
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6894

Article Received: 30 March 2023 Revised: 05 May 2023 Accepted: 25 May 2023

255

IJRITCC | June 2023, Available @ http://www.ijritcc.org

Detection of Malware in Large Networks using

Deep Auto Encoders

K. Janani1, R. Gunasundari 2
1Research Scholar,Department of Computer Science

Karpagam Academy of Higher Education

Coimbatore, India

jananikumar6@gmail.com
2Professor & Head,Department of Computer Applications

Karpagam Academy of Higher Education

Coimbatore, India

gunasoundar04@gmail.com

Abstract --- Data mining and machine learning have been heavily studied in recent years with the purpose of detecting sophisticated

malware. The majority of these approaches rely on architectures that do not involve deeply enough into the learning process, despite the fact

that they have yielded excellent results. This is because deep learning is finding increasing application in both business and academia thanks

due to its skills in feature learning. In this paper, we develop a Deep Auto Encoder (DAE) based detection mechanism to detect the

malwares crawling in the large scale networks. The DAE act as an unsupervised deep learning model that helps in detecting the malwares.

The simulation is conducted on two different datasets to test the robustness of the model. The results show that the proposed method has

higher rate of accuracy in detecting the attacks than other methods.

Keywords: feature learning, Deep Auto Encoder, large scale networks, malwares.

I. INTRODUCTION

Due to the pervasive nature of computers and the Internet, it

is crucial that sensitive data be safeguarded online. Viruses,

worms, trojans, backdoors, spyware, and botnets are all

examples of malicious software [1] that are designed to

further an attacker illicit goals. Online thieves rely on this

method as their primary method of attack for a wide variety

of security breaches, putting users at risk of catastrophic

injury and financial loss [2].

Internet Security Threat Report (ISTR) data shows that

malware infections led to the loss or theft of 500 million

personal records [3] and that up to $1 billion was stolen

from financial institutions throughout the world in just over

two years [4]. Consequently, both the anti-malware market

and academics place a premium on effective malware

identification [5].

Anti-malware software is the first and last line of defence

against malicious programs. There was an early emphasis on

signature-based detection techniques [6]. Signature is a

strategy developed by researchers with the intention of

accurately classifying future instances of known malware

while minimizing the number of false positives. Each piece

of malicious software has its own short string of bytes, or

signature. The virus is classified according to this string.

However, malware attackers can easily circumvent this

procedure by using techniques like as encryption,

polymorphism, and obfuscation [7].

Most anti-malware software addresses this challenge by

keeping tabs on what malicious code is up to in the system

kernel. This prevents harmful software from modifying user

data. Compared to static detection, dynamic detection is

more robust, but it also has a higher initial cost and does not

scale well. As a result of financial incentives, hundreds of

malicious files are created and distributed daily [8], making

it challenging for detection systems to be effective. These

systems make use of a variety of methods, including data

mining and machine learning.

Models for identifying malware are constructed in these

systems with the help of classification techniques [9]. Most

of these approaches are grounded in relatively simple

instructional frameworks. Even though shallow learning

architectures showed some promise when used to virus

detection, they ultimately fell short. This evolution in

malware writing techniques has resulted in an ever-

increasing influx of newly discovered file samples that

require constant analysis. This is essential work that has to

be completed [10].

However, these unlabeled files are rarely discarded during

the machine learning process because they always reflect the

trend of malware development and fresh releases of

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6894

Article Received: 30 March 2023 Revised: 05 May 2023 Accepted: 25 May 2023

256

IJRITCC | June 2023, Available @ http://www.ijritcc.org

innocuous apps. This is because sensitive data may be

hiding in plain sight in files that have not been properly

named. Therefore, there is a lot of potential for development

in this sector [11].

Deep learning is at the forefront of machine learning and is

already being used in several fields [12-15]. The optimal

architecture for feature learning incorporates several layers

of deep learning and gives the system access to both labelled

and unlabelled data samples. When building a deep learning

architecture, it is common practice to train multiple layers of

feature detectors from scratch before building the final

classification model [16]. This allows the architecture to

overcome the learning difficulties. Due to this, we decided

to develop a malware detection system based on deep

learning. In this paper, we develop a Deep Auto Encoder

(DAE) is used detect the malwares in a large-scale network.

1. Background

Kolosnjaji et al. [17] developed one-hot encoding to

transform the API request sequence into a series of binary

vectors. Machine learning benefits from one-hot encoding.

This model scores very highly in accuracy (89.4%) and

precision (85.6%). Its recall rate of 89.4% is also very high.

