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Abstract -This paper proposes a deep reinforcement learning-based actor-critic method for efficient resource allocation in cloud computing. 

The proposed method uses an actor network to generate the allocation strategy and a critic network to evaluate the quality of the allocation. 

The actor and critic networks are trained using a deep reinforcement learning algorithm to optimize the allocation strategy. The proposed 

method is evaluated using a simulation-based experimental study, and the results show that it outperforms several existing allocation methods 

in terms of resource utilization, energy efficiency and overall cost. Some algorithms for managing workloads or virtual machines have been 

developed in previous works in an effort to reduce energy consumption; however, these solutions often fail to take into account the high dynamic 

nature of server states and are not implemented at a sufficiently enough scale. In order to guarantee the QoS of workloads while simultaneously 

lowering the computational energy consumption of physical servers, this study proposes the Actor Critic based Compute-Intensive Workload 

Allocation Scheme (AC-CIWAS). AC-CIWAS captures the dynamic feature of server states in a continuous manner, and considers the influence 

of different workloads on energy consumption, to accomplish logical task allocation. In order to determine how best to allocate workloads in 

terms of energy efficiency, AC-CIWAS uses a Deep Reinforcement Learning (DRL)-based Actor Critic (AC) algorithm to calculate the 

projected cumulative return over time. Through simulation, we see that the proposed AC-CIWAS can reduce the workload of the job scheduled 

with QoS assurance by around 20% decrease compared to existing baseline allocation methods. The report also covers the ways in which the 

proposed technology could be used in cloud computing and offers suggestions for future study. 

Keyword— Allocation of resources, Load balancing, Deep reinforcement learning, Actor-Critic based Workload, Multi-cloud computing. 

 

I. INTRODUCTION 

Cloud computing has used reinforcement learning 

(RL) algorithms for load balancing. Here are some examples 

of RL algorithms that have been applied to this problem: Q-

Learning: This model-free RL algorithm learns an optimal 

action-value function by iteratively updating Q-values based 

on the rewards received from different states and actions. It 

has been applied to the dynamic load balancing problem in 

cloud computing (Li et al., 2023). Deep Reinforcement 

Learning: This involves combining RL with deep neural 

networks to learn more complex policies. It has been used for 

load balancing in cloud computing to optimize the allocation 

of virtual machines to physical servers. Actor-Critic 

Methods: This class of RL algorithms combines value-based 

methods (such as Q-learning) with policy-based methods 

(such as policy gradient methods) to learn a policy and 

estimate its value. It has been used for load balancing in cloud 

computing to optimize virtual machines' allocation to servers 

and minimize energy consumption. Priority-based 

scheduling: This approach involves assigning priorities to 

jobs based on their characteristics (e.g., the resources they 

require and their expected duration) and scheduling them in 

order of importance. Appointments with higher priority are 

designed first, and jobs with lower priority are scheduled 

later. However, this simple and efficient approach may only 

be optimal in some situations. Genetic algorithms: This 

approach involves using a genetic algorithm to evolve a 

schedule that optimizes a specific objective function (e.g., 

maximizing resource utilization and job wait times) (Liao et 

al., 2023). The genetic algorithm creates a population of 

schedules, evaluates their fitness based on the objective 

function, and then breeds the fittest programs to develop the 
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next generation. This approach can be practical for 

optimizing complex scheduling problems but may require a 

large number of iterations to converge to an optimal solution 

(Tang et al., 2023)(Al-Habob et al., 2020)(Wang, Zhang, Liu, 

Zhao, et al., 2022a). 

1.1 Reinforcement learning with policy gradients:  

This approach uses a policy gradient algorithm to 

learn a policy for scheduling jobs (Liu et al., 2019). The 

policy gradient algorithm works by directly optimizing the 

procedure (i.e., the mapping from states to actions) using 

gradient ascent on the expected reward Fig.1. This approach 

can be practical for learning complex scheduling policies but 

may require a large amount of training data to converge to an 

optimal policy. 

