France", the 
idea is to determine that "Paris" refers to the city of Paris and 
not to Paris Hilton or any other entity that could be referred as 
"Paris". In this example, an NER tool would identify the 
entities Paris and France. A high-quality DBpedia-based named 
entity disambiguation (NED) approach should use these 
already recognized named entities and map the strings Paris 
and  France to the resources dbr:Paris and dbr:France [17]. 

Named entity mentions can be highly ambiguous; any entity 
linking method must address this inherent ambiguity. Various 
approaches to tackle this problem have been tried till date. 
However these approaches suffer from two major drawbacks: 
First, they perform poorly on Web documents as they contain 
resources from different domains within a narrow context. An 
accurate processing of Web data is important for the 
implementation of the Web of Data. Well-known approaches 
such as Spotlight [11] and TagMe 2 [18] have been designed to 
work on a particular knowledge base. However, Web data 
contains resources from many different domains. Hence, NED 
approaches have to be designed in such a way that they are 
agnostic of the underlying knowledge base. Second, most state-
of-the-art approaches rely on exhaustive data mining methods 
[3,14] or algorithms with non-polynomial time complexity. 
However, given the large number of entities that must be 
disambiguated when processing Web documents, scalable NED 

approaches are of central importance to realize the Semantic 
Web vision. 

II. LITERATURE REVIEW 

NED in web documents is well studied in literature. Several 
approaches use Wikipedia or a KB derived from Wikipedia 
(like DBpedia and YAGO) as entity collection to look-up for 
the appropriate entity for a mention. 

One of the earliest approaches was proposed by Bunescu et 
al.[2]. They developed a named entity disambiguation 
technique that performs disambiguation in two steps. First, it 
finds whether a proper name refers to a named entity present in 
the dictionary (detection). Second, it disambiguates between 
several named entities which can be referred by the same 
proper name (disambiguation). Moreover, the authors 
developed a similarity measure which compared the context of 
a mention with the Wikipedia categories of an entity. 

Cucerzan[3] proposed a technique for disambiguating 
named entities using information retrieved from Wikipedia and 
the web. The technique uses the data associated with the known 
surface forms within a document and all their entity 
disambiguations so as to obtain a greater similarity between the 
context data obtained for the candidate entities and the 
information in the context of the document. 

The importance of coherence measure between two entities 
in disambiguation was introduced by Kulkarni et al. [4]. In the 
same way, Hoffart et al. [5] combined three measures: the prior 
probability of an entity being mentioned, the similarity between 
the contexts of a mention and a candidate entity, as well as the 
coherence among candidate entities for all mentions together. 
AIDA [6] is a system built on Hoffart's [5] approach. 

Ad-hoc (entity oriented) NED shows yet another direction 
in NED research. Ad-hoc entities are not a part of a knowledge 
base like DBpedia, YAGO or Freebase. Instead of using a KB, 
given the candidate labels of all the target entities, entity 
oriented disambiguation techniques determine which ones are 
correct mentions of a target entity. Srinivasan et al. proposed a 
cross document person name disambiguation technique that 
groups documents so that each group contains all and only 
those documents addressing the same person. They introduced 
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characteristics based on topic models and also document-level 
entity profiles of information that are created for each 
ambiguous person in the whole document. 

Wang et al. introduced disambiguation strategies that 
require no knowledge about the entity mentions except their 
names. They proposed a graph-based model called 
MentionRank to affect the uniformity constraint and 
disambiguate the candidate labels collectively in the document. 
Holding the uniformity constraint of the entities is done in three 
ways: context similarity, co-mentioned entities, and cross-
document, cross- entity interdependence. 

Another approach is DBpedia Spotlight [11], a framework 
for annotating and disambiguating Linked Data Resources in 
random texts. In comparison to other tools, Spotlight is able to 
disambiguate all classes of the DBpedia ontology. Moreover, it 
is well-known in the Linked Data community and used in 
various projects showing its wide-spread adoption. It is based 
on a vector-space model and cosine similarity. 

In 2012, Ferragina et al. published a reviewed version of 
their disambiguation technique called TagMe 2. The authors 
suggest that it is meant for smaller texts, i.e., containing around 
30 terms. TagMe 2 is based on an anchor listing (<a> tags on 
Wikipedia pages with a certain frequency), a page listing 
containing all original Wikipedia pages and an in-link graph. 
First, TagMe 2 identifies named entities by matching terms 
with the anchor listing and then disambiguates the match using 
the in-link graph and the page listing via a collective result of 
identified anchors. Lastly, the technique eliminates identified 
named entities which are not coherent to the rest of the named 
entities in the input text. 

