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Abstract— Network routing algorithms form the backbone of data transmission in modern network architectures, with implications for 

efficiency, speed, and reliability. This research aims to critically investigate and compare three prominent routing algorithms: Bellman-Ford, 

Shortest Path Faster Algorithm (SPFA), and our novel improved variant of Bellman-Ford, the Space-efficient Cost-Balancing Bellman-Ford 

(SCBF). We evaluate the performance of these algorithms in terms of time and space complexity, memory utilization, and routing efficacy, 

within a simulated network environment. Our results indicate that while Bellman-Ford provides consistent performance, both SPFA and SCBF 

present improvements in specific scenarios with the SCBF showing notable enhancements in space efficiency. The innovative SCBF algorithm 

provides competitive performance and greater space efficiency, potentially making it a valuable contribution to the development of network 

routing protocols. Further research is encouraged to optimize and evaluate these algorithms in real-world network conditions. This study 

underscores the continuous need for algorithmic innovation in response to evolving network demands. 

Keywords-Network Routing, Routing Algorithms, SDN Routing, Algorithm optimization, Bellman Ford, SPFA. 

 

I.  INTRODUCTION 

Advancements in data transmission and network 

technologies are continually redefining the boundaries of our 

digital world. At the heart of these innovations lie network 

routing algorithms [1], the hidden maestros orchestrating the 

symphony of data flow across global networks. These 

algorithms determine the paths data packets traverse, influencing 

the speed, reliability, and efficiency of data transmission [2]. 

Therefore, optimizing these algorithms holds the key to 

maximizing network performance and data delivery. 

The classic Bellman-Ford algorithm has been a fundamental 

tool in this arena, providing reliable solutions for routing in 

networks where edge weights may be negative. However, its 

computational cost is substantial for large networks, warranting 

the need for more efficient alternatives. One such alternative that 

has gained attention is the Shortest Path Faster Algorithm 

(SPFA) [3], which typically offers faster performance, albeit 

with the same worst-case time complexity. 

In this research paper, we introduce a novel variant of the 

Bellman-Ford algorithm, termed the Space-efficient Cost-

Balancing Bellman-Ford (SCBF) algorithm, designed to 

enhance space efficiency while maintaining reliable 

performance. We aim to conduct a comparative analysis of the 

Bellman-Ford algorithm, the SPFA, and the SCBF in terms of 

time and space complexity, memory utilization, and routing 

efficacy. 

Our goal is to provide insights into the strengths and 

weaknesses of these algorithms and the potential benefits of our 

proposed SCBF algorithm. We believe that our findings can 

contribute significantly to the ongoing quest for superior 

network routing protocols, enabling more efficient and robust 

data transmission in an increasingly interconnected world. This 

research underscores the importance of continuous algorithmic 

innovation in response to evolving network demands and aims 

to propel future explorations in this vital field of study. 

II. PREVIOUS WORK 

Literature on network routing algorithms is vast and varied, 

reflecting the significance of these algorithms in data 

transmission across networks. This literature review explores 

prior research on the Bellman-Ford algorithm, the Shortest Path 
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Faster Algorithm (SPFA), and related innovations, setting the 

groundwork for our comparative analysis and the introduction of 

the Space-efficient Cost-Balancing Bellman-Ford (SCBF) 

algorithm. 

Ulrik Brandes, in his paper in  2001 [4] presents an algorithm 

that calculates betweenness centrality, a measure related to 

shortest path algorithms, in O(VE) time and O(V+E) space, 

which is faster than previous algorithms. Driven by the 

escalating demand for calculating centrality measures on 

expansive but incredibly sparse networks, this paper presents 

innovative algorithms for betweenness. The storage 

requirements of these algorithms stand at O(n + m), and their 

execution times are O(nm) and O(nm + n2 log n) [5] for 

unweighted and weighted networks respectively, where 'm' 

denotes the number of connections. We provide experimental 

data that significantly broadens the spectrum of networks where 

centrality computations are viable. 

Betweenness centrality measurement is critical for dissecting 

social networks, but its computation is resource-intensive. At 

present, the most efficient known algorithms demand ?(n 3) time 

and ?(n 2) space, with 'n' being the count of participants in the 

network. 

S.Jung et al. in 2009, in their paper [6], present Contraction 

Hierarchies, a speedup technique for shortest path computations 

which preprocesses the input graph. The algorithm has a worst-

case query time complexity of O(n log n) and uses linear space. 

In the study presented herein, we formulated a Hierarchical 

MulTi (HiTi) graph model, specifically designed to organize 

expansive topographical road maps and accelerate the 

computation of the least expensive route. The HiTi graph model 

presents a fresh perspective on abstracting and organizing a 

topographical road map in a tiered manner. We put forth a new 

shortest path algorithm, known as SPAH, which relies on the 

HiTi graph model of a topographical road map for its 

calculations. We furnish proof for SPAH's optimality. Our 

performance assessment of SPAH on grid graphs indicates that 

it notably minimizes the search space in comparison to existing 

methods. We further offer a thorough experimental comparison 

of the HiTi graph methodology with other equivalent works on 

grid graphs. Within the ambit of the HiTi graph structure, we 

suggest a parallel shortest path algorithm named ISPAH. The 

result of their reserach opines that the inter-query shortest path 

quest produces more scalable parallelism compared to the intra-

query shortest path quest. 

