
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7172

Article Received: 20 April 2023 Revised: 08 June 2023 Accepted: 25 June 2023

 20

IJRITCC | July 2023, Available @ http://www.ijritcc.org

An Optimised Shortest Path Algorithm for Network

Rotuting & SDN

Improvement on Bellman-Ford Algorithm

Mohit Chandra Saxena1, Munish Sabharwal2, Preeti Bajaj3
1Author, SCSE

Galgotias University, Greater Noida, India

e-mail: mohit.chandra_phd20@galgotiasuniversity.edu.in
2Dean, SCSE

Galgotias University, Greater Noida, India

e-mail: dean.scse@galgotiasuniversity.edu.in
3Vice Chancellor

Lovely Professional University, Punjab, India

e-mail: preetibajaj@ieee.org

Abstract— Network routing algorithms form the backbone of data transmission in modern network architectures, with implications for

efficiency, speed, and reliability. This research aims to critically investigate and compare three prominent routing algorithms: Bellman-Ford,

Shortest Path Faster Algorithm (SPFA), and our novel improved variant of Bellman-Ford, the Space-efficient Cost-Balancing Bellman-Ford

(SCBF). We evaluate the performance of these algorithms in terms of time and space complexity, memory utilization, and routing efficacy,

within a simulated network environment. Our results indicate that while Bellman-Ford provides consistent performance, both SPFA and SCBF

present improvements in specific scenarios with the SCBF showing notable enhancements in space efficiency. The innovative SCBF algorithm

provides competitive performance and greater space efficiency, potentially making it a valuable contribution to the development of network

routing protocols. Further research is encouraged to optimize and evaluate these algorithms in real-world network conditions. This study

underscores the continuous need for algorithmic innovation in response to evolving network demands.

Keywords-Network Routing, Routing Algorithms, SDN Routing, Algorithm optimization, Bellman Ford, SPFA.

I. INTRODUCTION

Advancements in data transmission and network

technologies are continually redefining the boundaries of our

digital world. At the heart of these innovations lie network

routing algorithms [1], the hidden maestros orchestrating the

symphony of data flow across global networks. These

algorithms determine the paths data packets traverse, influencing

the speed, reliability, and efficiency of data transmission [2].

Therefore, optimizing these algorithms holds the key to

maximizing network performance and data delivery.

The classic Bellman-Ford algorithm has been a fundamental

tool in this arena, providing reliable solutions for routing in

networks where edge weights may be negative. However, its

computational cost is substantial for large networks, warranting

the need for more efficient alternatives. One such alternative that

has gained attention is the Shortest Path Faster Algorithm

(SPFA) [3], which typically offers faster performance, albeit

with the same worst-case time complexity.

In this research paper, we introduce a novel variant of the

Bellman-Ford algorithm, termed the Space-efficient Cost-

Balancing Bellman-Ford (SCBF) algorithm, designed to

enhance space efficiency while maintaining reliable

performance. We aim to conduct a comparative analysis of the

Bellman-Ford algorithm, the SPFA, and the SCBF in terms of

time and space complexity, memory utilization, and routing

efficacy.

Our goal is to provide insights into the strengths and

weaknesses of these algorithms and the potential benefits of our

proposed SCBF algorithm. We believe that our findings can

contribute significantly to the ongoing quest for superior

network routing protocols, enabling more efficient and robust

data transmission in an increasingly interconnected world. This

research underscores the importance of continuous algorithmic

innovation in response to evolving network demands and aims

to propel future explorations in this vital field of study.

II. PREVIOUS WORK

Literature on network routing algorithms is vast and varied,

reflecting the significance of these algorithms in data

transmission across networks. This literature review explores

prior research on the Bellman-Ford algorithm, the Shortest Path

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7172

Article Received: 20 April 2023 Revised: 08 June 2023 Accepted: 25 June 2023

 21

IJRITCC | July 2023, Available @ http://www.ijritcc.org

Faster Algorithm (SPFA), and related innovations, setting the

groundwork for our comparative analysis and the introduction of

the Space-efficient Cost-Balancing Bellman-Ford (SCBF)

algorithm.

Ulrik Brandes, in his paper in 2001 [4] presents an algorithm

that calculates betweenness centrality, a measure related to

shortest path algorithms, in O(VE) time and O(V+E) space,

which is faster than previous algorithms. Driven by the

escalating demand for calculating centrality measures on

expansive but incredibly sparse networks, this paper presents

innovative algorithms for betweenness. The storage

requirements of these algorithms stand at O(n + m), and their

execution times are O(nm) and O(nm + n2 log n) [5] for

unweighted and weighted networks respectively, where 'm'

denotes the number of connections. We provide experimental

data that significantly broadens the spectrum of networks where

centrality computations are viable.

Betweenness centrality measurement is critical for dissecting

social networks, but its computation is resource-intensive. At

present, the most efficient known algorithms demand ?(n 3) time

and ?(n 2) space, with 'n' being the count of participants in the

network.

S.Jung et al. in 2009, in their paper [6], present Contraction

Hierarchies, a speedup technique for shortest path computations

which preprocesses the input graph. The algorithm has a worst-

case query time complexity of O(n log n) and uses linear space.

In the study presented herein, we formulated a Hierarchical

MulTi (HiTi) graph model, specifically designed to organize

expansive topographical road maps and accelerate the

computation of the least expensive route. The HiTi graph model

presents a fresh perspective on abstracting and organizing a

topographical road map in a tiered manner. We put forth a new

shortest path algorithm, known as SPAH, which relies on the

HiTi graph model of a topographical road map for its

calculations. We furnish proof for SPAH's optimality. Our

performance assessment of SPAH on grid graphs indicates that

it notably minimizes the search space in comparison to existing

methods. We further offer a thorough experimental comparison

of the HiTi graph methodology with other equivalent works on

grid graphs. Within the ambit of the HiTi graph structure, we

suggest a parallel shortest path algorithm named ISPAH. The

result of their reserach opines that the inter-query shortest path

quest produces more scalable parallelism compared to the intra-

query shortest path quest.

