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Abstract— A new monitoring technique has been developed to evaluate the capacity and performance of Lithium-ion batteries batteries by 

utilizing two convolutional neural networks (CNNs) models, Deep convolutional neural network (DnCNN) and CNN with BFGS quasi-Newton 

optimization. The system utilizes thermal images of lithium-ion batteries as input for training and testing. DnCNN model is utilised to accurately 

calculate battery capacity and performance, and the performance is evaluated using mean squared error (MSE) and PSNR. The CNN-based 

training method employs the BFGS quasi-Newton algorithm to measure battery capacity accurately by evaluating the mean squared error (MSE) 

and regression results. The proposed condition monitoring system using thermal imaging and CNN models, specifically the CNN- BFGS quasi-

Newton algorithm model, can accurately detect battery capacity with an accuracy rate of 98.5%, compared to the DnCNN model with an 

accuracy rate of 96.7%. The proposed system can address the critical issue of battery capacity and degradation in EVs, providing a more 

sustainable and efficient alternative for real-time applications. 

 

Keywords- Electric vehicle (EV); Deep Convolutional Neural Network (DnCNN); Convolutional Neural Network (CNN); BFGS Quasi-Newton 

method; Mean Square Error (MSE). 

 

 

I. INTRODUCTION 

An electric vehicle is a vehicle that uses one or more 

electric or traction motors to move. It can be powered by self-

contained batteries or non-renewable sources, fuel cells or 

solar panels, but the latter is a more expensive option. Electric 

vehicles can be used for all types of transportation, including 

road and rail vehicles, watercraft, aircraft, and spacecraft. 

The modern world requires advanced technology to 

address current and future challenges. In India, the primary 

challenge is the scarcity of fossil resources, with fuel prices 

continuing to rise daily and causing a significant amount of 

pollution. To combat this, we must shift towards electric 

vehicles generated by renewable energy sources such as wind 

and solar energy. Battery management systems are crucial for 

maintaining the safe and reliable operation of batteries, 

monitoring and controlling charging and discharging rates, 

charge level, health, life, and maximum capacity. Monitoring 

techniques like current, voltage, and ambient temperature are 

used to maintain battery's charge level. 

Electric vehicles are crucial because they emit no 

harmful emissions and are energy-efficient. They require an 

efficient battery management system to provide sufficient 

power to their numerous battery cells, with lithium-ion 

batteries being the most commonly used due to their merits 

and effectiveness. Typically, the estimated range of an electric 

vehicle's battery is 30 to 100 kWh or higher. Environmental 

issues due to gasoline vehicles and low fuel consumption have 

made the development of green, ecologically-friendly, and 

economical vehicles a critical goal for many countries. 

Electric vehicles have comparable mileage and fuel 

economy to gasoline vehicles, with zero environmental 

emissions, high mileage, and low fuel consumption. Lithium-

ion batteries are the de facto standard for automobile power 

batteries, with a high energy density, low self discharge rate, 

high open circuit voltage, and no memory effect. They have an 

optimal value of 113.8 MW, representing 54.7% of the total 

capacity of new energy storage projects worldwide. In 

conclusion, lithium-ion batteries appear to have a bright future 

in the realm of electric vehicles. 

 We categorize various charging and discharging tactics for 

plug-in electric vehicles in detail, identifying their differences 

in complexity, economics, power losses, ancillary services, 
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timing, and environmental impact. We provide 

recommendations and ratings for specific applications, helping 

researchers and developers choose the best option for their 

systems or test beds. This evaluation fills a void in the 

literature and assists in identifying potential candidates [1] 

In this study, we analyze the battery management 

system (BMS) for rapidly exchanging battery packages in EV 

buses. We examine the BMS structure and function, as well as 

charging, maintenance, recombination, state of charge 

calibration, and parametric recognition during the exchanging 

process. This investigation is based on the unique features of 

this new battery exchange mode [2]. 

The improved loaded voltmeter test (ILVT) uses a 

stored function of battery voltage measurements with a fixed 

resistor load, allowing for specific charge values to be found 

without harming the electricity system. Haifa found no 

increase in errors when using the ILVT instead of the standard 

loaded voltmeter test for lead-acid batteries. The ILVT can 

also be applied to test other battery types [3]. 

A new battery management system has been 

proposed as a solution for electric vehicle battery issues. This 

system divides the battery in half for charging and 

discharging. Sustainable energy sources charge the vehicle 

while one half discharges, and vice versa. This eliminates 

external charging and the need for two distinct batteries. The 

design, analysis, advantages, and potential applications of this 

system are discussed, including resolving the electric vehicle's 

inclination problem [4].  

We examine safe charging of electric vehicles from 

both grid-side and equipment-side perspectives, aiming to 

optimize the charging structure's design. With the growing 

popularity of electric vehicles, charging safety will become a 

priority, and this article proposes the best approach for safely 

charging electric vehicles in the power grid. The heat 

management process helps to regulate their interior 

temperature of the battery system, ensuring that charging and 

discharging occur within a safe temperature range. Our 

comprehensive solution effectively controls charging safety, 

minimizing potential hazards, and encouraging the widespread 

adoption of electric vehicles [5].  