Ant colony optimization: This approach uses an 

algorithm to find an optimal schedule. The algorithm works 

by creating a population of "ants" that explore the search 

space by laying pheromones that attract other ants to 

promising solutions (Zhou et al., 2019)(Wang, Zhang, Liu, Li 

et al., 2022). The pheromones evaporate over time, so the 

algorithm converges to a solution with a high concentration 

of pheromones. This approach can be practical for finding 

optimal solutions to complex scheduling problems but may 

require many ants to explore the search space (Wang, Zhang, 

Liu, Zhao et al., 2022b; Zhou et al., 2020). 

1.2   The key contributions of this paper 

To characterize the cooperation between the task 

scheduler and the cloud data center, we treat the problem as a 

Markov Model Process (MMP) inside the framework of the 

actor-critic approach. We use this strategy in a cloud resource 

allocation scenario to lower computing costs under time and 

resource constraints.  

a) Deep Q-learning, target networks, and involvement rerun 

are integrated to create a task scheduling method. They are 

finding a suitable algorithm for reducing the computing 

resource consumption of offloading. 

b) To compare and examine how different ML-based 

solutions might be used for various load-balancing tasks in 

data centres. 

c)  Actor Critic-based Compute-Intensive Workload 

Allocation Scheme implemented with various parameters 

towards a cloud environment. 

d) The difficulties and directions for future research related 

to the present study are outlined and underlined. 

1.3 The remaining of the paper is organized as follows 

Section 2 presents an overview of Cloud Computing 

technology with reinforcement learning technology. Section 

3 explores the proposed work of this paper and gives a 

detailed description of the performance of Actor Critic-based 

Compute-Intensive Workload Allocation the Reinforcement 

learning Section 4 describes Numerous open challenges and 

future research. Lastly, we draw our conclusions and future 

work.   

II. LITERATURE SURVEY 

However, the linear functional form used to estimate 

the action-value function in the conventional actor-critic 

leads to excessive variation and an erroneous policy gradient. 

An advantage actor-critic was developed to address this issue 

(W. Zhang et al., 2021; Zhu et al., 2022). The actor makes 

decisions on what to do based on random chance, the critic 

provides feedback in the form of scores, and the actor adjusts 

the odds that he will choose a particular action based on those 

scores. Conversely, the advantage functions can significantly 

aid in reducing the policy gradient variance. When a neural 

network approximates the value function or policy function 

in an actor-critic method, function approximation error arises 

whenever the neural network fails to capture the proper 

underpinning function accurately (Jin et al., 2023; D. Zhang 

et al., 2023) by modelling radio access network offloading as 

a Markov Decision Process. We were able to design a 

reinforcement learning method based on a double-deep Q-

network. They turned to a profound neural network-based 

amount of additional to combat state-space explosion and 

discover the best operational loading method on the fly. To 

maximize computational dumping efficiency, the authors 

propose a deep learning technique based on the State-Action-

Reward-State-Action (SARSA) framework (Serrano-

Guerrero et al., 2021). Several scheduling techniques, such as 

the first-come, first-served (FCFS) algorithm and a genetic 

algorithm, are compared to and contrasted with the suggested 

system in simulation experiments conducted by the authors 

(GA). Considering makespan (i.e. total execution time) and 

resource utilization, the proposed technique is superior to the 

competing algorithms. Suggest that function approximation 

error can cause instability and poor performance in actor-

critic methods, particularly in high-dimensional or 

continuous action spaces (Niu et al., 2021; Sankalp et al., 

2022; Tang et al., 2023). To address this, they propose an 

algorithm called Twin Delayed Deep Deterministic (TD3) 

policy gradient, which utilizes three essential modifications 

to improve the accuracy of the function approximation. An 

actor-critic deep reinforcement learning algorithm consists of 

two components: an actor that suggests resource allocation 

decisions and a critic that evaluates the quality of those 

decisions. The actor and critic are both implemented as neural 

networks, which are trained using a combination of 

supervised and reinforcement learning(Ferratti et al., 2021). 
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The algorithm is evaluated using a simulation of a cloud data 

center environment. The results show that it outperforms    

traditional resource allocation algorithms regarding resource 

utilization and workload completion time. The paper 

concludes that the proposed approach can potentially improve 

the efficiency and adaptability of resource allocation in cloud 

data center (Fernandez-Gauna et al., 2022; Sun et al., 2019). 