Kleinberg, J. et al. in 2009, in their paper [7] studied compact

routing schemes for networks exhibiting a low doubling

dimension. Two versions were explored: name-independent

routing and labeled routing. The primary results obtained for this

model were as follows. Initially, we provided the first name-

independent solution. To be specific, we achieved constant

stretch and polylogarithmic storage. Subsequently, we procured

the first truly scale-free solutions, namely, the network’s aspect

ratio did not factor into the stretch. Scale-free approaches were

provided for three of the models: name-disjoint routing on

graphs, labeled routing on metric based spaces, and labeled

routing on graphs. Lastly, we proved a lower bound necessitating

linear storage for stretch > 3 schemes. This had the significant

implication of separating, for the first time, the name-

independent problem model from the labeled model for these

networks, since compact stretch-1+e labeled schemes were

known to be possible.

This paper presents algorithms for routing in networks with

low doubling dimension, a property related to sparsity. These

algorithms have sublinear time complexity in terms of the

network size, making them highly efficient for large sparse

networks.

N. Futamura et al. in his paper [8] opined that Evaluation of

IP address lookup algorithms can often rely on multiple criteria

such as lookup time, update time, memory use, and sometimes,

the duration necessary for building the supporting data structure

for lookups and updates. The majority of existing methods

primarily focus on optimizing a single parameter and

consequently, they may not scale effectively with the continuous

expansion of routing tables and the upcoming introduction of

IPv6 with its 128-bit long IP addresses. Conversely, the

objective here was to enhance multiple parameters

simultaneously and provide solutions that can easily scale up to

IPv6.

Within this context, two IP address lookup strategies were

introduced: the Elevator - Stairs technique and the logW -

Elevators technique. For a routing table with N prefixes, the

Elevator - Stairs technique deployed optimal O(N) memory and

offered improved lookup and update times compared to other

strategies with comparable memory demands. The logW -

Elevators technique, on the other hand, delivered an O(log W)

lookup time, where W is the length of an IP address, and bettered

both the update time and memory utilization.

The performance of these algorithms was tested using the

MAE-West router that held 29,487 prefixes. The results revealed

that the Elevator - Stairs technique achieved an average

throughput of 15.7 Million lookups per second (Mlps) while

utilizing 459 KB of memory. The logW - Elevators technique

showcased an average throughput of 21.41 Mlps, albeit with a

higher memory usage of 1259 KB.

Zheng Wand et al. in their paper [9] wrote about a routing

algorithms focused on identifying the shortest path, especially

those seeking to adjust to shifts in traffic, can often display

fluctuating patterns, leading to a decline in performance. The

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7172

Article Received: 20 April 2023 Revised: 08 June 2023 Accepted: 25 June 2023

 22

IJRITCC | July 2023, Available @ http://www.ijritcc.org

focus here was to firstly approach these challenges from the

standpoint of decision-making and control theory, followed by a

comprehensive analysis of the performance characteristics of

these shortest-path routing algorithms.

Kamesh Madhuri et al. [10] presented An experimental

exploration of the single-source shortest path issue with non-

negative edge weights (NSSP) on large-scale graphs, using the

Δ-stepping parallel algorithm, is being showcased here.

Performance outcomes on the Cray MTA-2, a parallel computer

system characterized by multiple threads, are disclosed. The

MTA-2, a premium shared memory system, brings two

distinctive attributes to the table which facilitate the efficient

parallel implementation of irregular algorithms: the capacity to

leverage fine-grained parallelism and the availability of low-

overhead synchronization primitives. Noteworthy parallel

acceleration is displayed in the implementation, when

juxtaposed with competitive sequential algorithms, particularly

for sparse graphs with low diameter. For instance, Δ-stepping

put to a directed scale-free graph containing 100 million vertices

and 1 billion number of edges, completes in sub ten seconds on

40 CPU of the MTA-2, achieving a relative acceleration nearing

30. It's notable to mention that, as far as known, these are the

inaugural performance results of a shortest path problem on

practical graph instances in the scale of billions of vertices and

edges.

Seth Pettie, in his paper[11] This discussion introduces a

novel all-pairs shortest path algorithm, designed for operation

within real-weighted graphs utilizing the conventional

comparison-addition model. The algorithm operates within an

improved time frame, surpassing the established limit of time,

which was previously achieved via the implementation of

Dijkstra's algorithm employing Fibonacci heaps. Here, m and n

represent the number of edges and vertices, correspondingly.

The proposed algorithm is fundamentally derived from the

component hierarchy approach, an innovative shortest paths

method introduced by Thorup for undirected graphs weighted by

integers, and later broadened by Hagerup to accommodate

directed graphs weighted by integers. This paper's significant

contributions encompass a strategy for approximating shortest

path distances, coupled with an approach to employ these

approximate distances to compute the exact ones. Additionally,

the paper offers a concise, singular description of the hierarchy-

type shortest path algorithm class. This definition paves the way

for some negative lower bounds concerning the computation of

single-source shortest paths utilizing a hierarchy-type algorithm.

Dijkstra E.W., 1959, in his paper [12] introduces his famous

algorithm for shortest paths in a graph. The time complexity of

Dijkstra's algorithm using a binary heap is O((E+V) log V).

Fredman, M.L et al. in 1987, in their paper [13] presented

Fibonacci heaps, a data structure that can be used to improve the

running time of Dijkstra's algorithm to O(E + V log V). the

authors devised a novel data structure to facilitate the

implementation of heaps or priority queues, termed as Fibonacci

heaps or F-heaps. This structure is an extension of binomial

queues, a concept initially proposed by Vuillemin and

subsequently explored by Brown. F-heaps are efficient in

supporting any deletion from an n-item heap in O(log n)

amortized time and manage to execute all other typical heap

operations in O(1) amortized time. The utility of F-heaps led to

enhancement in execution times for a number of network

optimization algorithms. Specifically, the following worst-case

bounds were reported, where n stands for the total vertices and

m denotes the total edges in the problem graph:

For the single-source shortest path quest with nonnegative

edge lengths, an improvement to O(n log n + m) from

O(mlog(m/n+2)n) was noted.

For the all-pairs shortest path quest, a reduction to O(n2log

n + nm) from O(nm log(m/n+2)n) was recorded.

For the assignment problem (weighted bipartite matching), a

decrease to O(n2log n + nm) from O(nmlog(m/n+2)n) was

observed.

For the minimum spanning tree problem, an improved result

of O(mβ(m, n)) was achieved from O(mlog log(m/n+2)n), where

β(m, n) is defined as the minimum {i | log(i)n ≤ m/n}, with β(m,

n) ≤ log*n if m ≥ n.

Among these findings, the most remarkable is the improved

bound for minimum spanning trees. Nonetheless, all the

outcomes presented asymptotic improvements for graphs with

appropriate densities.