The purpose of the malware detector developed by

Tobiyama et al. [18] was to extract features from an API call

log over time. Then, a convolutional neural network (CNN)

evaluates the visual representation of these attributes to

decide whether or not the object in question should be

classified as malicious. While the RNN achieves its results

with the aid of a long short-term memory (LSTM), the CNN

makes use of four convolutional layers and four pooling

layers to do the same thing. After that, a link is established

between the two next levels. They managed to get an AUC

of 0.96 despite dealing with a rather small dataset.

For the purpose of extracting n-grams, Ding et al. [19] made

use of the operational codes. Those who used the DBN were

not privy to all three of its layers. There are a total of 10,000

files in the dataset; 3,000 were safe, 3,000 were harmful, and

3,000 were not categorized in any way. When compared to

other DBNs, the top performer achieved a 96.7% success

rate in accuracy.

McLaughlin et al. [20] successfully developed a detector

using the opcodes present in malware files without resorting

to feature selection or engineering. A CNN that was used to

process the raw opcode data. An embedding layer came

first, and then each of the other layers. Precision was

between 99% and 27%, recall was between 95% and 85%,

and F1 scores varied from 97% to 78%, depending on the

dataset.

When working with software binaries, Saxe and Berlin [21]

transformed them into 2D entropy histograms [22]. The

software did not necessitate any form of filtering,

unpacking, or categorizing on the user part to accomplish

this. Common DNN was trained with these features as

inputs so that it could classify. Incorporating these

characteristics allows you to train a neural network with four

layers, a sigmoid activation function.

The likelihood that a given file includes malicious code was

subsequently evaluated using a Bayesian calibration model

developed by Saxe and Berlin [21]. Since it is not

reasonable to assume that the classifier has a normal

distribution, we utilize a prior on the ratio of dangerous

software to benign software and the error rate of the deep

neural network (DNN) to estimate the kernel density. They

claim a 95% detection rate and a false positive rate (FPR) of

0.1%; both of these numbers are within acceptable ranges.

II. PROPOSED METHOD

In this section, we use unsupervised autoencoders for feature

extraction and classification of features in an unsupervised

manner. In case of large-scale networks, the classification is

carried out based on the network logs to classify the

malwares.

An autoencoder takes a vector as input, and the goal of the

network is to produce an output that is a perfect

representation of the vector. Both directions will work for

this purpose. These neural networks are extremely flexible

because of their capacity to learn unsupervised compression

encoding. They can also be trained incrementally, layer by

layer, which drastically reduces the computer resources

needed to produce an accurate model.

The network encoding example shown in Figure 3 is one

such network. The hidden layers of this network have fewer

dimensions than the exposed ones at the input and output

levels. Denoising autoencoders are trained to reconstruct the

original input from a noisy one by removing noise from the

original input. Due to this, they are more reliable than

standard autoencoders. This method has been shown to be

more flexible and dependable than conventional

autoencoders. Some have seen parallels between the two.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6894

Article Received: 30 March 2023 Revised: 05 May 2023 Accepted: 25 May 2023

257

IJRITCC | June 2023, Available @ http://www.ijritcc.org

Figure 2: Deep Auto encoder

1.1. Deep Auto Encoders

Figure 2 illustrates that an auto-encoder is a neural network

model that functions by making an effort to produce outputs

that are identical to the inputs it gets. This ensures that the

model predictions are as accurate as possible. The data that

is fed into a basic auto-encoder and the data that is output

from the auto-encoder both encounter some kind of change

during the process of encoding and decoding. This is

because encoding and decoding are both processes that

involve transformation of data. The data that is being input

is converted into encoded data by the encoder component.

The encoded data can then be used. The data that has been

encoded is then taken by the decoder component and used to

recreate the data that is being created. Auto-encoders are

useful tools that allow users to properly replicate input data

using reduced-dimensional features in a way that is both

efficient and quick.

An auto-encoder has a two constituent parts, which are

known respectively as an encoder and a decoder. The Figure

1 makes it clear that the variable x stands for the data source,

y for the encoded data, and x’ for the decoded data. This

information may be found by looking at the graphic. In

order to carry out their respective mapping processes, the

encoder function (g) and the decoder function (h) both make

the assumption that the gap between the data that was input

and the data that was output is suitably narrow.

It is possible to use the backpropagation method in an

unsupervised learning scenario with a neural network if the

desired outputs of an auto-encoder neural network with

equal inputs. Setting the desired outputs of an auto-encoder

neural network to be equal to the network inputs. As can be

seen in Figure 1, an auto-encoder is able to be disassembled

into its primary components, which can be considered its

building blocks. There are three main components that make

up the structure: the input, the hidden, and the output layer.