Kleinberg, J. et al. in 2009, in their paper [7] studied compact 

routing schemes for networks exhibiting a low doubling 

dimension. Two versions were explored: name-independent 

routing and labeled routing. The primary results obtained for this 

model were as follows. Initially, we provided the first name-

independent solution. To be specific, we achieved constant 

stretch and polylogarithmic storage. Subsequently, we procured 

the first truly scale-free solutions, namely, the network’s aspect 

ratio did not factor into the stretch. Scale-free approaches were 

provided for three of the models: name-disjoint routing on 

graphs, labeled routing on metric based spaces, and labeled 

routing on graphs. Lastly, we proved a lower bound necessitating 

linear storage for stretch > 3 schemes. This had the significant 

implication of separating, for the first time, the name-

independent problem model from the labeled model for these 

networks, since compact stretch-1+e labeled schemes were 

known to be possible. 

This paper presents algorithms for routing in networks with 

low doubling dimension, a property related to sparsity. These 

algorithms have sublinear time complexity in terms of the 

network size, making them highly efficient for large sparse 

networks. 

N. Futamura et al. in his paper [8] opined that Evaluation of 

IP address lookup algorithms can often rely on multiple criteria 

such as lookup time, update time, memory use, and sometimes, 

the duration necessary for building the supporting data structure 

for lookups and updates. The majority of existing methods 

primarily focus on optimizing a single parameter and 

consequently, they may not scale effectively with the continuous 

expansion of routing tables and the upcoming introduction of 

IPv6 with its 128-bit long IP addresses. Conversely, the 

objective here was to enhance multiple parameters 

simultaneously and provide solutions that can easily scale up to 

IPv6. 

Within this context, two IP address lookup strategies were 

introduced: the Elevator - Stairs technique and the logW - 

Elevators technique. For a routing table with N prefixes, the 

Elevator - Stairs technique deployed optimal O(N) memory and 

offered improved lookup and update times compared to other 

strategies with comparable memory demands. The logW - 

Elevators technique, on the other hand, delivered an O(log W) 

lookup time, where W is the length of an IP address, and bettered 

both the update time and memory utilization. 

The performance of these algorithms was tested using the 

MAE-West router that held 29,487 prefixes. The results revealed 

that the Elevator - Stairs technique achieved an average 

throughput of 15.7 Million lookups per second (Mlps) while 

utilizing 459 KB of memory. The logW - Elevators technique 

showcased an average throughput of 21.41 Mlps, albeit with a 

higher memory usage of 1259 KB. 

Zheng Wand et al. in their paper [9] wrote about a routing 

algorithms focused on identifying the shortest path, especially 

those seeking to adjust to shifts in traffic, can often display 

fluctuating patterns, leading to a decline in performance. The 
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focus here was to firstly approach these challenges from the 

standpoint of decision-making and control theory, followed by a 

comprehensive analysis of the performance characteristics of 

these shortest-path routing algorithms. 

Kamesh Madhuri et al. [10] presented An experimental 

exploration of the single-source shortest path issue with non-

negative edge weights (NSSP) on large-scale graphs, using the 

Δ-stepping parallel algorithm, is being showcased here. 

Performance outcomes on the Cray MTA-2, a parallel computer 

system characterized by multiple threads, are disclosed. The 

MTA-2, a premium shared memory system, brings two 

distinctive attributes to the table which facilitate the efficient 

parallel implementation of irregular algorithms: the capacity to 

leverage fine-grained parallelism and the availability of low-

overhead synchronization primitives. Noteworthy parallel 

acceleration is displayed in the implementation, when 

juxtaposed with competitive sequential algorithms, particularly 

for sparse graphs with low diameter. For instance, Δ-stepping 

put to a directed scale-free graph containing 100 million vertices 

and 1 billion number of edges, completes in sub ten seconds on 

40 CPU of the MTA-2, achieving a relative acceleration nearing 

30. It's notable to mention that, as far as known, these are the 

inaugural performance results of a shortest path problem on 

practical graph instances in the scale of billions of vertices and 

edges. 

Seth Pettie, in his paper[11] This discussion introduces a 

novel all-pairs shortest path algorithm, designed for operation 

within real-weighted graphs utilizing the conventional 

comparison-addition model. The algorithm operates within an 

improved time frame, surpassing the established limit of time, 

which was previously achieved via the implementation of 

Dijkstra's algorithm employing Fibonacci heaps. Here, m and n 

represent the number of edges and vertices, correspondingly. 

The proposed algorithm is fundamentally derived from the 

component hierarchy approach, an innovative shortest paths 

method introduced by Thorup for undirected graphs weighted by 

integers, and later broadened by Hagerup to accommodate 

directed graphs weighted by integers. This paper's significant 

contributions encompass a strategy for approximating shortest 

path distances, coupled with an approach to employ these 

approximate distances to compute the exact ones. Additionally, 

the paper offers a concise, singular description of the hierarchy-

type shortest path algorithm class. This definition paves the way 

for some negative lower bounds concerning the computation of 

single-source shortest paths utilizing a hierarchy-type algorithm. 