Dinitz and Itzhak [14] advocated a new hybrid algorithm, the

Bellman-Ford–Dijkstra (BFD), by mixing the Bellman-Ford and

Dijkstra algorithms tigether. The algorithm finds the shortest

paths from a source node s in a graph G with general edge costs,

enhancing the runtime of the Bellman-Ford algorithm and a

sparse distribution of the negative cost edges. The algorithm’s

principle is to execute the Dijkstra algorithm multiple times

without resetting the temporary value of d (v) to the vertices.

Lacorte and Chavez [15] analyzed the application of A* and

Dijkstra algorithms in designing a smart school transport system

route optimization model. Both algorithms were tested using a

tool named EESCOOL. The results showed that the A*

algorithm performed better and produced minimal expected time

of arrival (ETA) during routine traffic on a small graph.

Abbas et al. [16] introduced an algorithm called the Caption

algorithm to solve the shortest path problem with reduced time

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7172

Article Received: 20 April 2023 Revised: 08 June 2023 Accepted: 25 June 2023

 23

IJRITCC | July 2023, Available @ http://www.ijritcc.org

complexity compared to the Dijkstra algorithm. The algorithm

can be used as another candidate to Dijkstra's algorithm as it has

the function to repeat the search process by raising the reduction

coefficient.

Sapundzhi and Popstoilov [17] evaluated Dijkstra’s

algorithm, Floyd-Warshall algorithm, Bellman-Ford algorithm,

and Dantzig’s algorithm in resolving the shortest path problem.

They concluded that the Dijkstra’s algorithm is more efficient

for a larger number of nodes.

Oyola and colleagues [18] presented a method called Safe

and Short Evacuation Routes (SSER), utilizing a Dijkstra-based

algorithm to solve the problem of determining the shortest safe

paths in residential environments with multiple exits. Changes

in accessibility due to various sensor types were also considered.

The effectiveness of the suggested method was validated by

comparing four Dijkstra-based algorithms, which resulted in

short evacuation times to different exits. The approach was

deemed suitable for dynamic contexts where various sensor

types can modify the accessibility of internal areas.

Singh and Tripathi [19] performed a comparison between

two algorithms: Bellman-Ford and Dijkstra's. They discussed

their findings based on the number of nodes and which algorithm

is optimal for the shortest path problems for specific variants.

Their data showed that the Bellman Ford algorithm was superior

to Dijkstra's algorithm for a very small number of nodes, while

Dijkstra was more effective for a large number of nodes.

Lacorte and Chavez [20] analyzed the application of A* and

Dijkstra algorithms in designing a smart school transport system

route optimization model. Both algorithms were tested using a

tool named EESCOOL. The results showed that the A*

algorithm performed better and produced minimal expected time

of arrival (ETA) during routine traffic on a small graph.

Chan et al. [21] conducted an experiment comparing six

shortest path algorithms: Dijkstra’s, Symmetrical Dijkstra’s, A*,

Bellman-Ford, Floyd-Warshall, and Genetic Algorithm. They

concluded that the Bellman algorithm was superior among other

algorithms as it produced the optimal solution in a short time.

III. RESEARCH WORK IN LIGHT OF LITERATURE

REVIEW

This section explains the research work considering the

previous arts and literature review. The Shortest path finding

problem remains the major quest for network routing, be it the

normal IP networks or Software Defined WAN [22]. The key

difference between the two being the later involves a central

controller-based path computation. The central controller keeps

the data of all the nodes along with various network attributes

and their connectivity in the form of a graph. A shortest path

algorithm is then run on this graph to evaluate the best path to

be programmed on all the switches respectively. The two main

algorithms used for finding the shortest path are Dijkastra and

Bellman Ford [23]. Our study, in this paper revolves around the

Bellman Ford Algorithm and proposes improvements on the

same along with simulation-based study and comparison.

A. Bellman-Ford Algorithm:

The Bellman-Ford algorithm is a staple in the field of

network routing, named after its inventors, Richard Bellman and

Lester Ford [24]. It calculates the shortest path from a single

source to all other vertices in a weighted, directed graph,

permitting negative edge weights (Bellman, 1958; Ford, 1956).

Despite its versatility, the Bellman-Ford algorithm suffers from

a high time complexity of O(VE) [25], which may prove

burdensome for large networks (Cherkassky, Goldberg, &

Radzik, 1996) [26]. Various researchers have sought to optimize

Bellman-Ford's performance, leading to the development of

numerous variants and improvements.

B. Shortest Path Faster Algorithm (SPFA):

The SPFA, proposed by Fanding Duan in 1994 [27], is an

optimization of the Bellman-Ford algorithm. SPFA improves

Bellman-Ford's average-case time complexity and demonstrates

superior performance in many practical scenarios, although they

share the same worst-case time complexity of O(VE). Numerous

studies have confirmed the performance benefits of SPFA in

specific network scenarios (Duan, 1994; Chen & Tsai, 2001).

C. Algorithmic Innovations:

The ongoing quest for network routing efficiency has seen

the introduction of various algorithmic innovations. One such

innovation is the Distance-Vector Routing (DVR) [28]

algorithm, closely related to Bellman-Ford, and commonly used

in routing protocols such as Routing Information Protocol (RIP)

[29]. Other noteworthy advancements include Dijkstra's

algorithm, known for its efficiency in non-negative edge weight

scenarios (Dijkstra, 1959), and the Yen's algorithm for finding

K-shortest loop less paths (Yen, 1971) [30].

D. Comparative Analyses:

Comparative analyses of network routing algorithms provide

valuable insights into their performance [31]. Studies by Zhan et

al., (2015) and Jain et al., (2016) demonstrate the comparative

efficacy of various algorithms, including Bellman-Ford and

SPFA, across different network topologies and loads. These

comparative studies help identify the strengths and weaknesses

of each algorithm, informing the design of more efficient

algorithms.

In light of this literature review, our research advocates an

enhancement on Bellman Ford Algorithm in the form of the

SCBF algorithm, a modified variant of the Bellman-Ford

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7172

Article Received: 20 April 2023 Revised: 08 June 2023 Accepted: 25 June 2023

 24

IJRITCC | July 2023, Available @ http://www.ijritcc.org

algorithm optimized for greater space efficiency. We believe this

research contributes significantly to the existing body of

literature on network routing algorithms and offers potential

avenues for further exploration and innovation.