 

TABLE I COMPARISON OF VARIOUS REINFORCEMENT ALGORITHM TYPES AND ITS CHARACTERISTICS 

Algorithm Type Characteristics 

Multilayer 

Perceptron (MLP) 

Feedforward 

Neural 

Network 

It uses backpropagation to train multiple layers of neurons for classification or regression tasks. 

Convolutional 

Neural Network 

(CNN) 

Feedforward 

Neural 

Network 

It uses convolutional layers to extract spatial features from images, often used for image 

classification tasks. 

Recurrent Neural 

Network (RNN) 

Recurrent 

Neural 

Network 

It uses feedback connections to maintain a "memory" of previous inputs and make predictions 

based on sequence data, often used for natural language processing tasks. 

Long Short-Term 

Memory (LSTM) 

Recurrent 

Neural 

Network 

A type of RNN that includes a gating mechanism to selectively remember or forget previous 

inputs, often used for time series prediction and natural language processing tasks. 

Autoencoder Unsupervised 

Learning 

It uses a neural network to compress and reconstruct input data, often used for dimensionality 

reduction and anomaly detection. 

Generative 

Adversarial Network 

(GAN) 

Unsupervised 

Learning 

It uses two neural networks to generate synthetic data indistinguishable from accurate data, often 

used for image and text generation. 

Deep Belief 

Network (DBN) 

Unsupervised 

Learning 

They comprise multiple layers of restricted Boltzmann machines (RBMs), used for unsupervised 

feature learning and generative tasks. 

Reinforcement 

Learning 

Reinforcement 

Learning 

It uses trial-and-error learning to optimise a policy for an agent in an environment, often used for 

game-playing and robotics tasks. 

 

Table I describes Gradient Boosting Machine 

(GBM) Ensemble Learning that Combines multiple decision 

trees to improve the performance of a model, often used for 

regression and classification tasks. Random Forest Ensemble 

Learning Combines various decision trees and selects 

features randomly to improve the performance of a model, 

often used for regression and classification tasks. K-Means 

Clustering Unsupervised Learning Partitions data into K 

clusters based on similarity, often used for data segmentation 

and anomaly detection tasks. Support Vector Machine (SVM) 

Supervised Learning Maximizes the margin between 

different classes to classify data, often used for classification 

and regression tasks. Naive Bayes Classifier Supervised 

Learning Uses Bayes' theorem to calculate the probability of 

each category based on the input features, often used for 

classification tasks. K-Nearest Neighbors (KNN) Supervised 

Learning Classifies data based on the K nearest data points in 

the feature space, often used for classification and regression 

tasks. 

III. PROPOSED WORK 

The proposed approach uses deep reinforcement 

learning to learn an optimal resource allocation policy based 

on the current workload and resource availability. an actor-

critic deep reinforcement learning algorithm consists of two 

components: an actor that suggests resource allocation 

decisions and a critic that evaluates the quality of those 

decisions Fig.2. The actor and critic are both implemented as 

neural networks, which are trained using a combination of 

supervised and reinforcement learning. 

The algorithm is evaluated using a simulation of a 

cloud data centre environment. The results show that it 

outperforms traditional resource allocation algorithms 

regarding resource utilization and workload completion time. 

The optimal Q-value for a state-action pair (f_t, l_t) is equal 

to the expected sum of the immediate reward (RX_t+1) and 

the discounted value of the maximum Q-value of the 

following state (f_t+1) and all possible actions (l_t+1) that 

can be taken from it, where the discount factor (α) determines 

the weight given to future rewards: 

𝑄 ∗ (f_t, l_t)  = ∑ [Rx_t + 1 +  β max_l_t + 1 Q ∗ (f_t +

1, l_t + 1) | f_t, l_t]                          (1) 

  known as the Bellman equation for the optimal Q-value in 

reinforcement learning. It provides a way to recursively 

compute the optimal Q-value for a given state-action pair 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 5s 

DOI: https://doi.org/10.17762/ijritcc.v11i5s.6671 

Article Received: 01 March 2023 Revised: 22 April 2023 Accepted: 05 May 2023 

___________________________________________________________________________________________________________________ 

 

313 

IJRITCC | May 2023, Available @ http://www.ijritcc.org 

based on the optimal Q-values of the next state and all 

possible actions that can be taken from it. 