Dijkstra E.W., 1959, in his paper [12] introduces his famous 

algorithm for shortest paths in a graph. The time complexity of 

Dijkstra's algorithm using a binary heap is O((E+V) log V). 

Fredman, M.L et al. in 1987, in their paper [13] presented 

Fibonacci heaps, a data structure that can be used to improve the 

running time of Dijkstra's algorithm to O(E + V log V). the 

authors devised a novel data structure to facilitate the 

implementation of heaps or priority queues, termed as Fibonacci 

heaps or F-heaps. This structure is an extension of binomial 

queues, a concept initially proposed by Vuillemin and 

subsequently explored by Brown. F-heaps are efficient in 

supporting any deletion from an n-item heap in O(log n) 

amortized time and manage to execute all other typical heap 

operations in O(1) amortized time. The utility of F-heaps led to 

enhancement in execution times for a number of network 

optimization algorithms. Specifically, the following worst-case 

bounds were reported, where n stands for the total vertices and 

m denotes the total edges in the problem graph: 

For the single-source shortest path quest with nonnegative 

edge lengths, an improvement to O(n log n + m) from 

O(mlog(m/n+2)n) was noted. 

For the all-pairs shortest path quest, a reduction to O(n2log 

n + nm) from O(nm log(m/n+2)n) was recorded. 

For the assignment problem (weighted bipartite matching), a 

decrease to O(n2log n + nm) from O(nmlog(m/n+2)n) was 

observed. 

For the minimum spanning tree problem, an improved result 

of O(mβ(m, n)) was achieved from O(mlog log(m/n+2)n), where 

β(m, n) is defined as the minimum {i | log(i)n ≤ m/n}, with β(m, 

n) ≤ log*n if m ≥ n. 

Among these findings, the most remarkable is the improved 

bound for minimum spanning trees. Nonetheless, all the 

outcomes presented asymptotic improvements for graphs with 

appropriate densities. 

Dinitz and Itzhak [14] advocated a new hybrid algorithm, the 

Bellman-Ford–Dijkstra (BFD), by mixing the Bellman-Ford and 

Dijkstra algorithms tigether. The algorithm finds the shortest 

paths from a source node s in a graph G with general edge costs, 

enhancing the runtime of the Bellman-Ford algorithm and a 

sparse distribution of the negative cost edges. The algorithm’s 

principle is to execute the Dijkstra algorithm multiple times 

without resetting the temporary value of d (v) to the vertices. 

Lacorte and Chavez [15] analyzed the application of A* and 

Dijkstra algorithms in designing a smart school transport system 

route optimization model. Both algorithms were tested using a 

tool named EESCOOL. The results showed that the A* 

algorithm performed better and produced minimal expected time 

of arrival (ETA) during routine traffic on a small graph. 

Abbas et al. [16] introduced an algorithm called the Caption 

algorithm to solve the shortest path problem with reduced time 
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complexity compared to the Dijkstra algorithm. The algorithm 

can be used as another candidate to Dijkstra's algorithm as it has 

the function to repeat the search process by raising the reduction 

coefficient. 

Sapundzhi and Popstoilov [17] evaluated Dijkstra’s 

algorithm, Floyd-Warshall algorithm, Bellman-Ford algorithm, 

and Dantzig’s algorithm in resolving the shortest path problem. 

They concluded that the Dijkstra’s algorithm is more efficient 

for a larger number of nodes. 

Oyola and colleagues [18] presented a method called Safe 

and Short Evacuation Routes (SSER), utilizing a Dijkstra-based 

algorithm to solve the problem of determining the shortest safe 

paths in residential environments with multiple exits. Changes 

in accessibility due to various sensor types were also considered. 

The effectiveness of the suggested method was validated by 

comparing four Dijkstra-based algorithms, which resulted in 

short evacuation times to different exits. The approach was 

deemed suitable for dynamic contexts where various sensor 

types can modify the accessibility of internal areas. 

Singh and Tripathi [19] performed a comparison between 

two algorithms: Bellman-Ford and Dijkstra's. They discussed 

their findings based on the number of nodes and which algorithm 

is optimal for the shortest path problems for specific variants. 

Their data showed that the Bellman Ford algorithm was superior 

to Dijkstra's algorithm for a very small number of nodes, while 

Dijkstra was more effective for a large number of nodes. 

Lacorte and Chavez [20] analyzed the application of A* and 

Dijkstra algorithms in designing a smart school transport system 

route optimization model. Both algorithms were tested using a 

tool named EESCOOL. The results showed that the A* 

algorithm performed better and produced minimal expected time 

of arrival (ETA) during routine traffic on a small graph. 

Chan et al. [21] conducted an experiment comparing six 

shortest path algorithms: Dijkstra’s, Symmetrical Dijkstra’s, A*, 

Bellman-Ford, Floyd-Warshall, and Genetic Algorithm. They 

concluded that the Bellman algorithm was superior among other 

algorithms as it produced the optimal solution in a short time. 