Electric vehicles (EVs) are increasingly replacing 

gasoline vehicles, contributing to the fight against global 

warming. The electric vehicle's energy storage system will be 

supported with lithium-ion battery banks, known for their high 

capacity and efficiency. However, to avoid damaging the 

battery, a control model must protect it from over- or 

undercharging. This study employs Simulink software to 

assess the efficiency of a Li-ion battery energy management 

approach over electric vehicles, which includes a bidirectional 

flyback DC-DC converter and an intelligent charge control 

algorithm to maintain a safe cell voltage range (3.73 V - 3.87 

V) through regulated PWM signals [6].  

For hybrid and electric vehicles, battery management 

is critical to optimize their energy management and extend the 

battery's life by monitoring SOC and SOH. This paper 

presents research on intelligent state of charge prediction 

based on a lumped battery model utilizing an extended 

Kalman filter. The Kalman filter has been extended to account 

for battery ageing effects. The simplified models are 

implementable on a digital signal processor, and the charge 

observer's real-time status has been evaluated on a lithium-ion 

cell under different operating situations. [7].  

Developing an accurate method for predicting a 

battery's remaining capacity is crucial for electric vehicle 

experts. However, various battery types or models require 

different prediction models, and expert advice may not be 

universal. To address this issue, this article focuses on iron 

phosphate Li-ion batteries and proposes a neural network 

approach for constructing a prediction model based on charge-

discharge performance tests. The model's validity is tested 

using real-world data [8].  

This article compares the characteristics of lithium-

ion and lead-acid batteries, specifically the charging and 

discharging processes using adjustable current or pulse 

current. The charging behavior of these batteries begins with 

constant current followed by constant voltage. The system 

utilized in this study measures voltage, current, and 

temperature and is equipped with the ability to log data to a 

personal computer [9].  

To understand a lithium battery's properties, its 

impedance in a single state of charge (SoC) is important. 

While some analyzers can measure this impedance, doing so 

across multiple SoCs is time-consuming. We propose a new 

method to compute impedance across different SoCs while 

changing them. Our method generates reliable results even 

with non-linear behavior. The data is validated by comparing 

it with impedance data taken from a no-load cell at different 

SoCs [10].  

The pursuit of efficient battery systems creates 

challenges for engineers and scientists in developing cost-

effective mobile energy storage. Accurate battery behavior 

modeling is necessary for providing a suitable battery for a 

mobile device. Precision measurements are needed for 

constructing accurate models. This article presents and 

evaluates a quick, highly accurate, and fully configurable 

battery measurement device. A current source capable of 

delivering and sinking currents of up to 32 A over a frequency 

range of DC to 20 kHz is included, as are a high level voltage, 

current, and temperature meters. [11].  

Typically, a battery is the energy storage medium of 

choice for mobile applications, and a suitable battery model is 
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required for system component design and optimization 

through simulation. Parameter determination needs data from 

measurement. This article describes a prototype measurement 

system capable of collecting data from batteries with 

capacities ranging from certain mAh for connected devices to 

multiple hundred Ah for electric automobiles and hybrid 

electric vehicles, facilitating testing and parameter 

identification [12].  

The article examines the charging and discharging 

characteristics, and also the operation, of lithium-ion batteries, 

particularly LixC6 and LiyMn2O4 batteries. Simulating the 

electrochemical processes of these batteries with an analytical 

model gives a dynamic model that represents the temporary 

state of the battery result. The study investigates the battery's 

voltage, current, temperature, state of charge, and charging 

and discharging properties. The model can be used to 

accurately control battery charging and discharging strategies 

and measure state of charge (SOC) and part of laboratory 

setup for modeling electrochemical energy storage system of 

electric or hybrid vehicles [13].  

Battery monitoring industry faces the challenge of 

assessing and predicting battery performance. Thermal 

imaging is a nondestructive evaluation technique that provides 

vital information about a battery's electrochemical 

performance due to its impact on internal chemistry. In this 

research, a refined approach linking thermal imaging to 

internal battery reactions is proposed to define early failure 

detection descriptors. This method has been experimentally 

proven using lead-acid batteries, highlighting the challenges of 

operando battery thermal imaging and the need for future 

iterative design advancements [14].  

Lithium-ion batteries are preferred for electric 

vehicles (EVs) due to their eco-friendliness and various 

advantages. However, their charging and discharging behavior 

is influenced by the charging current intensity, which varies 

among manufacturers and cells. This study examines charge 

and discharge behavior of cylindrical cells under low voltage 

and suggests ways to avoid undercharging in EVs using 

constant current and voltage measurements in Chroma 17011 

equipment. [15].  