In order to find a representation of the inputs that is shared

by the networks, AE are employed extensively in DNN.

Encoder and decoder are the two distinct components of the

system that may be distinguished from one another.

The model only contains a single input layer, a single hidden

layer, and a single output layer. There are a total of eight

nodes in the network, with four located in the input layer,

two located in the hidden layer, and four located in the

output layer. It is essential to remember that the +1 nodes

represent the bias of each individual node in the network.

Encoder

In the event that an input of the form x∈Rn is provided, the

value h(x) will be used to represent the hidden layer (x).

h(x)=f(W(1)x+b(1))

where

f(⋅) - activation function.

The study uses logistic sigmoid function as the activation

function and it is represented as:

f(x)=1/(1+exp(−x))

Decoder

The reconstructed value x’ corresponds exactly to the

representation h(x) of the topmost layer, which is.

X’=f(W(2)h(x)+b(2))

where

W(2)∈Rn×m - output weight matrix,

b(2)∈Rn - output bias vector.

The reconstruction error, denoted by the symbol D(x,x’), is

defined as follows for any given set x of input data:

D(x,x’)=∑∥x−x’∥2.

A model of auto-encoding that is capable of deep learning

and has the capability to do so. The notation h1, h2, etc.,

hm1, and hm represent the characteristics that are recovered

by each auto-encoder. hm stands for high-order mode. The

raw data is what is fed into the first DAE while the extracted

feature by the AE came before it is what is fed into the auto-

encoders that follow it in succession.

The network is typically trained using the batch gradient

descent method, which is an approach that we have

encountered in the past and which helps limit the number of

mistakes that can occur during reconstruction.

If the dimension of the input is more than the size of the

hidden layers, then this is the result. The name spatial auto-

encoders is the one that is most commonly used to refer to

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6894

Article Received: 30 March 2023 Revised: 05 May 2023 Accepted: 25 May 2023

258

IJRITCC | June 2023, Available @ http://www.ijritcc.org

this specific category of AE. Following that, the cost

function can be finished as follows:

L(W,b) = 0.5λ∑∥W(l)∥2+βKL(ρ∥ρ’) + 2n-1∥hW,b(x)−y∥2

where

third term - sparsity regularization term and

β - sparsity penalty parameter.

KL(ρ∥ρ’) - relative entropy

ρ - sparsity parameter and

ρ’ - mean hidden node activation using parameters b and W.

Deep auto-encoders

Once upon a time, it was thought that neural networks

consisting of only three layers were examples of shallow

learning networks. The levels in question were input,

hidden, and output respectively. The information that

possesses obvious input characteristics lends itself

particularly well to the operation of these networks. When

dealing with intricate input data, however, it is reasonable to

predict the requirement of a network that contains more

hidden layers. Hidden layers in neural networks can, in

practice, be understood as nonlinear changes of the layers

that come before them. Because of this, the network is able

to learn a more intricate structure based on the data that it is

provided with. As a direct result of this, it is possible for us

to end up constructing a deep auto-encoder network by

training a very large number of auto-encoders in conjunction

with one another.

As can be seen in Figure 4, each consecutive auto-encoder

uses as its input the features that were previously extracted

by the auto-encoder that came before it. This is because each

succeeding auto-encoder builds on the work of the auto-

encoder that came before it. Another name for this kind of

network is stacked auto-encoders, but it also goes by a few

other names as well.

DAE, on the other hand, have the capability of recognizing

characteristics that shallow structures are unable to

recognize. Their research is focused mostly on the following

two ideas:

• Pre-training: At this point, an unsupervised greedy

training strategy is being utilized to train the deep

neural network one layer at a time, independently.

It is vital to bear in mind that each layer is trained

individually, and the representation that was

acquired by the layer that came before it is utilized

as the input for the layer that comes after it. This is

something that should be kept in mind at all times.

To obtain a set of weight parameter values that are

relatively near to what would be optimal, pre-

training is a method that can be utilized.

• Fine-tuning: At this point, the complete deep network will

be trained using supervised methods. The training will take

place. The unprocessed data serves as the input for the deep

neural network, which then generates, as its output, a

representation that is based on what it has learned at the

very highest level. After then, classification problems

might be solved using this representation. There is a

possibility that the information that was obtained from the

input will also be found in the output. As the restored data

corresponds to our anticipated outcome, we decided to use

the reconstruction error as the assessment indicator for this

particular research.