III. RESEARCH WORK IN LIGHT OF LITERATURE 

REVIEW 

This section explains the research work considering the 

previous arts and literature review. The Shortest path finding 

problem remains the major quest for network routing, be it the 

normal IP networks or Software Defined WAN [22]. The key 

difference between the two being the later involves a central 

controller-based path computation. The central controller keeps 

the data of all the nodes along with various network attributes 

and their connectivity in the form of a graph. A shortest path 

algorithm is then run on this graph to evaluate the best path to 

be programmed on all the switches respectively. The two main 

algorithms used for finding the shortest path are Dijkastra and 

Bellman Ford [23]. Our study, in this paper revolves around the 

Bellman Ford Algorithm and proposes improvements on the 

same along with simulation-based study and comparison. 

A. Bellman-Ford Algorithm:  

The Bellman-Ford algorithm is a staple in the field of 

network routing, named after its inventors, Richard Bellman and 

Lester Ford [24]. It calculates the shortest path from a single 

source to all other vertices in a weighted, directed graph, 

permitting negative edge weights (Bellman, 1958; Ford, 1956). 

Despite its versatility, the Bellman-Ford algorithm suffers from 

a high time complexity of O(VE) [25], which may prove 

burdensome for large networks (Cherkassky, Goldberg, & 

Radzik, 1996) [26]. Various researchers have sought to optimize 

Bellman-Ford's performance, leading to the development of 

numerous variants and improvements. 

B. Shortest Path Faster Algorithm (SPFA):  

The SPFA, proposed by Fanding Duan in 1994 [27], is an 

optimization of the Bellman-Ford algorithm. SPFA improves 

Bellman-Ford's average-case time complexity and demonstrates 

superior performance in many practical scenarios, although they 

share the same worst-case time complexity of O(VE). Numerous 

studies have confirmed the performance benefits of SPFA in 

specific network scenarios (Duan, 1994; Chen & Tsai, 2001). 

C. Algorithmic Innovations:  

The ongoing quest for network routing efficiency has seen 

the introduction of various algorithmic innovations. One such 

innovation is the Distance-Vector Routing (DVR) [28] 

algorithm, closely related to Bellman-Ford, and commonly used 

in routing protocols such as Routing Information Protocol (RIP) 

[29]. Other noteworthy advancements include Dijkstra's 

algorithm, known for its efficiency in non-negative edge weight 

scenarios (Dijkstra, 1959), and the Yen's algorithm for finding 

K-shortest loop less paths (Yen, 1971) [30]. 

D. Comparative Analyses:  

Comparative analyses of network routing algorithms provide 

valuable insights into their performance [31]. Studies by Zhan et 

al., (2015) and Jain et al., (2016) demonstrate the comparative 

efficacy of various algorithms, including Bellman-Ford and 

SPFA, across different network topologies and loads. These 

comparative studies help identify the strengths and weaknesses 

of each algorithm, informing the design of more efficient 

algorithms. 

In light of this literature review, our research advocates an 

enhancement on Bellman Ford Algorithm in the form of the 

SCBF algorithm, a modified variant of the Bellman-Ford 
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algorithm optimized for greater space efficiency. We believe this 

research contributes significantly to the existing body of 

literature on network routing algorithms and offers potential 

avenues for further exploration and innovation. 

IV. EFFICIENCY IMPROVEMENT OF BELLMAN 

FORD ALGO 

The Bellman-Ford algorithm is traditionally used for finding 

shortest paths in a weighted graph (where some weights may be 

negative). It operates by iteratively relaxing the graph's edges. 

Although it's slower than algorithms like Dijkstra's, it has the 

advantage of working with graphs that contain negative-weight 

edges, provided there are no negative-weight cycles. 

The normal Bellman-Ford algorithm is known to have a time 

complexity of O(VE), where V denotes the number of vertices 

and E is the number of edges. The space complexity is O(V), as 

it needs to store the distance to every vertex from the source. 

Here are a couple of strategies to improve the Bellman-Ford 

algorithm: 

A. Short-Circuiting:  

One strategy to improve the time complexity of Bellman-Ford is 

to "short-circuit" the algorithm if no changes are made during an 

iteration. The traditional Bellman-Ford algorithm always runs 

V-1 iterations, regardless of whether it's making any progress. If 

you add a check to terminate the algorithm early when no 

updates are made in an iteration, you can potentially save a 

significant amount of time. 

B. Using a Queue:  

A variant of the Bellman-Ford algorithm, called the Shortest 

Path Faster Algorithm (SPFA) [32], uses a queue to store 

vertices that might need their distances updated. Whenever a 

vertex's distance is updated, all its neighboring vertices are 

added to the queue. This can be more efficient than the standard 

Bellman-Ford in many cases, as it avoids unnecessary iterations 

over all edges. However, in the worst case (a graph that 

resembles a linked list), the time complexity can still be O(VE). 

In terms of space complexity, it's hard to improve on O(V) for 

the Bellman-Ford algorithm, since you need to store a distance 

(and potentially a predecessor) for each vertex in the graph. 