 

II. INFERENCE FROM THE LITERATURE SURVEY 

In this research, the focus is on monitoring the 

condition of lithium-ion batteries through utilizing neural 

networks. The aim is to reduce the time and resources required 

for experiments while accurately detecting the battery's 

capacity. Two training methods, DnCNN and CNN with 

BFGS quasi-Newton optimization, are introduced as part of a 

new battery monitoring system. The system utilizes thermal 

images of the battery to measure the performance of the 

training. The proposed method results are effective in 

accurately calculating battery capacity while also reducing the 

time and resources required for experimentation. This has 

implications for improving the efficiency and long-term 

reliability of lithium-ion batteries in several types of 

applications. 

III. METHODOLOGY 

 
Figure 1 Block diagram of the proposed techniques 

 

Li-ion batteries are made up of four major 

components: a cathode, an anode, an electrolyte, and a 

separator, each of which is essential to the battery's accurate 

operation. Without any of these components, the battery's 

performance will be hindered. 

In contrast to traditional batteries, lithium-ion 

batteries offer several advantages such as faster charging, 

longer lifespan, and better energy density, enabling them to 

last longer in a smaller container. Lithium iron phosphate 

(LFP) is a cathode chemistry that is inherently safer than other 

alternatives but has intellectual property restrictions. It has a 

high power density, making it an ideal choice for electric tools 

and e-buses and a feasible option for electric vehicles. 

Li-ion batteries have a positive electrode that contains 

a lithium compound, which undergoes intercalation, and a 

negative electrode usually composed of graphite. These 

batteries have a high energy density, exhibit minimal memory 

effect (lithium-ion polymer cells being an exception), and 

possess a low self-discharge rate. 

 

Battery Specification: 

Voltage  51.8 V 

Current  20 Ah 

Weight  10.5 Kg 

Each Cell Max Voltage 4 V 

Each Cell Min Voltage 3.7 V 

Each Cell Power Rating 37.00 Wh 

Total Cells 28 Cells 

 

Charger Specification: 

Model   NG1 Battery Charger 

Input Voltage 230V AC, 6A, 50-60Hz 

Output Voltage 50.4V DC, 12A 
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Figure 2. Battery charging setup  

 

To charge individual battery cells, the RPS positive is 

linked directly to the positive terminal, and the RPS negative 

is connected to the negative terminal. To charge the entire 

battery cell, it is recommended to maintain a current between 

1A to 1.5A at RPS. For charging a single cell, the current in 

RPS should be limited to 1A, and the voltage must not exceed 

1.5V. 

 
                      Figure 3.  Battery Discharging set up 

 

To measure current in amperes, the positive terminal of 

the ammeter (or multimeter in ampere mode) connects directly 

to the battery positive end. The ammeter negative terminal is 

connected to 2000 W load. The load's opposite end is linked to 

the negative terminal of the battery through a 20-amp fuse. 

 

A. Convolutional Neural Network (Cnn) 

A convolutional neural network, a type of feedforward 

neural network that performs convolution, includes a depth 

structure. It is widely utilized in various domains, such as 

natural language processing and computer vision. The CNN 

consists of three layers: input, hidden, and output. A schematic 

design of a convolutional neural network illustrated in Figure 

4. The CNN hidden layer comprises three elements: weighted 

convolution kernel process in the convolutional layer, a 

filtering process in the pooling layer, and a connection process 

in the tiled layer, which is also known as a fully connected 

layer. 

 

1) Convolutional Layer: The convolutional layer 

acquires data from the input data using a predefined 

convolution kernel. This kernel is defined by three essential 

parameters:  step size, kernel size and padding, which 

collectively evaluate the produced feature map dimension of 

the convolutional layer. An activation function is commonly 

applied in the convolutional layer to express complex input 

properties, and the ReLU function is often used in CNN. Even 

though the activation function is applied following the 

convolution kernel, it is not fixed. Additionally, there are 

numerous activation functions that are not always carried out 

in the same spot. 

 

2) Pooling Layer: After the convolutional layer 

completed the input, a feature map is generated, and the 

pooling layer is then utilized to select features and filter data 

on this map. Similar to the convolution kernel, the pooling 

layer has its own parameters for step size, pooling size and 

filling control. In contrast to the convolution kernel, which is 

used for measured sum, the pooling layer modifies these 

parameters to maximize or normalize feature values. In 

addition, the pooling layer can decrease the amount of nodes 

in the fully linked layer, so preventing overfitting. 

 

3) Fully Connected Layer: The CNN fully connected 

layer resembles the hidden layer of a BP neural network in 

structure and function. Its purpose is to produce the desired 

output by performing a series of nonlinear combinations on the 

extracted features derived from the input sample of 

convolutional pooling. 

 
Figure 4:  Structure of CNN 

 

B. Learning Deep Cnn for Image Denoising 

Due to its superior denoising performance, discriminative 

model learning for image denoising has recently garnered 

substantial attention. We take a step ahead by examining the 

formation of feed-forward denoising convolutional neural 

networks (DnCNNs) and integrating advancements in deep 

architecture, learning algorithms, and regularisation methods 

into picture denoising. 

 
 Figure 5. The architecture of DnCNN 
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The DnCNN architecture is illustrated in Fig. 5. It accepts 

noisy input y = x + v, where v is noise and x is clean image. 