In 2014, Babelfy [13] was proposed. It is based on arbitrary 
passes and densest sub-graph algorithms to tackle NED and is 
evaluated with six datasets, one of them used AIDA dataset. In 
contrast to proposed approach, Babelfy differentiates between 
word sense disambiguation and entity linking. 

III. PROPOSED APPROACH 

A. Objective 

The objective of this project is to recognize correct 
resources from a Knowledge base K for n a-priori determined 
named entities N1; : : : ;Nn obtained from a given input text T. 
In general, there can be several candidate resources from a 
given knowledge base K for a given entity Ni. Out of these 
candidate resources only one candidate resource can be the 
required resource. Our aim is to find out that resource correctly. 
In the result set we get N such resources where each resource 
stands for an entity from the given input text. 

Similarity functions are applied to calculate similarity 
between candidate resources and named entity. Let 𝜓 be the 
similarity function, e.g., string similarity. The coherence 
function calculates the similarity of the knowledge base K and 
candidate resources to ensure dependable relevance. Let Φ be 
the coherence function. It is implemented by the HITS 
algorithm to compute the closest entities. Given this formal 
model, the objective is to find the result R with 

 
𝑅 = 𝑎𝑟𝑔 𝑚𝑎𝑥( 𝜓 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒, 𝑛𝑎𝑚𝑒𝑑 𝑒𝑛𝑡𝑖𝑡𝑦 

+ 𝜙 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒, 𝐾 ) 
 
For the purpose of scalability, we compute the result by using 
an upper bound of Θ(k .|V |2) on the HITS algorithm, where k 
is the number of iterations and |V| is the number of nodes in the 
graph. Moreover, using HITS has other advantages like  

1) scalability, 
2) well explored behavior and  
3) the ability to analyze semantic authority. 

Our approach for NED consists of three stages.We first 
retrieve all named entities from the given input text using a 
named entity recognition function (e.g., Stanford NER[7]). 
After that, we detect candidates for each of the extracted named 
entities. We apply several heuristics at this stage and make use 
of known surface forms [11] for resources from the underlying 
knowledge base. We then use this list of candidates generated 
in the previous step to form a disambiguation graph. For this 
we make use of a graph search algorithm(e.g. Breadth First 
Search) on the underlying knowledge base to extract context 
information. Finally, in the last step, we implement the HITS 
algorithm on the obtained disambiguation graph to find most 
appropriate candidates for the extracted named entities in our 
input text. The candidates with the highest authority values are 
the correct resources. All stages in our project have a 
polynomial time complexity, leading to overall project also 
being polynomial in time complexity. We present each of the 
steps of our project in more detail below. 

B. String normalization and expansion  

An index is created, it is used to search candidates for the 
entities identified by Stanford NER. We get a list of possible 
candidates from the index. After searching the index, a string 
normalization function and an expansion policy is applied to 
the input text. The string normalization is a technique to 
remove plural and genitive forms(e.g. apostrophe), eliminating 
common bound forms like postfixes for corporate labels and 
not including candidates with time information(years, dates, 
etc.) within their label. For example, the genitive India's is 
transformed into India, the postfix of Reliance Ltd. is reduced 
to Reliance and the time information of Mumbai 2015 is 
ignored. 

Named entities are usually mentioned in their full length 
only the first time they appear in news and web pages, whereas 
the other repetitive mentions only have a substring of the actual 
mention due to the concise nature of most news articles. For 
example, a text mentioning Narendra Modi's visit to the United 
States of America will mostly contain Narendra Modi in the 
first mention of him and use strings as Modi later in the same 
text as the readers know whom is it referring to from the first 
mention of him. According to this perception, we map each 
named entity label (e.g., Modi) which is a substring of another 
named entity label that was recognized previously (e.g., 
Narendra Modi) to the same resource , i.e., dbr: Narendra 
Modi. We choose the shortest expansion if there are several 
expansions in the input text. This expansion policy is an 
approach to co-reference resolution within the same document, 
it is time-efficient and plays a very important role in dealing 
with text from the web. 

The lists of candidates are then filtered out and most 
relevant candidates for each named entity are found out. 