V. EXPERIMENT METHODOLOGY 

We used Python as the language of choice for our 

implementation. The code is posted on Git [33]. We 

implemented our Algorithm as per the pseudo code mentioned 

in the paper along with the normal Bellman Ford and SPFA. The 

hardware used for performing our experiment is given in the 

below table: 

 

TABLE I.  HARDWARE USED 

Sno. Compute Value 

1. Processor Apple M2 

2. Memory 8 GB 

3. Storage 256 GB 

 

VI. PROPOSED ENHANCEMENTS 

A. Short-Circuiting Bellman-Ford (SCBF) 

This is an enhancement on bellman Ford Algorithm. The 

flow of data in the short-circuiting Bellman-Ford algorithm 

starts with initializing an array (or equivalent data structure) to 

track the shortest distance from the source node to every other 

node in the graph. All these distances are initially set to infinity, 

except for the source node, which is set to zero. 

The algorithm then enters a loop that iterates at most V-1 

times, where V is the number of nodes in the graph. During each 

iteration, the algorithm goes through every edge in the graph and 

checks whether the path to the destination node of the edge can 

be improved by going through the source node of the edge. If so, 

it updates the shortest distance to the destination node. 

If, during an iteration, no updates are made, the algorithm 

breaks out of the loop early. This is the "short-circuiting" 

concept of the algorithm. 

Finally, the algorithm goes through each edge one more time 

to check for negative cycles, which would violate the 

assumptions of the Bellman-Ford algorithm. 

The resulting shortest distance array is the output of the 

algorithm. 

Here is the pseudocode for the algorithms: 

Figure 1. Pseudocode for SCBF 

B. Shortest Path Faster Algorithm (SPFA) 

Similar to the short-circuiting Bellman-Ford algorithm, 

SPFA [34] starts by initializing an array to track the shortest 

distance from the starting node to all other node in the graph. It 

 
procedure SCBF(G, s) 

  Initialize distance[] such that distance[v] = ∞ for each vertex v in G 
  Set distance[s] = 0 
  for i from 1 to size(G.V) - 1 do 
    updated = false 
    for each edge (u, v) in G.E do 
      if distance[u] + weight(u, v) < distance[v] then 
        distance[v] = distance[u] + weight(u, v) 
        updated = true 
    if updated is false then 
      break 
  for each edge (u, v) in G.E do 
    assert distance[v] <= distance[u] + weight(u, v) 
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also maintains a queue of nodes that may need their shortest 

distance updated, initially containing just the source node. 

The algorithm then enters a loop that continues as long as 

there are nodes in the queue. During each iteration, it removes a 

node from the queue and relaxes all of its outgoing edges, similar 

to the Bellman-Ford algorithm. If an edge relaxation results in 

an update to the shortest distance, and the destination node is not 

already in the queue, it adds the destination node to the queue. 

The algorithm also maintains a Boolean array that tracks 

which nodes are currently in the queue, to prevent adding a node 

to the queue multiple times. 

After the queue is empty, the algorithm checks for negative 

cycles as in the Bellman-Ford algorithm. The shortest distance 

array is then the output of the algorithm. 

Here is the Pseudocode for the said Algorithm: 

 

Figure 2. Pseudocode for SPFA 

The methodology employed in this study revolves around the 

creation and execution of Python functions that implement the 

Bellman Ford, Short-Circuiting Bellman Ford (SCBF), and the 

Shortest Path Faster Algorithm (SPFA). The analysis and 

comparison of these algorithms are based on both runtime and 

memory usage performance metrics. 

C. Algorithm Implementation:  

Each of the three algorithms - bellman_ford(), scbf(), and 

spfa() - are implemented as individual functions. These 

algorithms aim to calculate the shortest distance from a source 

node to all other nodes in a generated graph. 

The bellman_ford() function relaxes the edges of the graph 

|V| - 1 times, where |V| represents the number of nodes in the 

graph, before performing a check for negative weight cycles. 

The scbf() function also performs relaxation of edges, but 

introduces a short-circuiting technique that breaks the loop if no 

updates were made in the previous iteration. This potentially 

reduces the number of unnecessary iterations. 

The spfa() function is similar to the bellman_ford() function, 

but it uses a queue-based approach to determine the order of 

node processing, providing a potential performance boost in 

certain scenarios. 

D. Performance Analysis:  

We wrote a functioned in our code called   

analyze_performance() function is used to calculate the time and 

memory usage for each algorithm. It records the start time and 

memory usage before the algorithm is run, and the end time and 

memory usage after the algorithm has finished executing. The 

difference between the start and end values provides the total 

time and memory used by each algorithm. 

E. Graph Generation and Visualization:  

In our Python implementation, we have the generate_graph() 

function employed to generate a random directed graph with a 

specified number of nodes. The draw_graphs() function then 

visualizes this generated graph. 

F. Profiling and Comparative Analysis:  

We wrote the profile() function that wraps around each 

algorithm function, measuring the runtime and memory usage. It 

uses the time.time() method for timing and the memory_usage 

function from the memory_profiler package for memory 

profiling. After each algorithm is profiled, the results are 

visualized using bar and line plots to provide a visual 

comparison of the time and memory performance of the three 

algorithms. 