Unlike training residual mapping R(y) = v, DnCNN trains 

residual mapping R(y) = v before computes x = y − R(y). Size 

of fixed convolutional filters is 3 × 3, and resolution of the 

convolutional layer with depth d is (2d + 1) × (2d + 1), 

following the principle. Raising network depth increases 

utilisation of metadata in a larger image region but also 

increases the computational load, necessitating a trade-off 

between performance and reliability in architectural design. 

DnCNN has an accessible field level of 35 × 35 for Gaussian 

denoising with a depth of 17 at a particular noise level. As 

illustrated in Fig. 5, a DnCNN with depth D is capable of 

utilizing the following three types of layers: 

(i) Conv + ReLU: The first layer uses 64 filters 

of dimension  3 × 3 × c to generate 64 

feature maps, which are then subsequent by 

rectified linear units (ReLU, max(0,.)).  

(ii) Conv + BN + ReLU: layers 2 ∼ (D − 1) 

employ 64 filters of dimension 3 × 3 × 64, 

with batch normalisation applied to both 

ReLU and convolution. 

(iii) Conv: the final layer reconstructs the 

denoising output using 3 × 3 × 64 c filters. 

 

To evaluate the performance of DnCNN in denoising 

thermal images of Lithium-ion batteries, two commonly used 

metrics are Peak Signal-to-Noise Ratio (PSNR) and Mean 

Squared Error (MSE). 

 

MSE measure average squared difference among 

estimated denoised image and original image. It can be 

calculated using the following equation: 

 

MSE =
1

m n
∑ ∑ [I(i, j) − K(i, j)]2n−1

j=0
m−1
i=0                                 () 

 

where m and n are dimensions of  image, I(i,j) is pixel value of 

original image at position (i,j), and K(i,j) is corresponding 

pixel value at position (i,j) of denoised image. 

 

PSNR is the ratio among the maximum potential 

power of an image and noise power that reduces its 

representational accuracy. It’s expressed in decibels (dB) and 

can be calculated using the following equation: 

 

PSNR = 20 ∗ log10 (
MAXI

√MSE
)                                                    () 

 

Where MAXI the maximum potential value of pixel intensity 

and MSE is mean squared error between original and denoised 

images. 

MSE and PSNR are two important metrics that can be 

used to evaluate the performance of DnCNN in denoising 

thermal images of Lithium-ion batteries. By minimizing the 

MSE and maximizing the PSNR, DnCNN can achieve better 

denoising performance, which can ultimately lead to more 

accurate analysis and prediction of the battery's thermal 

behavior. 

 

C. Training Process: Bfgs Quasi Newton Techniques 

Quasi-Newton techniques are well-known for processing 

problems involving unconstrained optimization. On the other 

side, Broyden, Fletcher, Goldfarb, and Shanno proposed a new 

optimising formula, named BFGS, that has now received wide 

utilisation and gone numerous changes. 

In summary, the section describes unconstrained optimization 

problems: 

 

 min𝑓
𝜒∈𝑅𝑛

(𝑥)                                                                        () 

                                                                                         

where 𝑅𝑛  denotes n-dimensional Euclidean space and 

𝑓: 𝑅𝑛−→ 𝑅 denotes continuous twice differentiable space. For 

equation (1), the gradient and Hessian are represented by the 

letters g and G, respectively. To present the modified BFGS 

equation, the step-vectors 𝑆𝑘 and 𝑦𝑘  are summarized as 

follows: 

 

𝑆𝑘 = 𝜒𝑘+1 − 𝜒𝑘  

𝑦𝑘 = 𝑔(𝑥𝑘+1) − 𝑔(𝑥𝑘)  

     = 𝑔𝑘+1 − 𝑔𝑘                                                                     (4) 

 

Concerning quasi-Newton approaches, we will 

depend on the BFGS method, which has been demonstrated is 

the most powerful of all quasi-Newton methods. Thus, if 𝐵𝑘 is 

defined as a close approximation to Hessian G at 𝑥𝑘 , the 

iterative equation for BFGS is as follows: 

 

𝐵𝑘+1 = 𝐵𝑘 −
𝐵𝑘𝑠𝑘𝑠𝑘

𝑇𝐵𝑘

𝑠𝑘
𝑇𝐵𝑘𝑠𝑘

+
𝑦𝑘𝑦𝑘

𝑇

𝑠𝑘
𝑇𝑦𝑘

                                                () 

                                                          

Additionally, it is generally known that (5) generates the 

matrix Bk+1 in fulfil the secant equation. 

 

𝐵𝑘+1𝑠𝑘 = 𝑦𝑘,                                                                           ()                                                                                        

  

It might be thought of as an approximation to Newton's theory. 