C. Filtering the candidates 

For this filtration step, measures such as string similarity, 
domain check are used. We compare the named entity and each 
of the candidates extracted in the previous step using n-gram 
similarity measure. We have used trigram similarity, where the 
value of n is 3. The domain check measure is used to narrow 
down the search space, that is to eliminate the candidates which 
do not belong to any of the domains specified for named entity 
recognition, because these candidates can simply not be the 
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correct resource for the named entity since their domains are 
different. We have limited our technique to named entities 
which fall under the categories such as person, organization 
and place. So candidates other than these domains are 
eliminated in this step. These categories can be changed by the 
user according to his purposes. The types are mentioned in 
Table 1 for DBpedia and YAGO2 knowledge bases that we 
have used. This technique is added to decrease the number of 
candidates which in turn increases the accuracy. 

 

 
 

Table 1: DBpedia and YAGO2 classes used for 
disambiguation classes. 

 
The candidate detection and filtration approach explained 

above is summarized in Algorithm 1. 
 
 
Algorithm 1: Searching candidates for a label.(courtesy [1]) 
Data: label of a certain named entity Ni, σ trigram similarity 

threshold 
Result: C candidates found 

      C← Ø; 

      label ← normalize(label); 

      label ← expand(label); 

      -C ← searchIndex(label); 

      for c ϵ -C do 

 if ~c.matches([0-9]+) then 

      if trigramSimilarity(c, label) ≥ σ then 

   if fitDomain(c) then 

    C ← C ∪ c; 

 

So after this step we get a filtered list of candidates out of 
which one maybe our required entity. 

D. Construction of graph 

Once we have a filtered list of candidates for each named 
entity we start constructing a disambiguation graph. For this we 
use search algorithm like breadth first search which is applied 
on the knowledge base to get context of the candidate nodes. 
Our knowledge base is in the form of a directed graph, where 
there are edges between the resources which are the nodes and 
(subject; predicate; object) is an RDF triple in the KB. In the 
beginning our graph contains all the candidates as its nodes and 
set of edges is set to null. To expand the graph we search for 
contextually related nodes to our candidate node for each 
named entity one by one. The extension of the graph is defined 
below, 

 
Vi+1=Vi ∪ {y|∃x which is a node in the disambiguation 

graph∧ (subject, object) is an edgein the KB} 

Ei+1 = {(subject, object) is an edge in the KB | x, y are the 
added nodes} 

 
We iterate the extension step d times on the initial graph to 

obtain the final disambiguation graph. This depth d for the 

number of iterations can be set according to the required 

accuracy. 

 
 

Fig. 1: A simple directed graph using JUNG2 

 

For construction of graph we have used the JUNG 

framework in java as shown in fig. 1. 

E. HITS algorithm 

Hyperlink-Induced Topic Search is an algorithm developed 

by Jon Kleinberg. It is a link analysis algorithm that ranks web 

pages. The idea about Hubs and Authorities came up from a 

perception of the formation of web pages when the Internet 

was originally being created; that is, some web pages, called 

as hubs, performed the task of large directories which were 

not actually reliable for the information that they contained, 

but were used as collections of a wide prospectus of 

information that helped users to reach authoritative pages. So 

we can conclude that, a good hub constituted a page that 

directed to several other pages, and a good authority 

constituted a page that was directed to by several different 

hubs. 

The algorithm therefore gives two scores for every page: 

authority score, which rates the importance of the matter of 

the page, and hub score, which rates the importance of its 

links to other pages. 

In the HITS algorithm, the starting thing is to extract the 

most relevant pages to the given query. This set is referred as 

the root set and we can get it by taking the top pages returned 

by a text-based search algorithm. A base set is generated by 

extending the root set to add all the web pages that are 

connected from it and the pages that link to it. The web pages 

in the base set along with all the hyperlinks among those 

pages form a focused sub-graph. The HITS calculation is done 

only on this focused sub-graph. 

Authority and hub values are calculated in terms of each 

another in a mutual recursion. An authority value is calculated 

as the sum of the normalized hub values that point to that 

page. A hub value is the sum of the scaled authority values of 

the pages it points to. 

The algorithm performs a number of iterations, each 

consisting of two basic steps: 

Authority Update: Update each node's Authority 

score which is equal to the sum of the Hub Scores of each 

node that links to it. That is, a node gets a high authority score 

by being pointed from pages that are identified as Hubs for 

information. 

Hub Update: Update each node's Hub Score which is equal 
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to the sum of the Authority Scores of each node that it links 

to. That is, a node is given a high hub score by pointing to 

nodes that are considered to be authorities on the subject. 