Here's a breakdown of the different components of the 

equation: 

In Equation .1, Q*(f_t, l_t) is the optimal Q-value 

for the current state-action pair (f_t, l_t), which represents the 

expected total reward that can be obtained by following the 

optimal policy from this state and action onwards.Rx_t+1 is 

the immediate reward obtained after action l_t in state f_t. 

This is the reward received at the current time step (t+1). 

α(alpha) is the discount factor, which determines the weight 

given to future rewards relative to immediate rewards. It is a 

value between 0 and 1, used to ensure that the agent considers 

future rewards when making decisions but also considers the 

uncertainty and potential delay in receiving those rewards. 

max_l_t+1 Q*(f_t+1, l_t+1) is the maximum Q-value for the 

next state f_t+1 and all possible actions l_t+1 that can be 

taken from it Fig.3 . This represents the expected total reward 

that can be obtained by following the optimal policy from the 

next state and action onwards. The max operator selects the 

highest Q-value, corresponding to the best possible action in 

the next state according to the current policy. ∑[...] is the 

expectation operator, which computes the expected value of 

the expression inside the brackets, given the current state-

action pair (f_t, l_t). To summarizes, the Bellman equation 

for the optimal Q-value expresses the expected total reward 

for a state-action pair in terms of the immediate reward, the 

maximum expected real bonus from the next state and all 

possible actions that can be taken. It is a fundamental 

equation in reinforcement learning, and it is used in many Q-

learning algorithms to update the Q-values and improve the 

agent's policy over time. It then introduces self-adaptive 

systems, which can monitor their behavior and adapt to 

changing conditions to meet performance goals. 

ALGORITHM 1:  CALCULATION OF GRADIENT ACTOR-CRITIC RL 

ALGORITHM  

 Initialize actor network Va θ (s) and critic network 

Dπθ (o, p) with weights and  
 Initialize actors and critics learning rate γn and γm, 

and TD error discount factor β 
 for each training epoch n = 1, 2, ..., N do 

  Receive initial state s1, where s1 = 

environmental. observe() 
  for each episode l = 1, 2, ..., L do 

 Select action according to Su, where 

      Action (at) = actor. choose action(Su) 

 Execute action at, receive reward Rt and next. 

  state st+1, where rt, st+1 = environmental. 

step(at) 
  Calculate TD error in critic, where β 

  Dπθ = r + βV Dπθ (st+1) − V πθ (st) 

  Calculate policy slope in actor using advantage 

function, where 
  J(θ) = Kπθ- logπθ(st, a)δ-πθ 

  update state st = st+1 

   End 

    End 

     

The algorithm uses a neural network representing the actor 

policy and the critic value function. 

The steps in the algorithm are as follows: 

Initialise the actor network, πθ(s), and the critic network, 

Qπθ(s, a), with random weights and biases. Initialise the 

learning rates for the actor and critic, γa and γc, and the TD 

error discount factor, β. For each training epoch, repeat the 

following steps: Receive the initial state, s1, by observing the 

environment. For each episode, repeat the following steps: 

Select an action, at, based on the current state, st, using the 

actor policy. Execute the move, at, in the environment, 

receiving a reward, rt, and the next state, st+1. Next, calculate 

the TD error in the critic, δπθ, using the current, action, 

compensation, and next state. Next, calculate the policy 

gradient in the actor, ∇θJ(θ), using the advantage function, 

which is the TD error multiplied by the rise of the log of the 

current action's probability in the current state. Finally, 

update the current state to the next one, st = st+1. It finally 

ended the training. Overall, this algorithm is designed to train 

an actor-critic RL model that can learn a policy that 

maximizes cumulative rewards over a sequence of states and 

actions in an environment, using neural networks to 

approximate the procedure and the value function. The TD 

error discount factor is used to balance the tradeoff between 

immediate rewards and future rewards. The policy gradient is 

updated using the advantage function to incorporate 

information about how much better or worse the current 

policy is than the expected value. Actor-critic algorithms are 

a type of reinforcement learning method used to optimise an 

approach (the actor) and estimate its value (the critic) 