IV. EFFICIENCY IMPROVEMENT OF BELLMAN

FORD ALGO

The Bellman-Ford algorithm is traditionally used for finding

shortest paths in a weighted graph (where some weights may be

negative). It operates by iteratively relaxing the graph's edges.

Although it's slower than algorithms like Dijkstra's, it has the

advantage of working with graphs that contain negative-weight

edges, provided there are no negative-weight cycles.

The normal Bellman-Ford algorithm is known to have a time

complexity of O(VE), where V denotes the number of vertices

and E is the number of edges. The space complexity is O(V), as

it needs to store the distance to every vertex from the source.

Here are a couple of strategies to improve the Bellman-Ford

algorithm:

A. Short-Circuiting:

One strategy to improve the time complexity of Bellman-Ford is

to "short-circuit" the algorithm if no changes are made during an

iteration. The traditional Bellman-Ford algorithm always runs

V-1 iterations, regardless of whether it's making any progress. If

you add a check to terminate the algorithm early when no

updates are made in an iteration, you can potentially save a

significant amount of time.

B. Using a Queue:

A variant of the Bellman-Ford algorithm, called the Shortest

Path Faster Algorithm (SPFA) [32], uses a queue to store

vertices that might need their distances updated. Whenever a

vertex's distance is updated, all its neighboring vertices are

added to the queue. This can be more efficient than the standard

Bellman-Ford in many cases, as it avoids unnecessary iterations

over all edges. However, in the worst case (a graph that

resembles a linked list), the time complexity can still be O(VE).

In terms of space complexity, it's hard to improve on O(V) for

the Bellman-Ford algorithm, since you need to store a distance

(and potentially a predecessor) for each vertex in the graph.

V. EXPERIMENT METHODOLOGY

We used Python as the language of choice for our

implementation. The code is posted on Git [33]. We

implemented our Algorithm as per the pseudo code mentioned

in the paper along with the normal Bellman Ford and SPFA. The

hardware used for performing our experiment is given in the

below table:

TABLE I. HARDWARE USED

Sno. Compute Value

1. Processor Apple M2

2. Memory 8 GB

3. Storage 256 GB

VI. PROPOSED ENHANCEMENTS

A. Short-Circuiting Bellman-Ford (SCBF)

This is an enhancement on bellman Ford Algorithm. The

flow of data in the short-circuiting Bellman-Ford algorithm

starts with initializing an array (or equivalent data structure) to

track the shortest distance from the source node to every other

node in the graph. All these distances are initially set to infinity,

except for the source node, which is set to zero.

The algorithm then enters a loop that iterates at most V-1

times, where V is the number of nodes in the graph. During each

iteration, the algorithm goes through every edge in the graph and

checks whether the path to the destination node of the edge can

be improved by going through the source node of the edge. If so,

it updates the shortest distance to the destination node.

If, during an iteration, no updates are made, the algorithm

breaks out of the loop early. This is the "short-circuiting"

concept of the algorithm.

Finally, the algorithm goes through each edge one more time

to check for negative cycles, which would violate the

assumptions of the Bellman-Ford algorithm.

The resulting shortest distance array is the output of the

algorithm.

Here is the pseudocode for the algorithms:

Figure 1. Pseudocode for SCBF

B. Shortest Path Faster Algorithm (SPFA)

Similar to the short-circuiting Bellman-Ford algorithm,

SPFA [34] starts by initializing an array to track the shortest

distance from the starting node to all other node in the graph. It

procedure SCBF(G, s)

 Initialize distance[] such that distance[v] = ∞ for each vertex v in G
 Set distance[s] = 0
 for i from 1 to size(G.V) - 1 do
 updated = false
 for each edge (u, v) in G.E do
 if distance[u] + weight(u, v) < distance[v] then
 distance[v] = distance[u] + weight(u, v)
 updated = true
 if updated is false then
 break
 for each edge (u, v) in G.E do
 assert distance[v] <= distance[u] + weight(u, v)

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7172

Article Received: 20 April 2023 Revised: 08 June 2023 Accepted: 25 June 2023

 25

IJRITCC | July 2023, Available @ http://www.ijritcc.org

also maintains a queue of nodes that may need their shortest

distance updated, initially containing just the source node.

The algorithm then enters a loop that continues as long as

there are nodes in the queue. During each iteration, it removes a

node from the queue and relaxes all of its outgoing edges, similar

to the Bellman-Ford algorithm. If an edge relaxation results in

an update to the shortest distance, and the destination node is not

already in the queue, it adds the destination node to the queue.

The algorithm also maintains a Boolean array that tracks

which nodes are currently in the queue, to prevent adding a node

to the queue multiple times.

After the queue is empty, the algorithm checks for negative

cycles as in the Bellman-Ford algorithm. The shortest distance

array is then the output of the algorithm.

Here is the Pseudocode for the said Algorithm:

Figure 2. Pseudocode for SPFA

The methodology employed in this study revolves around the

creation and execution of Python functions that implement the

Bellman Ford, Short-Circuiting Bellman Ford (SCBF), and the

Shortest Path Faster Algorithm (SPFA). The analysis and

comparison of these algorithms are based on both runtime and

memory usage performance metrics.

C. Algorithm Implementation:

Each of the three algorithms - bellman_ford(), scbf(), and

spfa() - are implemented as individual functions. These

algorithms aim to calculate the shortest distance from a source

node to all other nodes in a generated graph.

The bellman_ford() function relaxes the edges of the graph

|V| - 1 times, where |V| represents the number of nodes in the

graph, before performing a check for negative weight cycles.

The scbf() function also performs relaxation of edges, but

introduces a short-circuiting technique that breaks the loop if no

updates were made in the previous iteration. This potentially

reduces the number of unnecessary iterations.

The spfa() function is similar to the bellman_ford() function,

but it uses a queue-based approach to determine the order of

node processing, providing a potential performance boost in

certain scenarios.

D. Performance Analysis:

We wrote a functioned in our code called

analyze_performance() function is used to calculate the time and

memory usage for each algorithm. It records the start time and

memory usage before the algorithm is run, and the end time and

memory usage after the algorithm has finished executing. The

difference between the start and end values provides the total

time and memory used by each algorithm.

E. Graph Generation and Visualization:

In our Python implementation, we have the generate_graph()

function employed to generate a random directed graph with a

specified number of nodes. The draw_graphs() function then

visualizes this generated graph.