III. RESULTS AND DISCUSSIONS

In a binary classification competition, a model success can

be measured in a variety of ways. There is often more than

one name for a particular metric. Four values from the

confusion matrix, a comparison of the computed predicted

class to the ground truth, will serve as the basis for all of the

assessment metrics that will be presented here.

Accuracy:

One way to evaluate how well an analysis performed is by

calculating the proportion correct, often known as accuracy.

Accuracy has less of an impact when there is a disparity

between socioeconomic groups.

acc=(TP+TN)/(TP+TN+FP+FN)

Sensitivity:

It is the fraction of items properly identified as belonging to

class x relative to the total items in a class x, which is

defined as the sensitivity, true positive rate, chance of

detection, or recall.

TPR=(TP)/(TP+FN).

Specificity:

The proportion of objects that could be confidently

categorized as not X is frequently referred to as the True

Negative Rate (TNR),

TNR=(TN)/(TN+FP).

F1 Score (F1):

The F1 Score is the harmonic mean of the accuracy (p) and

the false-positive rate (r).

F1=2(p∗r)/(p+r).

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6894

Article Received: 30 March 2023 Revised: 05 May 2023 Accepted: 25 May 2023

259

IJRITCC | June 2023, Available @ http://www.ijritcc.org

In this specific scenario, the F-function was designed to give

top priority to the genuine positive rate.

To test our theory, we looked at the CTU-13 and MalRec

datasets, which contain information about malware-induced

network behavior. Two separate experiments were

conducted. The next step of the study will be to utilize the

most successful malware datasets to develop a method for

detecting network activity.

Table 1: Dataset Specifications

Dataset Parameter Value

Malrec Malware

Recorded

66,301

Hashing MD5

Network Activity PCAP form

CTU-13 Total Recordings 13 captures or

scenarios

Our investigation made use of the C# and Python

programming languages, as well as the Scikit-Learn module

for Python. To conduct our research, we used a server that

boasted 512 GB of RAM and 32 CPU cores.

Several publicly available datasets were used during the

preliminary testing phase. These included MalRec and CTU-

13. All MalRec reports, including the one responsible for the

traffic spike, have been copied and added to the dataset.

AVClass [14] and other malware labeling tools, we can

organize samples in accordance with the families to which

they belong. We tallied up how many samples each

household sent in and ranked them from most to least

prolific in order to find out which 25 families had sent in the

most total samples.

In the second set, there are 24,197 malware samples

representing many different malware families. To keep it

from being further classified, it is decided to give it its own

distinct category. Since our objective is to discover the top

five types of dangerous software, we have opted to analyze

the most frequent malware families individually. This list

was compiled through the analysis of botnet traffic and is

based on the CTU-13 dataset.

Figure 2: Accuracy

Figure 3: Precision

Figure 4: Recall

78

80

82

84

86

88

90

92

Malrec CTU-13

A
cc
u
ra
cy

Dataset
SVM ANN DNN DBN

82

83

84

85

86

87

88

89

90

91

Malrec CTU-13

P
re
ci
si
o
n

Dataset

SVM ANN DNN DBN

85

86

87

88

89

90

91

92

Malrec CTU-13

R
ec
al
l

Dataset
SVM ANN DNN DBN

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6894

Article Received: 30 March 2023 Revised: 05 May 2023 Accepted: 25 May 2023

260

IJRITCC | June 2023, Available @ http://www.ijritcc.org

Figure 5: F-Measure

 From the results it is seen that the proposed method has

higher rate of accuracy, precision, recall and f-measure as in

Figure 2-5.

IV. CONCLUSIONS

To identify malicious programs in massive networks, we

create a detection approach based on deep auto encoders.

The use of deep auto encoders as an unsupervised deep

learning model can aid in the detection of malicious

programs. To ensure the consistency of the model, the

simulation is run on two independent data sets. The results

show that the proposed strategy outperforms competing

methods in its ability to reliably detect attacks.

REFERENCES

[1] Abusitta, A., Li, M. Q., & Fung, B. C. (2021). Malware

classification and composition analysis: A survey of

recent developments. Journal of Information Security

and Applications, 59, 102828.

[2] Aslan, Ö., & Yilmaz, A. A. (2021). A new malware

classification framework based on deep learning

algorithms. Ieee Access, 9, 87936-87951.

[3] Awan, M. J., Masood, O. A., Mohammed, M. A., Yasin,

A., Zain, A. M., Damaševičius, R., & Abdulkareem, K.

H. (2021). Image-Based Malware Classification Using

VGG19 Network and Spatial Convolutional

Attention. Electronics, 10(19), 2444.