simultaneously Fig.4. In the context of compute-intensive 

load balancing in cloud computing, the goal is to allocate 

computational resources (e.g., VM instances) to tasks in a 

way that minimises the overall processing time and 

maximises the resource utilisation while meeting certain 
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constraints. Here are some equations that can be used in actor-

critic algorithms for this task: 

Policy updates equation: 

∀𝜑 = 𝜔𝜎∀_𝜑𝑙𝑜𝑔𝜋(𝑙 𝑘

𝑔   

 𝑘, 𝜑                           (2) 

This equation 2. updates the actor's policy weights (𝜑) based 

on the advantage estimate (𝜎) and the log probability of 

selecting the action l_t in state k_t according to the policy π. 

Value function update equation: 

 ∀Z (l_t) = β(δ_t - V(l_t))                          (3)  

This equation 3. updates the critic's value function (Z) for a 

state l_t based on the advantage estimate (δ_t) and a learning 

rate (𝛼). 

 Total reward equation .4:  

𝑅𝑥 = ∑ 𝑟𝑖 𝑟_𝑖𝑎
𝑏                                           (4) 

This equation computes the total discounted reward obtained 

over a sequence of time steps, where r_i is the immediate 

reward obtained at stage γ, and I am the discount factor. 

Probability of acceptance: 

 P𝑟𝑜𝑏𝑥 = (
1

(1+exp(−𝑓))
)                           (5) 

This equation 5. computes the probability of accepting a task 

assignment by a VM instance, where x is a weighted sum of 

features that capture the suitability of the example for the 

task. 

Resource utilization equation:6  

𝑍 = ∑ 𝑎/(𝑚 ∗ 𝑍_𝑚𝑎𝑥) 𝑎
𝑏−1                  (6) 

This equation computes the resource utilization of a cloud 

system, where a_i is the utilization of resource I,  b is the total 

number of resources, and Z_max is the maximum utilization. 

These equations are just a few examples of the many possible 

formulas used in actor-critic algorithms for compute-

intensive load balancing in cloud computing. The specific 

equations and their parameters can vary depending on the task 

details and algorithm. 

IV. PERFORMANCE MATRIX SET UP IN A CLOUD 

ENVIRONMENT 

4.1. Simulation Environment 

Cloud sim, a java-based cloud simulation tool, is 

used to generate and set up a cloud environment in which the 

efficacy of the suggested method may be assessed. The 

suggested deep reinforcement learning technique is 

implemented in Python and used in a Cloud sim-generated 

cloud environment. When creating user tasks, we referred to 

Google's task events dataset. Four Virtual Machines, each 

with 16 GB of RAM and one terabyte of storage, were used 

in our simulations. Execution of a task on a virtual machine 

requires anything from 5 GB to 100 GB of storage space. We 

create nine user tasks using the Google Task Events dataset. 

The initial batch of charges is scheduled randomly, and each 

virtual machine's performance is evaluated so that 

reinforcement learning can learn about its surroundings 

through exploration. The average computing efficiency of 

each virtual machine is computed in terms of Megabytes per 

second based on the simulation results obtained after 

implementing random scheduling. We used four virtual 

machines and divided the rewards we could provide them into 

four categories. It's worth +2 if the most powerful virtual 

machine is used to perform the computation. The action 

receives a plus one when it assigns the assignment to the 

second-best virtual machine. A -2 penalty is applied to the 

operation if the user's task is handed to the least efficient VM. 

A -1 penalty is applied if the action opts for the virtual 

machine (VM) with the third-fastest computing capability. In 

the proposed deep reinforcement learning-based scheduling, 

an effort that gives a VM a task to do is rewarded. As a result, 

incentives are given to virtual machines. The scheduling 

procedure is non-preemptive since rewards and penalties are 

associated with the decision to use a virtual machine rather 

than the task itself. 