HITS, like  PageRank method, is an iterative 

algorithm based on the connections of the documents on the 

web. But it is query dependent, that is, the search terms affect 

the Hub and Authority scores obtained from the link analysis. 

Using the HITS algorithm we compute authority scores xa; 

ya and hub scores xh; yh for all x; y which are nodes in the 

disambiguation graph. We initialize the authority and hub 

scoresand afterwards repeat the equationk times as given 

below: 

∀𝑥 ∈ 𝑉𝑑 , 𝑥𝑎 = 𝑥ℎ =
1

|𝑉𝑑 |
 

 

𝑥𝑎 ←  𝑦ℎ

(𝑦,𝑥)𝜖𝐸𝑑

, 𝑦ℎ ←  𝑥𝑎

(𝑦 ,𝑥)𝜖𝐸𝑑

 

 

We have chosen k according to Kleinberg [10], i.e., the value 

of k is set to 20, which are sufficient to achieve convergence 

in most cases. Then we find the candidate with the highest 

authority value among the list of candidates as correct 

resource for a given named entity. The whole procedure is 

presented in Algorithm 2. 

 

 

Algorithm 2: Disambiguation Algorithm based on HITS and 

Linked Data.(courtesy [1])  
 

Data: N = {N1; N2 : : : Nn} named entities, σ trigramsimilarity 

threshold, d depth, k number of iterations 

Result: C = {C1; C2 : : : Cn} identified candidates for  named 

 entities 

      E ←  Ø; 

      V ← insertCandidates(N, σ); 

      G ← (V, E); 

      G ← breadthFirstSearch(G; d); 

HITS(G(V,E),k); 

sortAccordingToAuthority(V); 

       for Ni ϵ N do 

 for v ϵ V do 

       if v is a candidate for Ni then  

  store(Ni, v); 

  break; 

 

To improve accuracy we have added a few more steps. 

F. Using the Wikipedia Disambiguation Pages 

Following are the categories of Wikipedia pages : 

Article titles (Title) : The title of the article. The first letter of 

Wikipedia titles is case-insensitive and by default given in the 

uppercase form. For the articles having the special lowercase 

starting letter (like in gzip, iPod), we retrieve this alias with its 

first alphabet lowercased. 

Redirect titles (Redirect): Wikipedia provides a redirect 

technique to automatically forward a user from non-authorized 

titles — such as variant or wrong spellings, short forms, 

different language titles etc. — to the relevant article. e.g. for 

articles with lowercase title, if the redirect title begins with the 

first word of the authorized title, its first letter is also 

lowercased (e.g., IPods becomes iPods). 

Disambiguation page titles (DABTitle): Disambiguation pages 

are used to list the articles which may be represented to by an 

ambiguous title. The heading of a disambiguation page (e.g., 

an abbreviation or a surname) is thus taken as another name of 

the pages it disambiguates. Disambiguation pages commonly 

consist of more than one list, where each item of the list links 

to a candidate referent of the disambiguated name. However, 

such links are not limited only to candidates, so we only 

consider links that appear at the top of a list item. All 

descendants of the Disambiguation pages category are referred 

as disambiguation pages. We have shown an example of a 

disambiguation page below. 

We are already using the redirect pages to get the correct 

candidate even if there is a spelling mistake or typographical 

error in the label occurring in the given web page. 

 

 
 

Fig. 2: Wikipedia Disambiguation page for Kashmir 

 

To add candidates that have been missed out due to the high 

trigram similarity threshold requirement, we have made use of 

the disambiguation pages. The trigram similarity threshold for 

these mentions is slightly low to qualify as a candidate for the 

label. This increases accuracy and decreases the chance of 

NIL entity. The algorithm for this is mentioned below.

 
Algorithm 3: Use of Disambiguation pages 

 

G. Context Similarity 

Usually a text revolves around some context. Even if the 

whole text does not point towards the same topic, the labels in 

the same sentence or within a threshold distance have context 

common between them. We have made use of this fact to 

increase the accuracy of this project. 

If a possible candidate to an entity is found in the context of 

another entity, we add that as a candidate for the particular 

entity if it is not already present in the list of candidates. Due 

to this the missed out candidate which has a greater chance of 
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being the correct candidate is added in the list. The algorithm 

for the same is mentioned below. 