Realize that the secant equation can be satisfied only if  

 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 6 

DOI: https://doi.org/10.17762/ijritcc.v11i6.6772 

Article Received: 18 March 2023 Revised: 29 April 2023 Accepted: 18 May 2023 

___________________________________________________________________________________________________________________ 

 

57 

IJRITCC | June 2023, Available @ http://www.ijritcc.org 

𝑠𝑘
𝑇𝑦𝑘 > 0                                                                       () 

 

It is referred to as the curved condition. Additionally, if (7) 

holds, the BFGS updating matrix (5) will be positive definite. 

 

Iterative technique is utilised to analyse unconstrained 

optimization issues in order to obtain the function's minimum 

value where gradient is 0. As a result, iterative solution for 

quasi-Newton method is specified. 

𝑥𝑘+1 = 𝑥𝑘 + 𝑎𝑘𝑑𝑘                                                                  (8) 

                                                                                   

where 𝑎𝑘  and 𝑑𝑘  represent step size and direction of search, 

appropriately. Step size has to be positive in order to f(x) is 

significantly reduced.   A line search's success is based 

on effective selections of both  direction of the search 𝑑𝑘  and 

the step size𝑎𝑘. There are numerous algorithms for computing 

the step size, which are classified as inexact and exact line 

searches. 

Possibly the ideal solution for exact line search 

equation, given as 𝑎𝑘 = arg min  (𝑓(𝑥𝑘 + 𝑎𝑘𝑑𝑘))  α>0 but 

identifying this value is generally more cost. Normally, it 

needs an infinite number of calculations for target function f 

and gradient g. Some equations for the inexact line search 

have been proposed previously. The Armijo line search is the 

most efficient and simple of the numerous well-known inexact 

line search algorithms used in computer calculations. 

Additionally, it is simple to apply in coding such as Matlab 

and Fortran. The following description of the Armijo line 

search is: 

 Provided s>0, 𝜆𝜖(0,1)𝜎𝜀(0,1)  and 𝑎𝑖 =

𝑚𝑎𝑥{𝑠, 𝑠𝜆, 𝑠𝜆2, … . } as if 

 

𝑓(𝑥𝑘) − 𝑓(𝑥𝑘 + 𝑎𝑘𝑑𝑘) ≥ −𝜎𝑎𝑘𝑔𝑘
𝑇𝑑𝑘                                 ()   

                                                             

k = 0, 1, 2, 3,... The reduction in f has to be inversely 

proportional to both step size and directional derivative 

𝑔𝑘
𝑇𝑑𝑘. The search directions are essential to improving value 

of f, that reduces with direction. Additionally, quasi-

Newtonian techniques frequently have the following search 

direction: 

 

𝑑𝑘 = −𝐵𝑘
−1𝑔𝑘                                                                       (10) 

                                                                                                   

where 𝐵𝑘 is a synchronous and nonsingular estimation matrix 

to the Hessian matrix (5). An identity matrix is used to select 

the initial matrix 𝐵0 , and is then modified using an update 

equation. Where 𝑑1  is denoted in equation (8) and 𝐵𝑘   is 

significant positive, and obtain  𝑑𝑘
𝑇 = −𝑔𝑘

𝑇𝐵𝑘
−1𝑔𝑘 < 0 , 

indicating that dk is a direction of descent. As a result, the 

methodology for an iteration approach of standard BFGS is as 

follows: 

 

Algorithm 

 

Step1: Given a starting location 𝑥0 and a value for𝐵0 equal to 

𝐼𝑛. Select values for 𝑠, 𝛽, 𝑎𝑛𝑑𝜎 

Step2: Cancel if ‖𝑔(𝑥𝑘+1)‖ < 10−6 

Step3: Compute the direction of the search by (8). 

Step4: compute the step size α1 by (7). 

Step5: calculate the variation 𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘𝑎𝑛𝑑𝑦𝑘 + 𝑔𝑘+1 −

𝑔𝑘 

Step6: modify 𝐵𝑘 by (3) to acquired 𝐵𝑘+1 

Step7: make k equal to k + 1 and proceed to Step 1 

 

IV. RESULTS AND DISCUSSION 

To evaluate the proposed system's performance, 

charging and discharging properties of lithium battery tested in 

normal temperature condition are manually determined using a 

multimeter attached to the battery terminals. The time taken to 

charge the battery is 4 hours, where the voltage and current 

variation are measured for each 15 minutes interval as shown 

in the table1. To reach 100% capacity of the battery, the 

voltage starts from 45.7v to 55.8V and the current starts from 

2.4A to 4.2A respectively. The 9 hours taken to discharge the 

battery at load of 2000W, where the voltage and current 

variations are measured for each 30 minutes interval as shown 

in the table2. To obtain battery capacity low, the voltage starts 

gradually reduce from 55.8V to 44V and the current from 

2.01A to 1.59A respectively. On lithium-ion battery original 

dataset, the developed CNN-based capacity estimating 

algorithm Deep convolutional neural network (DnCNN) and 

CNN with BFGS quasi-Newton optimization is applied. The 

maximum number of training epochs is defined to 50 during 

the training phase, and the step size is defined to 100 samples. 

The battery's health is monitored twice: while charging and 

discharging. 