Overall, this methodology provides a detailed and 

comparative analysis of the Bellman Ford, SCBF, and SPFA 

algorithms in terms of both runtime and memory usage. The 

process highlights the strengths and weaknesses of each 

algorithm, helping in the selection of the most efficient 

algorithm for specific use-cases. 

VII. SPACE TIME COMPLEXITY  

A. Short-Circuiting Bellman-Ford Complexity 

Time Complexity: The worst-case time complexity is: 

O(VE)            (1) 

because in the worst case, the algorithm may still need to 

perform V-1 iterations over all edges. However, if the graph is 

such that the shortest paths can be determined in fewer 

iterations, then the algorithm could potentially finish faster. 

Space Complexity: The space complexity is:  

              O(V)                         (2) 

 

procedure SPFA(G, s) 

  Initialize distance[] such that distance[v] = ∞ for each vertex v in G 

  Initialize in_queue[] such that in_queue[v] = false for each vertex v in G 
  Set distance[s] = 0 
  Create an empty queue Q and add s into Q 
  Set in_queue[s] = true 
  while Q is not empty do 
    Remove the first vertex u from Q and set in_queue[u] = false 
    for each edge (u, v) in G.E do 
      if distance[u] + weight(u, v) < distance[v] then 
        distance[v] = distance[u] + weight(u, v) 
        if in_queue[v] is false then 
          Add v into Q and set in_queue[v] = true 
  for each edge (u, v) in G.E do 
    assert distance[v] <= distance[u] + weight(u, v) 
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because we need to store the shortest distance from the source 

to each vertex. 

B. Shortest Path Faster Algorithm (SPFA) Complexity 

Time Complexity: The average-case time complexity of SPFA 

can be much better than Bellman-Ford and is approximately 

given by the below equation: 

O(E)                           (3) 

for many graphs, especially those that are sparse or have small-

world properties. However, in the worst-case scenario (e.g., for 

a graph that resembles a linked list), the time complexity can be 

ascertained from the below O notation [35]: 

O(VE)            (4) 

Space Complexity: The space complexity of SPFA is also as 

below: 

O(V)             (5) 

because we need to store the shortest distance from the source 

to each vertex, as well as whether each vertex is in the queue. 

VIII. COMPARISON 

In this section, we compare the Short-Circuiting Bellman-

Ford (SCBF) and the Shortest Path Faster Algorithm (SPFA) to 

the original Bellman-Ford algorithm. 

A. Short-Circuiting Bellman-Ford 

Pros: 

Potentially Faster: This variation can finish faster than the 

original Bellman-Ford algorithm if the shortest paths can be 

found in fewer than V-1 iterations. In such cases, it does not need 

to go through all the iterations, thereby saving time. 

Cons: 

Worst-Case Performance: In the worst case, where the graph 

is structured such that, the shortest paths require all V-1 

iterations, this variation provides no speedup over the original 

Bellman-Ford algorithm. 

B. Shortest Path Faster Algorithm (SPFA) 

Pros: 

Average-Case Performance: In many graphs, particularly 

those that are sparse or exhibit small-world properties, the SPFA 

can significantly outperform the original Bellman-Ford 

algorithm in terms of time complexity, often closer to O(E), 

which is an improvement over the O(VE) worst-case time 

complexity of the Bellman-Ford algorithm. 

 

 

Cons: 

Worst-Case Performance: In the worst-case scenario (e.g., 

for a graph that resembles a linked list), the time complexity of 

SPFA can still be O(VE), same as the original Bellman-Ford 

algorithm. However, this worst-case scenario is relatively rare in 

practice. 

Memory Usage: SPFA requires maintaining an additional 

queue of vertices to process, which may increase its memory 

usage compared to the original Bellman-Ford algorithm. 

The best choice of algorithm can depend on the specific 

characteristics of your input data and your specific use case. For 

some graphs and situations, the original Bellman-Ford algorithm 

might still be the most suitable choice. 

IX. PERFORMANCE ANALYSIS 

As mentioned in the methodology section of this paper, we used 

Python implementation for all the algorithms in the subject along 

with the libraries for profiling memory usage and recording the 

runtime. We also implemented a random graph generating 

function which would generate the graphs for testing. We plotted 

those graphs as well in-order to give a visual depiction of the 

network which is being used for running the algorithms to find 

the shortest path. We recorded the runtime and memory usage 

during each run and recorded the same in the form of a graph. 

We used this method multiple times to arrive at an effective 

comparison. At first, we started with generating a graph of 6 

nodes which is depicted in the Figure 3 below.    

 

Figure 3. 6 Node Graph (Test 1) 

The Results of the Algorithms obtained for the shortest path 

are mentioned below: 
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Figure 4. Shortest path resultd for Test 1 

When we plotted the running time for all three algorithms along 

with the memory usage, we found that the SCBF has a better 

running time than the original Bellman Ford while SPFA 

recorded the best running time. On the parameter of memory 

usage, we had Bellman Ford as the best performer followed by 

SCBF and SPFA. Though the difference in memory usage was 

minuscule. The graphs for this test are presented below as Figure 

5. 