 
Algorithm 4: Context Similarity 

 

H. Modified HITS algorithm 

The idea behind the HITS algorithm can be understood from 

the following qualitative recursive definition: "A good 

authority is the one which is pointed to by many good hubs, 

and a good hub is the one which points to many good 

authorities". Thus, the value of some page p as an authority 

(obtained by the authority weight of page p) depends on the 

value of the pages that point to p as hubs (obtained by the hub 

weight of the pages), and vice versa. Kleinberg proposed to 

compute the hub and authority values using the addition 

operation. The authority weight of a page is obtained by the 

sum of the hub weights of the pages that link to p, and the hub 

weight of the page is defined to be the sum of the authority 

weights of the pages that are linked to by it. Two properties 

can be inferred from this definition. First, it is symmetric, 

because both hub and authority scores are calculated in the 

same way. If we change the direction of the edges, then 

authority and hub weights are interchanged. Second, while 

computing the hub weight of some page p, the authority 

weights of the pages that are linked to by page p are all 

considered equal (similarly while computing the authority 

weights). 

 

 

 
 

Fig.3: A bad example for HITS algorithm. 

 

These two things may sometimes lead to unexpected results. 

Consider, for example, the graph in Figure 3. In this graph, 

there are two components. The a part of the figure has a single 

authority linked to by a large number of hubs. The b part of 

the figure has a single hub that links to a large number of 

authorities. When the number of part b authorities is larger 

than the number of part a hubs, the HITS algorithm will 

allocate all authority weight to the part b authorities, while 

giving zero weight to the part a authority. The reason for this 

is that the part b hub is declared to be the best hub, thus 

causing the part b authorities to receive more weight. 

However, logically the part a authority is better than the part b 

authorities and should be ranked higher. In this example, the 

two properties of the HITS algorithm result in an unexpected 

result. Equality means that all authority weights of the nodes 

that are linked to by a hub serve equally to the hub weight of 

the node. As a result, quantity becomes quality. The hub 

weight of the part b hub increases simply because it points to 

many weak authorities. This leads us to question the definition 

of the hub weight and thus, the other symmetric nature of 

HITS. Symmetry assumes that hubs and authorities are 

qualitatively the same. However, there is a difference between 

the two. For example, logically a node with high in-degree is 

likely to be a good authority while, a node with high out-

degree is not necessarily a good hub. If it was true, then it 

would be very simple to increase the hub quality of a page, 

just by adding links to random pages. Thus it means that we 

should treat hubs and authorities differently. 

Borodin proposed a modification of the HITS algorithm to 

solve this problem. The Hub-Averaging algorithm updates the 

authority weights like the HITS algorithm, but it sets the hub 

weight of some node i to the average authority weight of the 

authorities pointed to by hub i. Thus, for some node i, we have 

The logic behind the HUBAVG algorithm is that a good hub 

should point only to good authorities, rather than to both good 

and bad authorities. Note that in the example in Figure 3, 

HUBAVG assigns the same weight to both part a and part b 

hubs, and it identifies the part a authority as the best authority. 

The HUBAVG algorithm is shown below. 

 

Algorithm 5: The HUBAVG (courtesy[19] ) 

 

Initialize authority weights to 1 

Repeat until the weights converge: 

 For every hub i ϵ H 

  ℎ𝑖 =
1

|𝐹 𝑖 |
Σ𝑎𝑗 

            For every authority i ϵ A 

  𝑎𝑖 = Σℎ𝑗 
            Normalize 

 

 

The HUBAVG algorithm can be seen as a mixture of 

the HITS and SALSA algorithms. The averaging of the 

weights of the authorities linked to by a hub is similar to 

dividing the weight of a hub between the authorities it links to. 

Therefore, the HUBAVG algorithm performs the calculation 

of authority weights like the HITS algorithm and the 

calculation of hub weights like the SALSA algorithm. This 

absence of symmetry in the calculation of hubs and authorities 

is influenced by the qualitative difference between hubs and 

authorities explained previously. 

 

I. Pre-processing step before HITS 

As we know the data in the world is large today and 

there can be a number of candidates for a single entity. So the 

disambiguation graph that is formed is very large in size. To 

reduce the graph size we have added a pre-processing step 

before passing the graph to HITS algorithm. 

The idea of this step is to remove those nodes from the 

graph which will not affect the output largely and are far away 
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from the candidates in context as well as depth in the graph. 

After applying this step many nodes are removed without 

affecting the result and thus the HITS algorithm has to be 

applied on a comparatively smaller graph which in turn 

increases the accuracy. 

 

Fig. 4: Flow Diagram of the Proposed Approach 

To explain the proposed approach with an example, we use a 

input text shown in fig 5. 