[4] Gibert, D., Planes, J., Mateu, C., & Le, Q. (2022). Fusing

feature engineering and deep learning: A case study for

malware classification. Expert Systems with

Applications, 207, 117957.

[5] Kumar, S. (2021). MCFT-CNN: Malware classification

with fine-tune convolution neural networks using

traditional and transfer learning in Internet of Things.

Future Generation Computer Systems, 125, 334-351.

[6] Dib, M., Torabi, S., Bou-Harb, E., & Assi, C. (2021). A

multi-dimensional deep learning framework for iot

malware classification and family attribution. IEEE

Transactions on Network and Service

Management, 18(2), 1165-1177.

[7] Xiao, M., Guo, C., Shen, G., Cui, Y., & Jiang, C. (2021).

Image-based malware classification using section

distribution information. Computers & Security, 110,

102420.

[8] Yadav, B., & Tokekar, S. (2021). Recent innovations and

comparison of deep learning techniques in malware

classification: a review. International Journal of

Information Security Science, 9(4), 230-247.

[9] D’Angelo, G., Ficco, M., & Palmieri, F. (2021).

Association rule-based malware classification using

common subsequences of API calls. Applied Soft

Computing, 105, 107234.

[10] Mallik, A., Khetarpal, A., & Kumar, S. (2022). ConRec:

malware classification using convolutional

recurrence. Journal of Computer Virology and Hacking

Techniques, 1-17.

[11] Lu, Q., Zhang, H., Kinawi, H., & Niu, D. (2022). Self-

Attentive Models for Real-Time Malware

Classification. IEEE Access.

[12] Yoo, S., Kim, S., Kim, S., & Kang, B. B. (2021). AI-

HydRa: Advanced hybrid approach using random forest

and deep learning for malware classification. Information

Sciences, 546, 420-435.

[13] Rizvi, S. K. J., Aslam, W., Shahzad, M., Saleem, S., &

Fraz, M. M. (2022). PROUD-MAL: static analysis-based

progressive framework for deep unsupervised malware

classification of windows portable executable. Complex

& Intelligent Systems, 8(1), 673-685.

[14] Elkabbash, E. T., Mostafa, R. R., & Barakat, S. I. (2021).

Android malware classification based on random vector

functional link and artificial Jellyfish Search

optimizer. PloS one, 16(11), e0260232.

[15] Kale, A. S., Pandya, V., Di Troia, F., & Stamp, M.

(2022). Malware classification with Word2Vec,

HMM2Vec, BERT, and ELMo. Journal of Computer

Virology and Hacking Techniques, 1-16.

[16] Kolosnjaji, B., Zarras, A., Webster, G., & Eckert, C.

(2016, December). Deep learning for classification of

malware system call sequences. In Australasian joint

conference on artificial intelligence (pp. 137-149).

Springer, Cham.

[17] Tobiyama, S., Yamaguchi, Y., Shimada, H., Ikuse, T., &

Yagi, T. (2016, June). Malware detection with deep

neural network using process behavior. In 2016 IEEE

40th annual computer software and applications

conference (COMPSAC) (Vol. 2, pp. 577-582). IEEE.

[18] Ding, Y., Chen, S., & Xu, J. (2016, July). Application of

deep belief networks for opcode based malware

detection. In 2016 International Joint Conference on

Neural Networks (IJCNN) (pp. 3901-3908). IEEE.

[19] McLaughlin, N., Martinez del Rincon, J., Kang, B.,

Yerima, S., Miller, P., Sezer, S., ... & Joon Ahn, G.

(2017, March). Deep android malware detection.

81

82

83

84

85

86

87

88

89

90

91

Malrec CTU-13

F-
M
ea
su
re

Dataset
SVM ANN DNN DBN

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6s

DOI: https://doi.org/10.17762/ijritcc.v11i6s.6894

Article Received: 30 March 2023 Revised: 05 May 2023 Accepted: 25 May 2023

261

IJRITCC | June 2023, Available @ http://www.ijritcc.org

In Proceedings of the seventh ACM on conference on

data and application security and privacy (pp. 301-308).

[20] Saxe, J., & Berlin, K. (2015, October). Deep neural

network based malware detection using two dimensional

binary program features. In 2015 10th international

conference on malicious and unwanted software

(MALWARE) (pp. 11-20). IEEE.

[21] Weber, M., Schmid, M., Schatz, M., & Geyer, D. (2002,

December). A toolkit for detecting and analyzing

malicious software. In 18th Annual Computer Security

Applications Conference, 2002. Proceedings. (pp. 423-

431). IEEE.

http://www.ijritcc.org/