 

TABLE I. THE VOLTAGE AND CURRENT ARE MEASURED 

MANUALLY DURING CHARGING STATE AND DISCHARGING 

STATE 

CHARGING STATE DISCHARGING STATE 

S.N

O 

TIME MSE PSNR TIME MSE PSNR 

1 01:30 55.62 30.49 10:00 59.66 30.57 

2 01:45 49.36 30.67 11:00 58.93 30.89 

3 02:00 55.34 30.41 11:30 62.20 30.46 

4 02:15 53.67 30.46 12:00 54.05 30.99 

5 02:30 53.72 30.43 12:30 57.22 30.85 

6 02:45 55.34 30.48 01:00 54.89 30.84 

7 03:00 57.11 30.38 01:30 58.74 31.09 

8 03:15 60.12 30.39 02:00 56.41 31.49 

9 03:30 56.17 31.08 02:30 60.20 30.49 

10 03:45 57.92 30.62 03:00 55.71 31.69 
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11 04:00 56.16 30.54 03:30 62.79 30.27 

12 04:15 50.97 30.89 04:00 62.94 30.21 

13 04:30 52.55 32.04 04:30 61.63 30.48 

14 04:45 52.49 32.02 05:00 62.20 30.38 

15 05:00 54.12 32.13 05:30 62.74 30.23 

16 05:15 55.48 32.31 06:00 59.40 30.31 

17 05:30 53.23 31.81 06:30 59.32 30.92 

 

PSNR (Peak Signal-to-Noise Ratio) and MSE (Mean 

Squared Error) are commonly used metrics to evaluate the 

quality of reconstructed images compared to the original data. 

In the context of charging and discharging states of lithium-ion 

batteries, these metrics can be calculated using a Deep Neural 

Network (DNN) such as DnCNN (Denoising Convolutional 

Neural Network).To calculate MSE, the DNN is trained to 

estimate the charging or discharging state of a lithium-ion 

battery from a given input image. The MSE is calculated as 

mentioned in the equation 1. A lower MSE value indicates 

better performance of the DNN in estimating the battery state. 

PSNR is another metric that measures the quality of 

reconstructed image. It is calculated as the ratio between the 

maximum possible and the noise power that influences the 

representation's accuracy. In lithium-ion battery charging and 

discharging states, PSNR is used to evaluate the quality of the 

estimated state by comparing it to the original state. Higher 

PSNR values indicate better quality of reconstructed image. 

Overall, PSNR and MSE are useful to evaluate the efficiency 

of DnCNN in estimating the charging and discharging states of 

lithium-ion batteries. By optimizing these metrics during the 

training process, the DNN can be better tailored to accurately 

determine the battery’s health, which is important for 

monitoring and controlling its behaviour with an accuracy rate 

of 96.7%. 

 

TABLE II: MSE AND PSNR ARE CALCULATED FOR CHARGING 

STATE AND DISCHARGING STATE USING DNCNN 

 

CHARGING PROCESS DISCHARGING STATE 

S.N

O 

TIME VOLTA

GE (V) 

CURRE

NT(A) 

TIME VOLTA

GE (V) 

CURRE

NT 

(A) 

 

1 

 

01:30 

 

45.7 

 

2.4 

 

10:00 

 

55.8 

 

2.01 

2 01:45 47.1 3.1 11:00 55.0 1.94 

3 02:00 48.4 4.2 11:30 53.5 1.92 

4 02:15 49.0 4.2 12:00 52.9 1.90 

5 02:30 50.5 4.2 12:30 52.4 1.88 

6 02:45 50.9 4.2 01:00 52.1 1.87 

7 03:00 51.2 4.2 01:30 51.7 1.85 

8 03:15 51.7 4.2 02:00 51.3 1.84 

9 03:30 52.0 4.2 02:30 51.0 1.82 

10 03:45 52.2 4.2 03:00 50.8 1.81 

11 04:00 52.6 4.2 03:30 50.4 1.81 

12 04:15 53.0 4.2 04:00 50.3 1.80 

13 04:30 53.3 4.2 04:30 49.7 1.78 

14 04:45 53.9 4.2 05:00 49.5 1.77 

15 05:00 54.4 4.2 05:30 49.1 1.75 

16 05:15 55.1 4.2 06:00 47.4 1.69 

17 05:30 55.8 4.2 06:30 44 1.59 

 

A. Performance Analysis of BFGS Quasi-Newton 

Optimization for Charging State 

CNN is trained on thermal images of the battery, which 

are used to detect any abnormalities or defects that may be 

present. The BFGS Quasi-Newton Optimization algorithm is 

used to optimize the CNN's performance and improve its 

accuracy. The process begins with the acquisition of thermal 

images of the battery. These images are then preprocessed and 

normalized to ensure that they are suitable for input into the 

CNN. The CNN consists of multiple layers of interconnected 

nodes or neurons, which are responsible for processing the 

input data and producing the desired output. 