 
Fig. 5: Input text 

J. Explanation using an example 

Step 1: Named Entity Recognition (NER) 

 

The  named entities are identified from the given input text 

shown in fig. 5. 

The output of this step is shown in fig. 6 

 

 
Fig. 6: Output after NER 

 

Step 2: Candidate Generation 

The Lucene index is searched and candidates are found for 

each of the identified label in the text. 

The screenshots for candidates of each of the entities are 

shown below in fig 7,8,9. 

 

 
Fig.7: Candidates for entity Bulls 
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Fig. 8: Candidates for entity Jordan 

 

 
 

Fig. 9: Candidates for entity Space Jam 

 

 

 

Step 3. Candidate Filtration 

 

In this step n-gram similarity, FitDomain(), context similarity 

etc are applied and the final list of candidates is prepared. 

 

The output after this step is shown in fig. 10. 

 

 
 

Fig. 10: Candidate Filtration output 
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Step 4. BFS on KB to form Disambiguation graph 

The final list of candidates and KB are used and a 

disambiguation graph  is formed. 

 

The nodes of the graph are printed in the figure11. 

 
Fig. 11: Output after BFS 

 

Step 5. Pre-processing step 

 

The nodes which do not affect the output largely are removed 

and the minimized graph is shown in Fig. 12. 

 

 
Fig. 12: Output after pre-processing step 

 

Step 6. HITS Algorithm 

 

Lastly, HITS algorithm is performed on the minimized graph 

and result set is obtained which contains the identified 

resources from the knowledge base for each entity in the input 

text. 

The result set is shown in fig. 13. 

 

 

 

Fig. 1: Final Output 

 

 

Fig. 13: Final Output of proposed approach 

 

IV. EXPERIMENTS AND RESULTS 

For the experimental analysis, we have used the following 

datasets. 

1. AIDA/CO-NLL-TestB : This dataset is derived from 

the Cornolti et al. benchmarks and begins from the 

evaluation of AIDA [9]. This dataset was derived 

from the CO-NLL 2003 shared task[15] and contains 

1,393 news articles that were manually annotated. 

The second test part of the Cornolti et al.'s benchmark 

comprises of 231 documents having 19.4 entities in 

each document on an average. 

2. AQUAINT : In this dataset, only the first mention of 

an entity is annotated. It consists of 50 documents 

which are on average longer than the AIDA/CO-

NLL-TestB documents. Every document has 14.5 

annotated elements on an average. The documents are 

from different news services, e.g. Associated Press 

and have been annotated using voter agreement. The 

dataset was created by Milne et al. 

 

 
Table 2: Test corpora specification 

 

Table 3: Performance of Proposed Approach, DBpedia 

Spotlight and TagMe 2 on the datasets using micro F-measure 

(F1). 

 
We compared our approach with TagMe 2 and DBpedia 

using these datasets which were already implemented in the 
Cornolti et al framework. Proposed approach has used a 
breadth-first search with depth d = 2 and a trigram similarity 
with a threshold of 0.82. All the approaches that have been 
used above disambiguate using the English DBpedia. 

 
V. CONCLUSION AND FUTURE WORK 

We have presented a novel named entity disambiguation 
approach in this project. Our approach combines the Hypertext-
Induced Topic Search (HITS) algorithm with label expansion 
strategies and string similarity measures. It is a graph based 
approach for named entity disambiguation. Our approach has 
been tested on two datasets, namely, AIDA/CONLL-TESTB 

Result: 
{67=http://dbpedia.org/resource/Space_Jam, 

37=http://dbpedia.org/resource/Michael_Jordan
} 
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and AQUAINT datasets from the Cornolti. et al benchmark. It 
outperforms the state-of-the-art algorithms TagMe2, and 
DBpedia Spotlight while remaining quadratic in its time 
complexity. We achieve 0.636 F1-measure for the 
AIDA/CONLL-TESTB dataset and 0.576 F1-measure for the 
AQUAINT dataset. 
For future work, following modifications can be done . 

Our approach can be extended to implement a paragraph wise 

disambiguation policy. It performs disambiguation on whole 

documents. Large number of resources in the documents thus 

causes our approach to generate very large disambiguation 

graphs. The number of errors in these graphs leads to an 

overall low performance disambiguation. This drawback can 

be dealt with in future work by fitting our approach with a 

preprocessor which is able to extract paragraphs from input 

texts. 
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