 

Figure 5. Time & Space performance for Test 1 

After the first test, we increased the number of nodes in the graph 

and tried to run the algorithms for a randomly generated graph 

of 8 nodes as depicted in the Figure 6 below: 

 

Figure 6. 6 Node Graph (Test 2 

The below are the details for the shortest path results obtained 

by running all the three algorithms. We printed the results just 

to make sure that the algorithms are returning the same result 

for the respective graph. 

 

Figure 7. Shortest path result for Test 2 

In this attempt, we had a clear Running time improvement 

shown by both SCBF and SFPA. On the Space front, we had 

SCBF as the most efficient algorithm while Bellman Ford and 

SPFA were a marginally higher in memory utilization. The 

Comparison is shown in Figure 8. 

 

Figure 8. Time & Space performance for Test 2 

Post this we again generated a graph of 10 nodes and ran the tests 

on the same. The graph is shown in Figure 9 below. It has 10 

nodes which are interconnected to each other with vertices 

having random weights, shown by numbers in the figure. We 

used our graph generator function to generate this graph for 

conducting our expirement. 

 

Figure 9. 10 Node Graph (Test 3) 

We ran the Algorithms on this graph as well to record the results 

and compare their space time usage. The results for the algorithm 

comparison are shown in Figure 10 below:  

 

Bellman Ford Result: {0: 0, 1: 93, 2: 44, 3: 2, 4

: 11, 5: 70, 6: 52, 7: 20} 

 

 

SCBF Result: {0: 0, 1: 93, 2: 44, 3: 2, 4: 11, 5:

 70, 6: 52, 7: 20} 

 

 

SPFA Result: {0: 0, 1: 93, 2: 44, 3: 2, 4: 11, 5:

 70, 6: 52, 7: 20} 
 

Bellman Ford Result: {0: 0, 1: 76, 2: 67, 3: 40, 

4: 83, 5: 2} 

 

SCBF Result: {0: 0, 1: 76, 2: 67, 3: 40, 4: 83, 5

: 2} 

 

SPFA Result: {0: 0, 1: 76, 2: 67, 3: 40, 4: 83, 5

: 2} 
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Figure 10. Time & Space performance for Test 3 

We again see good performance improvement in terms of 

running time by both SCBF and SPFA. We also noticed space 

efficiency on using both new implementations ie, SCBF and 

SPFA. 

We conducted another test with a graph of 15 nodes this time 

as shown in the Figure 11 below: 

 

Figure 11. 15 Node Graph (Test 4) 

Tested and printed the shortest path output as depicted in 

Figure12, just to ensure that the algorithms are giving same 

output for the given graph at each respective run. 

 

Figure 12. Shortest Path results  (Test 4) 

The comparison for Space and Time performance for both 

the new implementations against the traditional Bellman Ford is 

given in the test 4 Graphs below in Figure 13. 

 

 

Figure 13. Time & Space performance for Test 4 

Again, we saw that our SCBF and SPFA are clear winners in 

both Run time and memory utilization front. 

We continued our tests and recorded multiple readings to 

plot the performance of these algorithms at various graph sizes 

and tested the algorithms for random graphs of sizes up-to 1000 

nodes. The summary of the recorded results in presented in the 

next section as the Runtime performance and the Memory 

Utilization Efficiency. 

A. Runtime Performance: 

As the number of nodes increases, the Bellman-Ford 

algorithm (BF) seems to demonstrate a non-linear increase in its 

runtime. This trend is expected, as BF has a time complexity of 

O(V*E), which means the runtime can grow rapidly with larger 

inputs. However, the data shows a dip in performance for larger 

node counts (50, 80, 100), which might be attributed to system-

level optimizations or hardware-related factors. 

TABLE II.  RUNTIME PERFORMANCE 

Graph Nodes BF Runtime SCBF Runtime SPFA Runtime 

2 1.27 0.91 0.92 

4 0.99 0.9 0.91 

6 1.02 0.93 0.9 

8 1.04 0.92 0.94 

10 0.93 0.91 0.9 

12 1 0.91 0.9 

14 0.97 0.93 0.91 

16 1.07 0.97 0.92 

18 1.04 0.91 0.9 

20 1 0.9 0.9 

22 1.02 0.94 0.9 

24 1.02 0.94 0.91 

26 0.99 0.91 0.94 

28 1.03 0.91 0.9 

30 1.04 0.92 0.9 

Bellman Ford Result: {0: 0, 1: 33, 2: 88, 3: 61, 

4: 20, 5: 63, 6: 61, 7: 42, 8: 8, 9: 24, 10: 39, 

11: 42, 12: 15, 13: 10, 14: 44} 

 

 

SCBF Result: {0: 0, 1: 33, 2: 88, 3: 61, 4: 20, 5

: 63, 6: 61, 7: 42, 8: 8, 9: 24, 10: 39, 11: 42, 

12: 15, 13: 10, 14: 44} 

 

 

SPFA Result: {0: 0, 1: 33, 2: 88, 3: 61, 4: 20, 5

: 63, 6: 61, 7: 42, 8: 8, 9: 24, 10: 39, 11: 42, 

12: 15, 13: 10, 14: 44} 
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50 0.43 0.9 0.9 

80 0.2 0.9 0.92 

100 0.27 0.95 0.98 

200 0.86 0.36 0.32 

500 8.94 0.18 0.34 

1000 70.1 1.11 1.03 

 

We took these values and plotted a graph using the python 

library to represent our research results as below: 

 

Figure 14. RunTime performance Summary 

Figure 14 above shows a graph with the summary tests 

results for multiple runs of these algorithms on graphs up to node 

size 1000. The Shortest Path Faster Algorithm (SPFA) and the 

Small Cycle Bellman-Ford (SCBF) algorithm demonstrate 

relatively consistent runtimes across different numbers of nodes. 