The CNN is trained using a dataset of labeled thermal 

images, which have been annotated with information about the 

battery's condition. The network learns to map the thermal 

images to their corresponding labels using a process known as 

supervised learning. The BFGS Quasi-Newton Optimization 

algorithm is utilised to optimize network's performance by 

adjusting its parameters to reduce error among predicted and 

actual labels. Once network has been trained, it can be used to 

analyze new thermal images of the battery and detect any 

abnormalities or defects that may be present. The output of the 

CNN can be visualized using a heatmap, which highlights 

areas of the battery that are experiencing higher temperatures 

or abnormal behavior. 

To examine the performance of CNN models with 

varying numbers of convolutional layers under charging 

conditions, an identical training and testing approach is 

applied to all tests. The training and testing processes for each 

CNN configuration are run multiple times, and an average 

MSE and regression value are given in Table 3. The figure 7 

demonstrates the denoised image for DnCNN models. Figure 8 

shows the structure of training BFGS Quasi-Newton Neural 

Network for charging state with convolutional layers and the 

parameters involved in each configuration.  

 

 
Fig.ure 6: Original image of charging state               
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Figure 7: Denoised image of charging state 

 

 
Figure 8: The plot of training BFGS Quasi-Newton for charging state. 

 

 
 

Figure 9: The output image of training BFGS Quasi-Newton for charging state 

 

The figure 8 represents to monitor the convergence of 

the optimization process over time. The convergence of the 

algorithm could be demonstrated by plotting the value of the 

cost function throughout the period of training. The cost 

function represents the difference among predicted outputs in 

neural network and true outputs for a given set of input data. 

The aim of the optimization process is to reduce the cost 

function, which indicates that the neural network is making 

accurate predictions. In a typical plot of the cost function over 

time, the x-axis represents number of iterations or epochs, and 

y-axis represents value of cost function. As optimization 

algorithm progresses, value of cost function should decrease, 

indicating that the neural network is making more accurate 

predictions. 

If the plot shows that value of cost function is 

reducing but is oscillating around a minimum, this could 

indicate that the learning rate is too high. In contrast, if the 

plot shows that value of cost function is not reducing over 

time, this could indicate that the learning rate is too low or that 

the neural network architecture needs to be adjusted. 

Figure 9 represents the output plots image is to 

calculate the output images quality produced by trained neural 

network and also useful in identifying areas of concern in the 

battery and can guide improvements to the model's 

performance.Visual inspection of the output images can also 

provide valuable insights into the performance of the neural 

network. Output image commonly used to shows the change in 

temperature over time and can help identify areas where the 

battery is heating up or cooling down too quickly. A well-

trained model will accurately identify these areas and provide 

a clear visualization of the temperature changes over time. 

The network was initially trained using 50% of the 

data set and afterwards validated and tested with the remaining 

50%. The starting weights were chosen by possibility, while 

the sizes of the hidden layers were measured through trial and 

error. An error target was specified as MSE = 1, and the neural 

network was approved if its MSE was equal to or below an 

error target. 

CNN was trained using input parameters as current, 

voltage, and time to anticipate battery's natural decline over a 

50-cycle period. The CNN training acquired an MSE of 

roughly 0.010056 × 10−6 and was typically considered 

satisfactory as presented in Figure 10. As represented in 

figures, the most amount of training epochs permitted in 

network is 50 because of limitations determined by specific 

validation tests. When network level is reached, the network is 

unable to train. This is a better value because it indicates the 

network is highly specialized in test sets, hence reducing 

overfitting (a phenomena that occurs in training set during a 

network becomes masters). After the training of the network 

was complete, the weights were documented so the actual 

network could assess the charge/discharge cycles depending 

on the inputs. 
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Figure 10. Best training performance at charging   state 

 

 
Figure 11:  Regression analysis at charging state 

  

TABLE 3. THE BEST TRAINING PERFORMANCE AND REGRESSION 

VALUE ARE MEASURED WITH DIFFERENT IMAGES DURING 

CHARGING STATES. 

CHARGING STATE – CNN TRAINING BFGS QUASI NEWTON 

METHOD 

S. 

NO 

BEST TRAINING PERFORMANCE 

(MSE) 

REGRESSION 

1 0.0074543 0.94408 

2 0.0095009 0.93582 

3 0.0085957 0.93129 

4 0.006028 0.94698 

5 0.0055972 0.95112 

6 0.0061224 0.95789 

7 0.010056 0.96574 

8 0.0080408 0.96784 

9 0.0070078 0.97089 

10 0.021053 0.86899 

11 0.016238 0.77777 

12 0.017789 0.95884 

13 0.018129 0.87838 

14 0.019473 0.85739 

15 0.020384 0.84032 

16 0.021784 0.81039 

17 0.021307 0.79797 

We defined 100% of the battery capacity 

performance during charging state; the battery in normal state 

gives the MSE value as 0.005 × 10−6 to 0.021× 10−6. Also 

the regression value will be in the range of 0.77 to 0.99. if, the 

performance analysis differ in the ranges as low and high, then 

the battery is in warning and abnormal state. 