 

 

TABLE.II PERFORMANCE METRICS VALUES MEASURED WITH AN AVERAGE LOAD OF JOB SCHEDULED IN EQUAL 

INTERVALS OF TIME 

Algorithm Response Time CPU Utilisation Throughput Task Completion Time (ms) 

GA 350.0 0.061 0.078 0.075 

DSOS 352.1 0.052 0.065 0.062 

MSDE 421.0 0.051 0.059 0.051 

PSO 450.23 0.480 0.490 0.056 

WOW 520.3 0.490 0.491 0.561 

DQL 572.592 0.451 0.4386 0.495 

ACD-RL 510 0.445 0.4275 0.470 
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4.2. Simulation Results 

Table-II compares different algorithms' 

performance for some tasks related to resource allocation in 

a cloud computing environment. The table includes four 

metrics: response time, CPU utilization, throughput, and task 

completion time (in milliseconds). The compared algorithms 

are GA, DSOS, MSDE, PSO, WOA, DQL, and ACD-RL. 

Based on the numbers in the table, it seems that GA and 

DSOS have the lowest response times, with GA having the 

most down response time of 350.0 ms. Regarding CPU 

utilization, WOA has the highest value of 0.490, while PSO 

and DQL have the highest throughput values of 0.490 and 

0.4386, respectively. Task completion time is relatively low 

for most algorithms, with MSDE having the lowest value of 

0.051 ms. ACD-RL performs relatively well compared to the 

other algorithms, with a response time of 510 ms, CPU 

utilization of 0.445, a throughput of 0.4275, and a task 

completion time of 0.470 ms. Table.2 

V. CONCLUSION AND FUTURE SCOPE 

The proposed scheme aims to minimize the total 

execution time of tasks by effectively allocating resources 

and balancing workloads across different servers. Soon, we'll 

be adding a priority order into the mix by expanding the 

proposed model. It's necessary to rethink the state space, 

action space, and reward function in light of the tasks' relative 

importance. Algorithms can be trained to learn scheduling 

policies that consider the priority order of the jobs, such as by 

observing the effects of planning high-priority careers on the 

rewards they receive. The performance of the proposed ACL-

RL agent is much better than that of the other six algorithms. 

Then, again for the four components we looked at, the overall 

system cost of the ACL-RL agent is nearer to both the D-

Queuing algorithm and the PSO algorithm. This happens 

because the task for each data is spread out evenly. The 

performance of DSOS and MSDE could be better because 

their search spaces get very big as the number of data 

increases, which uses a lot of CPU and makes other 

algorithms' performance worse in a big way. Increasing the 

quantised levels makes the performance slightly better than 

throughput and task completion, but not as much as the 

proposed ACD-RL. The reason is that the quantization 

process causes noise, making it hard for the brain to process 

actions and rewards. 

ACD-Rl finds the best course of action. Compared to earlier 

studies, the proposed model gets 23% better results. 

Regarding indexing LB values, DQL finishes 20% more than 

another algorithm. With throughput having to go down by no 

more than 23% compared to other algorithms and the Task 

Completion Time of ACD-RI being concise on average, All 

of the different algorithm values used in this experiment 

showed that the response time could go up by no more than 

10%. Lastly, all other algorithms can use up to 38% of the 

CPU, but ACD-RI learning brings that number down to 12%. 

For our future work, we will think about setting up an edge 

cloud computing network system so people can work together 

to do computing tasks. We will also look at how to make the 

training process less complicated regarding computation and 

communication. We will try to use federated learning-based 

RL, which only needs live data inflow to the data center to 

enter to share model parameters instead of local training data. 
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Figure.1 Dynamic Allocation for Job Scheduling with a Scheduler 
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Figure.2 Workflow diagram of Actor-Critic based Compute load balancing allocation 

 

 
Figure 3. Action based Reward policy for Actor and Critic state environment 

 
Figure 4. Action Scheduling task for Action network-based branch environment 
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