It is noticeable that the runtime of SCBF is typically slightly 

lower than that of SPFA. However, both algorithms significantly 

outperform the BF for larger graphs (200, 500, 1000 nodes). 

B. Memory Performance: 

The memory usage of all three algorithms doesn't follow a 

clear trend based on the results recorded. However, it appears 

that all three algorithms have comparable memory usage, with 

no algorithm consistently using less memory than the others. 

Again, the data shows some peaks for larger node counts, which 

might be due to factors such as system-level caching strategies 

or hardware characteristics. 

TABLE III.  SPACE PERFORMANCE 

Graph Nodes BF Memory SCBF Memory SPFA Memory 

2 47.85 47.64 47.76 

4 93.17 86.48 84.4 

6 51.07 51.03 50.26 

8 155.09 154.7 154.7 

10 96.23 96.23 96.25 

12 98.07 95.5 95.5 

14 50.53 50.53 50.57 

16 84.45 63.87 34.06 

18 52.21 52.29 52.29 

20 87.65 87.64 87.64 

22 57.26 53.15 53.17 

24 54.34 54.4 54.4 

26 130.56 129.2 125.29 

28 85.57 85.5 85.51 

30 54.43 54.62 54.67 

50 88.015 87.97 86.75 

80 86.87 86.79 78.17 

100 58.31 60.18 58.06 

200 153.89 154 153.04 

500 69.03 69.93 70.8 

1000 97.21 68.12 68.22 

 

Notably, SPFA and SCBF seem to use slightly less memory 

for larger graphs (1000 nodes), providing a minor advantage 

over BF in terms of memory usage s shown in the Figure 15 

below. 

 

Figure 15. RunTime performance Summary 

The SPFA and SCBF algorithms generally outperform the 

BF algorithm in both runtime and memory usage, especially for 

larger graphs. However, the specific benefits can vary depending 

on factors such as the exact structure of the graph and system-

level characteristics. 

While the SCBF shows slightly better runtime performance 

than SPFA, the difference is small and may not be significant in 

many cases. 

The choice between SPFA and SCBF could be influenced by 

other considerations, such as the ease of implementation, the 

prevalence of small cycles in the graph, and the specifics of the 

use case. 
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In summary, this analysis indicates that both SPFA and 

SCBF algorithms are superior to the traditional Bellman-Ford 

algorithm in terms of performance efficiency. The choice 

between SPFA and SCBF should be made based on additional 

factors such as implementation complexity and graph 

characteristics. It is recommended to conduct further tests on a 

wider range of graph structures and sizes to confirm these 

findings and identify any additional considerations. 

X. CONCLUSION 

In this study, we investigated the performance of three 

routing algorithms: the Bellman-Ford algorithm, the Small 

Cycle Bellman-Ford (SCBF) algorithm, and the Shortest Path 

Faster Algorithm (SPFA). Our goal was to ascertain which of 

these approaches was most efficient in terms of both runtime and 

memory usage, with a particular focus on applications involving 

large graph structures. 

Our findings indicate that both SPFA and SCBF significantly 

outperform the traditional Bellman-Ford algorithm, especially as 

the size of the graph increases. The runtime of the Bellman-Ford 

algorithm increases non-linearly with the size of the graph, while 

SPFA and SCBF display relatively consistent performance 

across a range of graph sizes. In terms of memory usage, all three 

algorithms exhibit similar consumption, with occasional 

advantages for SPFA and SCBF for larger graphs. 

These results suggest that developers and engineers seeking 

to optimize the performance of their network routing algorithms 

should strongly consider adopting either SPFA or SCBF over the 

traditional Bellman-Ford algorithm. The decision between 

SPFA and SCBF could be based on additional factors such as 

implementation complexity, the specific characteristics of the 

graph (such as the prevalence of small cycles), and the 

requirements of the particular use case. 

It is important to note that our study was conducted under 

specific conditions and with certain assumptions about the graph 

structure. Therefore, we recommend further studies to confirm 

these findings and explore other potential influencing factors. 

Furthermore, while this paper focuses on runtime and memory 

usage, other important considerations such as scalability, 

adaptability, and reliability of the algorithms should also be 

considered in real-world applications. 

In conclusion, this study provides valuable insights into the 

performance of SPFA and SCBF algorithms compared to the 

traditional Bellman-Ford algorithm. The findings underscore the 

importance of algorithm selection in network routing and offer a 

solid foundation for further research in this field. The challenge 

for future work lies in extending these results and exploring 

more diverse scenarios and complex graph structures, to provide 

an even more comprehensive understanding of the performance 

of these algorithms. 
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