B. Performance Analysis of BFGS Quasi-Newton 

Optimization for Discharging State  

As we discussed above the output of the CNN models 

perform in the above charging state will function as same in 

the discharging state. The training and testing methods are 

performed multiple times across every CNN configuration, 

and table 4 summarizes the average MSE and regression 

value. The figure 13 represents DnCNN models denoised 

image. Figure 16 shows the structure of training BFGS Quasi-

Newton Neural Network for charging state with convolutional 

layers and the parameters involved in each configuration. 

When the discharging state is active, the battery temperature 

declines slowly as the cyclical changes.  

We defined 100% of the battery capacity 

performance during discharging state of Lithium-ion batteries; 

thermal imaging can provide valuable information about the 

battery's internal temperature distribution during the 

discharging state. By analyzing the thermal images, it is 

possible to detect hotspots that may indicate potential safety 

hazards, as well as areas of the battery that may be operating at 

suboptimal temperatures. To analyze the performance of MSE 

and regression value for thermal images of Lithium-ion 

batteries in various states of discharge, with corresponding 

temperature measurements for each image. The performance 

of the CNN model can be calculated using a variety of 

measures, like MSE and regression value. Multiple measures, 

like the MSE and regression value, can be used to evaluate the 

performance of the CNN model. The MSE represents the 

average squared variation among the expected and actual 

temperature readings, while regression value is a measure of 

how well the predicted temperature values match the actual 

temperature values. 

 

 
Figure 12: Original image of discharging state    
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Figure 13: Denoised image of discharging state. 

 

 
Figure 14: The plot of training BFGS Quasi-Newton for discharging state 

 

 
Figure 15: The output image of training BFGS Quasi-Newton for discharging 

state. 

The battery in normal state gives the MSE value as 

0.003 × 10−6 to 0.011× 10−6. Also the regression value will 

be in the range of 0.85 to 0.95. If, the performance analyses 

differ in the ranges as low and high, then the battery is in 

warning and abnormal state. By analyzing the performance for 

thermal images of Lithium-ion batteries during discharging 

state using CNN-BFGS Quasi-Newton optimization, it 

develops more accurate and reliable battery management 

systems. 

Overall, a condition monitoring system using thermal 

imaging and CNN models, specifically the CNN- BFGS quasi-

Newton algorithm model, can accurately detect battery 

capacity with an accuracy rate of 98.5%. 

 

 
Figure 16: CNN training performance at discharging state  

 

 
Fig.ure 17: CNN training regression analysis at discharging state 

 

Table 4. The best training performance and regression value are measured 

with different images during charging states. 

 

DISCHARGING STATE – CNN TRAINING BFGS 

QUASI NEWTON METHOD 

 

S. 

NO 

 

BEST TRAINING 

PERFORMANCE (MSE) 

 

REGRESSION 

1 0.0086272 0.95923 

2 0.030496 0.96725 

3 0.0071346 0.97673 

4 0.0042848 0.97886 

5 0.0091669 0.96666 

6 0.014888 0.92808 

7 0.0081904 0.95780 

8 0.014418 0.85124 

9 0.006269 0.96038 

10 0.0033074 0.97765 

11 0.007909 0.95514 

12 0.0079802 0.95336 

13 0.0075384 0.94638 

14 0.00724843 0.94939 

15 0.00601276 0.92394 

16 0.0060451 0.95669 

17 0.0092979 0.93368 
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V. CONCLUSION 

The use of thermal imaging to analyze Lithium-ion batteries 

has become increasingly important due to its ability to provide 

valuable information about the internal temperature distribution 

of the battery during operation. To further improve the 

accuracy and reliability of battery management systems, 

various image processing techniques have been developed, 

including DnCNN and CNN-BFGS Quasi-Newton 

Optimization. DnCNN is a deep learning algorithm that can be 

used to denoise thermal images and improve temperature 

measurements accuracy. Algorithm has been shown to be 

effective in reducing noise in thermal images and improving 

the quality of temperature measurements. In addition, CNN 

BFGS Quasi-Newton Optimization is a powerful optimization 

algorithm that can be used to train CNN models to predict 

temperature distributions of Lithium-ion batteries based on 

thermal images. This technique can improve the accuracy and 

reliability of temperature predictions, making it possible to 

detect potential safety hazards and areas of suboptimal 

performance. Overall, the use of DnCNN and CNN BFGS 

Quasi-Newton Optimization for analyzing thermal images of 

Lithium-ion batteries during operation can significantly 

enhance battery management systems' accuracy and reliability. 

The CNN- BFGS quasi-Newton algorithm model, can 

accurately detect battery capacity with an accuracy rate of 

98.5%, compared to the DnCNN model with an accuracy rate 

of 96.7%. This has a major effect on the protection, efficiency, 

and lifespan of Lithium-ion batteries, which are crucial 

components in numerous applications, such as electric vehicles, 

portable electronics, and renewable energy systems. Therefore, 

further research in this area can lead to more efficient and 

reliable battery management systems that can help to promote 

the widespread adoption of Lithium-ion batteries in various 

applications. 
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