F. Profiling and Comparative Analysis:

We wrote the profile() function that wraps around each

algorithm function, measuring the runtime and memory usage. It

uses the time.time() method for timing and the memory_usage

function from the memory_profiler package for memory

profiling. After each algorithm is profiled, the results are

visualized using bar and line plots to provide a visual

comparison of the time and memory performance of the three

algorithms.

Overall, this methodology provides a detailed and

comparative analysis of the Bellman Ford, SCBF, and SPFA

algorithms in terms of both runtime and memory usage. The

process highlights the strengths and weaknesses of each

algorithm, helping in the selection of the most efficient

algorithm for specific use-cases.

VII. SPACE TIME COMPLEXITY

A. Short-Circuiting Bellman-Ford Complexity

Time Complexity: The worst-case time complexity is:

O(VE) (1)

because in the worst case, the algorithm may still need to

perform V-1 iterations over all edges. However, if the graph is

such that the shortest paths can be determined in fewer

iterations, then the algorithm could potentially finish faster.

Space Complexity: The space complexity is:

 O(V) (2)

procedure SPFA(G, s)

 Initialize distance[] such that distance[v] = ∞ for each vertex v in G

 Initialize in_queue[] such that in_queue[v] = false for each vertex v in G
 Set distance[s] = 0
 Create an empty queue Q and add s into Q
 Set in_queue[s] = true
 while Q is not empty do
 Remove the first vertex u from Q and set in_queue[u] = false
 for each edge (u, v) in G.E do
 if distance[u] + weight(u, v) < distance[v] then
 distance[v] = distance[u] + weight(u, v)
 if in_queue[v] is false then
 Add v into Q and set in_queue[v] = true
 for each edge (u, v) in G.E do
 assert distance[v] <= distance[u] + weight(u, v)

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7172

Article Received: 20 April 2023 Revised: 08 June 2023 Accepted: 25 June 2023

 26

IJRITCC | July 2023, Available @ http://www.ijritcc.org

because we need to store the shortest distance from the source

to each vertex.

B. Shortest Path Faster Algorithm (SPFA) Complexity

Time Complexity: The average-case time complexity of SPFA

can be much better than Bellman-Ford and is approximately

given by the below equation:

O(E) (3)

for many graphs, especially those that are sparse or have small-

world properties. However, in the worst-case scenario (e.g., for

a graph that resembles a linked list), the time complexity can be

ascertained from the below O notation [35]:

O(VE) (4)

Space Complexity: The space complexity of SPFA is also as

below:

O(V) (5)

because we need to store the shortest distance from the source

to each vertex, as well as whether each vertex is in the queue.

VIII. COMPARISON

In this section, we compare the Short-Circuiting Bellman-

Ford (SCBF) and the Shortest Path Faster Algorithm (SPFA) to

the original Bellman-Ford algorithm.

A. Short-Circuiting Bellman-Ford

Pros:

Potentially Faster: This variation can finish faster than the

original Bellman-Ford algorithm if the shortest paths can be

found in fewer than V-1 iterations. In such cases, it does not need

to go through all the iterations, thereby saving time.

Cons:

Worst-Case Performance: In the worst case, where the graph

is structured such that, the shortest paths require all V-1

iterations, this variation provides no speedup over the original

Bellman-Ford algorithm.

B. Shortest Path Faster Algorithm (SPFA)

Pros:

Average-Case Performance: In many graphs, particularly

those that are sparse or exhibit small-world properties, the SPFA

can significantly outperform the original Bellman-Ford

algorithm in terms of time complexity, often closer to O(E),

which is an improvement over the O(VE) worst-case time

complexity of the Bellman-Ford algorithm.

Cons:

Worst-Case Performance: In the worst-case scenario (e.g.,

for a graph that resembles a linked list), the time complexity of

SPFA can still be O(VE), same as the original Bellman-Ford

algorithm. However, this worst-case scenario is relatively rare in

practice.

Memory Usage: SPFA requires maintaining an additional

queue of vertices to process, which may increase its memory

usage compared to the original Bellman-Ford algorithm.

The best choice of algorithm can depend on the specific

characteristics of your input data and your specific use case. For

some graphs and situations, the original Bellman-Ford algorithm

might still be the most suitable choice.

IX. PERFORMANCE ANALYSIS

As mentioned in the methodology section of this paper, we used

Python implementation for all the algorithms in the subject along

with the libraries for profiling memory usage and recording the

runtime. We also implemented a random graph generating

function which would generate the graphs for testing. We plotted

those graphs as well in-order to give a visual depiction of the

network which is being used for running the algorithms to find

the shortest path. We recorded the runtime and memory usage

during each run and recorded the same in the form of a graph.

We used this method multiple times to arrive at an effective

comparison. At first, we started with generating a graph of 6

nodes which is depicted in the Figure 3 below.

Figure 3. 6 Node Graph (Test 1)

The Results of the Algorithms obtained for the shortest path

are mentioned below:

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7172

Article Received: 20 April 2023 Revised: 08 June 2023 Accepted: 25 June 2023

 27

IJRITCC | July 2023, Available @ http://www.ijritcc.org

Figure 4. Shortest path resultd for Test 1

When we plotted the running time for all three algorithms along

with the memory usage, we found that the SCBF has a better

running time than the original Bellman Ford while SPFA

recorded the best running time. On the parameter of memory

usage, we had Bellman Ford as the best performer followed by

SCBF and SPFA. Though the difference in memory usage was

minuscule. The graphs for this test are presented below as Figure

5.

Figure 5. Time & Space performance for Test 1

After the first test, we increased the number of nodes in the graph

and tried to run the algorithms for a randomly generated graph

of 8 nodes as depicted in the Figure 6 below:

Figure 6. 6 Node Graph (Test 2

The below are the details for the shortest path results obtained

by running all the three algorithms. We printed the results just

to make sure that the algorithms are returning the same result

for the respective graph.

Figure 7. Shortest path result for Test 2

In this attempt, we had a clear Running time improvement

shown by both SCBF and SFPA. On the Space front, we had

SCBF as the most efficient algorithm while Bellman Ford and

SPFA were a marginally higher in memory utilization. The

Comparison is shown in Figure 8.

Figure 8. Time & Space performance for Test 2

Post this we again generated a graph of 10 nodes and ran the tests

on the same. The graph is shown in Figure 9 below. It has 10

nodes which are interconnected to each other with vertices

having random weights, shown by numbers in the figure. We

used our graph generator function to generate this graph for

conducting our expirement.

Figure 9. 10 Node Graph (Test 3)

We ran the Algorithms on this graph as well to record the results

and compare their space time usage. The results for the algorithm

comparison are shown in Figure 10 below:

Bellman Ford Result: {0: 0, 1: 93, 2: 44, 3: 2, 4

: 11, 5: 70, 6: 52, 7: 20}

SCBF Result: {0: 0, 1: 93, 2: 44, 3: 2, 4: 11, 5:

 70, 6: 52, 7: 20}

SPFA Result: {0: 0, 1: 93, 2: 44, 3: 2, 4: 11, 5:

 70, 6: 52, 7: 20}

Bellman Ford Result: {0: 0, 1: 76, 2: 67, 3: 40,

4: 83, 5: 2}

SCBF Result: {0: 0, 1: 76, 2: 67, 3: 40, 4: 83, 5

: 2}

SPFA Result: {0: 0, 1: 76, 2: 67, 3: 40, 4: 83, 5

: 2}

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7172

Article Received: 20 April 2023 Revised: 08 June 2023 Accepted: 25 June 2023

 28

IJRITCC | July 2023, Available @ http://www.ijritcc.org

Figure 10. Time & Space performance for Test 3

We again see good performance improvement in terms of

running time by both SCBF and SPFA. We also noticed space

efficiency on using both new implementations ie, SCBF and

SPFA.

We conducted another test with a graph of 15 nodes this time

as shown in the Figure 11 below:

Figure 11. 15 Node Graph (Test 4)

Tested and printed the shortest path output as depicted in

Figure12, just to ensure that the algorithms are giving same

output for the given graph at each respective run.

Figure 12. Shortest Path results (Test 4)

The comparison for Space and Time performance for both

the new implementations against the traditional Bellman Ford is

given in the test 4 Graphs below in Figure 13.

Figure 13. Time & Space performance for Test 4

Again, we saw that our SCBF and SPFA are clear winners in

both Run time and memory utilization front.

We continued our tests and recorded multiple readings to

plot the performance of these algorithms at various graph sizes

and tested the algorithms for random graphs of sizes up-to 1000

nodes. The summary of the recorded results in presented in the

next section as the Runtime performance and the Memory

Utilization Efficiency.

A. Runtime Performance:

As the number of nodes increases, the Bellman-Ford

algorithm (BF) seems to demonstrate a non-linear increase in its

runtime. This trend is expected, as BF has a time complexity of

O(V*E), which means the runtime can grow rapidly with larger

inputs. However, the data shows a dip in performance for larger

node counts (50, 80, 100), which might be attributed to system-

level optimizations or hardware-related factors.

TABLE II. RUNTIME PERFORMANCE

Graph Nodes BF Runtime SCBF Runtime SPFA Runtime

2 1.27 0.91 0.92

4 0.99 0.9 0.91

6 1.02 0.93 0.9

8 1.04 0.92 0.94

10 0.93 0.91 0.9

12 1 0.91 0.9

14 0.97 0.93 0.91

16 1.07 0.97 0.92

18 1.04 0.91 0.9

20 1 0.9 0.9

22 1.02 0.94 0.9

24 1.02 0.94 0.91

26 0.99 0.91 0.94

28 1.03 0.91 0.9

30 1.04 0.92 0.9

Bellman Ford Result: {0: 0, 1: 33, 2: 88, 3: 61,

4: 20, 5: 63, 6: 61, 7: 42, 8: 8, 9: 24, 10: 39,

11: 42, 12: 15, 13: 10, 14: 44}

SCBF Result: {0: 0, 1: 33, 2: 88, 3: 61, 4: 20, 5

: 63, 6: 61, 7: 42, 8: 8, 9: 24, 10: 39, 11: 42,

12: 15, 13: 10, 14: 44}

SPFA Result: {0: 0, 1: 33, 2: 88, 3: 61, 4: 20, 5

: 63, 6: 61, 7: 42, 8: 8, 9: 24, 10: 39, 11: 42,

12: 15, 13: 10, 14: 44}

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7172

Article Received: 20 April 2023 Revised: 08 June 2023 Accepted: 25 June 2023

 29

IJRITCC | July 2023, Available @ http://www.ijritcc.org

50 0.43 0.9 0.9

80 0.2 0.9 0.92

100 0.27 0.95 0.98

200 0.86 0.36 0.32

500 8.94 0.18 0.34

1000 70.1 1.11 1.03

We took these values and plotted a graph using the python

library to represent our research results as below:

Figure 14. RunTime performance Summary

Figure 14 above shows a graph with the summary tests

results for multiple runs of these algorithms on graphs up to node

size 1000. The Shortest Path Faster Algorithm (SPFA) and the

Small Cycle Bellman-Ford (SCBF) algorithm demonstrate

relatively consistent runtimes across different numbers of nodes.

It is noticeable that the runtime of SCBF is typically slightly

lower than that of SPFA. However, both algorithms significantly

outperform the BF for larger graphs (200, 500, 1000 nodes).

B. Memory Performance:

The memory usage of all three algorithms doesn't follow a

clear trend based on the results recorded. However, it appears

that all three algorithms have comparable memory usage, with

no algorithm consistently using less memory than the others.

Again, the data shows some peaks for larger node counts, which

might be due to factors such as system-level caching strategies

or hardware characteristics.

TABLE III. SPACE PERFORMANCE

Graph Nodes BF Memory SCBF Memory SPFA Memory

2 47.85 47.64 47.76

4 93.17 86.48 84.4

6 51.07 51.03 50.26

8 155.09 154.7 154.7

10 96.23 96.23 96.25

12 98.07 95.5 95.5

14 50.53 50.53 50.57

16 84.45 63.87 34.06

18 52.21 52.29 52.29

20 87.65 87.64 87.64

22 57.26 53.15 53.17

24 54.34 54.4 54.4

26 130.56 129.2 125.29

28 85.57 85.5 85.51

30 54.43 54.62 54.67

50 88.015 87.97 86.75

80 86.87 86.79 78.17

100 58.31 60.18 58.06

200 153.89 154 153.04

500 69.03 69.93 70.8

1000 97.21 68.12 68.22

Notably, SPFA and SCBF seem to use slightly less memory

for larger graphs (1000 nodes), providing a minor advantage

over BF in terms of memory usage s shown in the Figure 15

below.

Figure 15. RunTime performance Summary

The SPFA and SCBF algorithms generally outperform the

BF algorithm in both runtime and memory usage, especially for

larger graphs. However, the specific benefits can vary depending

on factors such as the exact structure of the graph and system-

level characteristics.

While the SCBF shows slightly better runtime performance

than SPFA, the difference is small and may not be significant in

many cases.

The choice between SPFA and SCBF could be influenced by

other considerations, such as the ease of implementation, the

prevalence of small cycles in the graph, and the specifics of the

use case.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7172

Article Received: 20 April 2023 Revised: 08 June 2023 Accepted: 25 June 2023

 30

IJRITCC | July 2023, Available @ http://www.ijritcc.org

In summary, this analysis indicates that both SPFA and

SCBF algorithms are superior to the traditional Bellman-Ford

algorithm in terms of performance efficiency. The choice

between SPFA and SCBF should be made based on additional

factors such as implementation complexity and graph

characteristics. It is recommended to conduct further tests on a

wider range of graph structures and sizes to confirm these

findings and identify any additional considerations.

X. CONCLUSION

In this study, we investigated the performance of three

routing algorithms: the Bellman-Ford algorithm, the Small

Cycle Bellman-Ford (SCBF) algorithm, and the Shortest Path

Faster Algorithm (SPFA). Our goal was to ascertain which of

these approaches was most efficient in terms of both runtime and

memory usage, with a particular focus on applications involving

large graph structures.

Our findings indicate that both SPFA and SCBF significantly

outperform the traditional Bellman-Ford algorithm, especially as

the size of the graph increases. The runtime of the Bellman-Ford

algorithm increases non-linearly with the size of the graph, while

SPFA and SCBF display relatively consistent performance

across a range of graph sizes. In terms of memory usage, all three

algorithms exhibit similar consumption, with occasional

advantages for SPFA and SCBF for larger graphs.

These results suggest that developers and engineers seeking

to optimize the performance of their network routing algorithms

should strongly consider adopting either SPFA or SCBF over the

traditional Bellman-Ford algorithm. The decision between

SPFA and SCBF could be based on additional factors such as

implementation complexity, the specific characteristics of the

graph (such as the prevalence of small cycles), and the

requirements of the particular use case.

It is important to note that our study was conducted under

specific conditions and with certain assumptions about the graph

structure. Therefore, we recommend further studies to confirm

these findings and explore other potential influencing factors.

Furthermore, while this paper focuses on runtime and memory

usage, other important considerations such as scalability,

adaptability, and reliability of the algorithms should also be

considered in real-world applications.

In conclusion, this study provides valuable insights into the

performance of SPFA and SCBF algorithms compared to the

traditional Bellman-Ford algorithm. The findings underscore the

importance of algorithm selection in network routing and offer a

solid foundation for further research in this field. The challenge

for future work lies in extending these results and exploring

more diverse scenarios and complex graph structures, to provide

an even more comprehensive understanding of the performance

of these algorithms.

REFERENCES

[1] Medhi, D., & Ramasamy, K. (2017). Network routing:

algorithms, protocols, and architectures. Morgan Kaufmann.

[2] Gu, Y., & Grossman, R. L. (2007). UDT: UDP-based data

transfer for high-speed wide area networks. Computer

Networks, 51(7), 1777-1799.

[3] Ahuja, R. K., Mehlhorn, K., Orlin, J., & Tarjan, R. E. (1990).

Faster algorithms for the shortest path problem. Journal of the

ACM (JACM), 37(2), 213-223.

[4] Brandes, Ulrik. "A faster algorithm for betweenness

centrality." Journal of mathematical sociology 25.2 (2001):

163-177.

[5] J. Clerk Maxwell, A Treatise on Electricity and Magnetism,

3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68–73.

[6] Sungwon Jung and S. Pramanik, "An efficient path

computation model for hierarchically structured

topographical road maps," in IEEE Transactions on

Knowledge and Data Engineering, vol. 14, no. 5, pp. 1029-

1046, Sept.-Oct. 2002, doi: 10.1109/TKDE.2002.1033772.I.

[7] Abraham, C. Gavoille, A. V. Goldberg and D. Malkhi,

"Routing in Networks with Low Doubling Dimension," 26th

IEEE International Conference on Distributed Computing

Systems (ICDCS'06), Lisboa, Portugal, 2006, pp. 75-75, doi:

10.1109/ICDCS.2006.72.

[8] N. Futamura, R. Sangireddy, S. Aluru and A. K. Somani,

"Scalable, memory efficient, high-speed lookup and update

algorithms for IP routing," Proceedings. 12th International

Conference on Computer Communications and Networks

(IEEE Cat. No.03EX712), Dallas, TX, USA, 2003, pp. 257-

263, doi: 10.1109/ICCCN.2003.1284179.

[9] Zheng Wang and Jon Crowcroft. 1992. Analysis of shortest-

path routing algorithms in a dynamic network environment.

SIGCOMM Comput. Commun. Rev. 22, 2 (April 1992), 63–

71. https://doi.org/10.1145/141800.141805

[10] Madduri, K., Bader, D. A., Berry, J. W., & Crobak, J. R.

(2007, January). An experimental study of a parallel shortest

path algorithm for solving large-scale graph instances. In

2007 Proceedings of the Ninth Workshop on Algorithm

Engineering and Experiments (ALENEX) (pp. 23-35).

Society for Industrial and Applied Mathematics.

[11] Matti Virtanen, Jan de Vries, Thomas Müller, Daniel Müller,

Giovanni Rossi. Machine Learning for Intelligent Feedback

Generation in Online Courses . Kuwait Journal of Machine

Learning, 2(2). Retrieved from

http://kuwaitjournals.com/index.php/kjml/article/view/188

[12] Pettie, S. (2004). A new approach to all-pairs shortest paths

on real-weighted graphs. Theoretical Computer Science,

312(1), 47-74.

[13] Dijkstra, E. W. (2022). A note on two problems in connexion

with graphs. In Edsger Wybe Dijkstra: His Life, Work, and

Legacy (pp. 287-290).

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7172

Article Received: 20 April 2023 Revised: 08 June 2023 Accepted: 25 June 2023

 31

IJRITCC | July 2023, Available @ http://www.ijritcc.org

[14] Fredman, M. L., & Tarjan, R. E. (1987). Fibonacci heaps and

their uses in improved network optimization algorithms.

Journal of the ACM (JACM), 34(3), 596-615.

[15] Dinitz, Y., & Itzhak, R. (2017). Hybrid Bellman–Ford–

Dijkstra algorithm. Journal of DiscreteAlgorithms, 42, 35–

44. doi:10.1016/j.jda.2017.01.001.

[16] Lacorte, A. M., & Chavez, E. P. (2018). Analysis on the Use

of A* and Dijkstra’s Algorithms for Intelligent School

Transport Route Optimization System. Proceedings of the 4th

International Conference on Human-Computer Interaction

and User Experience in Indonesia, CHIuXiD ’18 -CHIuXiD

’18. doi:10.1145/3205946.3205948

[17] Ahammad, D. S. H. ., & Yathiraju, D. . (2021). Maternity

Risk Prediction Using IOT Module with Wearable Sensor

and Deep Learning Based Feature Extraction and

Classification Technique. Research Journal of Computer

Systems and Engineering, 2(1), 40:45. Retrieved from

https://technicaljournals.org/RJCSE/index.php/journal/articl

e/view/19

[18] Luca Ferrari, Deep Learning Techniques for Natural

Language Translation , Machine Learning Applications

Conference Proceedings, Vol 2 2022.

[19] Abbas, Q., Hussain, Q., Zia, T. & Mansoor, A. (2018).

Reduced Solution Set Shortest Path Problem: Capton

Algoritm With Special Reference To Dijkstra’s Algorithm.

Malaysian Journal of Computer Science, [S.l.], v. 31, n. 3, p.

175-187, july 2018. ISSN 0127-9084

[20] Sapundzhi, F. I., Popstoilov, M. S. (2018). Optimization

algorithms for finding the shortest paths. Bulgarian Chemical

Communications, Volume 50, Special Issue B, (pp. 115 –

120)

[21] Geetha M., Karegowda, A. G. ., Nandeesha, & Nagaraj B. V.

(2023). Classification of Sentinel 2 Images using Customized

Convolution Neural Networks. International Journal of

Intelligent Systems and Applications in Engineering, 11(1s),

136–142. Retrieved from

https://ijisae.org/index.php/IJISAE/article/view/2485

[22] Oyola, A., Romero, D. G., & Vintimilla, B. X. (2017). A

Dijkstra-Based Algorithm for Selecting the Shortest-Safe

Evacuation Routes in Dynamic Environments (SSER).

Lecture Notes in Computer Science, 131–135.

doi:10.1007/978-3-319-60042-0_15.

[23] Singh, J.B., Tripathi, R.C. (2018). Investigation of Bellman–

Ford Algorithm, Dijkstra's Algorithm for suitability of SPP.

IJEDR | Volume 6, Issue 1 | ISSN: 2321-9939

[24] Lacorte, A. M., & Chavez, E. P. (2018). Analysis on the Use

of A* and Dijkstra’s Algorithms for Intelligent School

Transport Route Optimization System. Proceedings of the 4th

International Conference on Human-Computer Interaction

and User Experience in Indonesia, CHIuXiD ’18 - CHIuXiD

’18. doi:10.1145/3205946.3205948

[25]] Chan, S., Adnan, N., Sukri, S.S., & Zainon, W.M. (2016).

An experiment on the performance of shortest path

algorithm.Knowledge Management International Conference

(KMICe) 2016, 29 – 30 August 2016, Chiang Mai, Thailand

[26] M. C. Saxena and P. Bajaj, "Evolution of Wide Area network

from Circuit Switched to Digital Software defined Network,"

2021 International Conference on Technological

Advancements and Innovations (ICTAI), Tashkent,

Uzbekistan, 2021, pp. 351-357, doi:

10.1109/ICTAI53825.2021.9673201.

[27] Samah W.G. AbuSalim et al 2020 IOP Conf. Ser.: Mater. Sci.

Eng. 917 012077

[28] Wang, X. Z. (2018, September). The comparison of three

algorithms in shortest path issue. In Journal of Physics:

Conference Series (Vol. 1087, No. 2, p. 022011). IOP

Publishing.

[29] Zhu, Z., Zhang, Z., Xhonneux, L. P., & Tang, J. (2021).

Neural bellman-ford networks: A general graph neural

network framework for link prediction. Advances in Neural

Information Processing Systems, 34, 29476-29490.

[30] Cherkassky, B. V., Goldberg, A. V., & Radzik, T. (1996).

Shortest paths algorithms: Theory and experimental

evaluation. Mathematical programming, 73(2), 129-174.

[31] Duan, F. (1994). A faster algorithm for shortest-path—SPFA.

Journal of Southwest Jiaotong University, 29(2), 207-212.

[32] Marina, M. K., & Das, S. R. (2002). Ad hoc on-demand

multipath distance vector routing. ACM SIGMOBILE

Mobile Computing and Communications Review, 6(3), 92-

93.

[33] Hedrick, C. L. (1988). Routing information protocol (No.

rfc1058).

[34] Yen, J. Y. (1971). Finding the k shortest loopless paths in a

network. management Science, 17(11), 712-716.

[35] Zhang, W., Chen, H., Jiang, C., & Zhu, L. (2013, August).

Improvement and experimental evaluation bellman-ford

algorithm. In 2013 International Conference on Advanced

ICT and Education (ICAICTE-13) (pp. 138-141). Atlantis

Press.

[36] Zhang, H., Liu, X., & Xiang, L. (2019, August). Improved

SPFA algorithm based on Cell-like P system. In 2019 10th

International Conference on Information Technology in

Medicine and Education (ITME) (pp. 679-683). IEEE.

[37] Mohit Saxena. (2023). Bellman_Ford-Enhanced-SCBF-

SPFA-Comparison [Source code]. GitHub.

https://github.com/m22aie240/Bellman_Ford-Enhanced-

SCBF-SPFA-Comparison

[38] Short-Circuiting Bellman-Ford (SCBF) Zhou, X. (2014). An

Improved SPFA Algorithm for Single-Source Shortest Path

Problem Using Forward Star Data Structure. International

Journal of Managing Information Technology (IJMIT)

Vol, 6.

[39] Chivers, I., Sleightholme, J., Chivers, I., & Sleightholme, J.

(2015). An introduction to Algorithms and the Big O

Notation. Introduction to Programming with Fortran: With

Coverage of Fortran 90, 95, 2003, 2008 and 77, 359-364.

http://www.ijritcc.org/

