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Abstract— Trend of using the software in daily life is increasing day by day. Software system development is growing more difficult as these 

technologies are integrated into daily life. Therefore, creating highly effective software is a significant difficulty. The quality of any software 

system continues to be the most important element among all the required characteristics. Nearly one-third of the total cost of software 

development goes toward testing. Therefore, it is always advantageous to find a software bug early in the software development process 

because if it is not found early, it will drive up the cost of the software development. This type of issue is intended to be resolved via software 

fault prediction. There is always a need for a better and enhanced prediction model in order to forecast the fault before the real testing and so 

reduce the flaws in the time and expense of software projects. The various machine learning techniques for classifying software bugs are 

discussed in this paper. 
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I. INTRODUCTION  

An error state that does not adhere to the software specifications 

or user expectations is referred to as a software defect in a 

software system. Unexpected and frequently inaccurate results 

produced by the programme are the result of a logic or coding 

error. During the programming the programmer or the software 

designer may make mistake, most of the errors are due to the 

such type of mistakes. The following are examples of flaws in 

software systems in reality: Arithmetic errors that arise from 

mistakes in certain arithmetic expressions; syntax errors 

brought on by the way the code was written. Logical errors are 

errors in the code's implementation, Performance flaws result in 

undesirable outcomes, Interaction between users and the 

software results in interface defects [1]. 

The availability and dependability of software systems are 

gravely threatened by software defects. Finding and fixing the 

system's flaws is very expensive once the flawed system has 

been put into place. By gaining crucial knowledge about the 

kind and location of defects, developers and programmers can 

profit from the prediction of unknown defects and increase the 

necessary level of confidence in the system. Prediction of 

software system flaws is currently one of the most researched 

topics by researchers [2]. 

Defect predictions, which assist programmers in locating bugs 

in malfunctioning code regions, allow programmers to prioritise 

their testing techniques according to the severity of the 

problematic code regions. Defect Prediction enables software 

testers and developers to evaluate the product's quality, 

determine whether or not quality standards are met, and 

determine whether the finished product satisfies users' needs and 

expectations. Additionally, it makes it easier to distribute 

resources for the system's formal verification as it is being 

developed [3]. 

Software has evolved into a crucial part of many systems as a 

result of the use of computer technology. The creation of these 

systems is becoming more difficult as software systems are 

integrated into daily life. Therefore, creating highly effective 

software is very difficult. The quality is still the most important 

feature of any software system out of all the desired attributes. 

By using out-dated methods, it is expensive to maintain product 

quality This could require a significant investment of time, 

money, and effort [4]. 

Prior to system testing, identifying fault-prone modules can help 

the software manager allocate resources to the right modules in 

order to cut costs and produce software that is almost error-free. 

The ultimate objective of these fault identification systems' 

design is to identify fault-prone modules as accurately as 

possible. In these approaches for prediction, software fault 

prediction is by far the most frequently researched topic, and 

numerous research centres have started brand-new initiatives in 
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this area. Models that are defective are predicted using software 

metrics and fault data [5]. 

The characteristics for delivering software quality through the 

application of metrics are well-established in the research 

community. The process has made extensive use of statistical 

methods. But over time, the trend has shifted away from 

conventional statistical methods and toward machine learning 

techniques. For fault prediction, various ML techniques have 

been employed. Software faults can occur at any stage of the 

software development process and are defined as programming 

errors that prevent the software from performing its essential 

function. They might originate from programming, design, or 

the outside environment. Some software flaws can result in 

anything from a straightforward calculation error to a complete 

system failure, depending on the type of fault. [6] 

This type of issue is intended to be resolved by software fault 

prediction. There is always a need for better and better forecasts 

in order to pinpoint the defect before actual testing and thereby 

minimise delays and costs pertaining to software projects. 

Prediction of the fault can be done with respect to the severity, 

priority or for the developer classification. Not only on the bases 

of these categories only, classification may also be done 

depending on number of other ways also. Software modules are 

typically divided into classes that are defective or not. If modules 

contain a defect then it is represented as the faulty module, 

however the module having no defect is represented as the non-

faulty module. Selecting a superior learning calculation seems to 

be just as important for developing a product fault forecast 

demonstration as selecting a programming measurement or other 

parameter. 

Machine learning uses historical data to predict the likelihood of 

an event without explicit programming. The final result is 

predicted by machine learning, which focuses on the output 

variable and attempts to find patterns in the data. Machine 

learning algorithms come in two different varieties. Algorithms 

for supervised and unsupervised machine learning. In supervised 

algorithms, the output variable will be predetermined, and we 

will attempt to compare patterns between the dependent and 

independent variables. In unsupervised machine learning 

algorithms, the final outcome variable can be predicted by 

passing the data. The idea of a dependent variable does not exist 

in unsupervised machine learning algorithms. The algorithms 

generate the final outputs using all of the data [44]. 

The objectives of this paper is mentioned below: 

• This study discusses the various fault prediction 

techniques in machine learning. 

• This paper mention various datasets which is used in 

order to analyze the performance for the software fault 

prediction.  

• This paper give thorough investigation of fault 

prediction using the integral approach (machine 

learning) and error probability methodology in order to 

foresee the error that occurred during the coding phases. 

The remainder of the paper is organized as follows: Section 

2 presents an overview of the Concept of Bug life Cycle; Section 

3 describes in detail of Literature Review; Section 4 explained 

different Methods and Techniques; and finally Conclusions and 

future scope are described in Section 5. 

 

II.  CONCEPT OF BUG LIFE CYCLE 
The importance of anticipating bugs earlier in the SDLC is 

demonstrated by the necessity of anticipating their occurrence 

and understanding the defect life cycle. Avoiding the time, 

expense, and effort required for defect detection and repair is 

beneficial. The quantity of bugs discovered during the 

development cycle is one of the major problems the modern 

software industry is dealing with. This causes the product's final 

delivery to be delayed and raises the overall cost of operation. 

The average operation cost increase across projects is predicted 

to be 10% as a result of bugs that occur during software 

production and code development. We attempt to address the 

situation given the urgency of the hour. The model can be used 

as input to predict when a bug will occur before a tester notices 

it. As a result, the developer can review the code in the past and 

quickly address any problems. The model works well with the 

most well-known frameworks for software development, 

including waterfall, agile, V-shape, spiral, and others. We 

created this final set of machine learning models by keeping the 

various frameworks for software development modelling. This 

serves as a general representation for all defect prediction 

algorithms. One of the crucial elements is being aware of the 

defect management life cycle. The figure 1 shows the different 

phases of the bug life cycle [45]. 

• New: We refer to a defect as being new if it is reported 

by testers or anyone else for the first time during the 

“Software Development Life Cycle(SDLC)” 

• Assigned: According to the seniority and priority of 

the bugs, each newly reported bug is assigned to one 

of the team members for immediate resolution. Then, 

the corresponding developer will carry out the 

necessary work. 

• Open: If a bug is discovered after a developer's initial 

testing, it will be moved to the open state. Typically, a 

team of developers or product researchers can handle 

this. Fixed: Based on severity and priority, all bugs that 

are in the open state must be fixed. Within the software 

development life cycle, the stakeholders collectively 

determine the severity and priority of the bugs. 

• Fixed: Based on severity and priority, all bugs that are 

in the open state must be fixed. Within the software 

development life cycle, the stakeholders collectively 

determine the severity and priority of the bugs. 
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• Retest: If a bug is not tested or the description is 

incorrect, additional testing may be necessary to 

ensure that the reported bug is valid in all 

circumstances. 

• Closed: If the bug is correctly fixed, this will be 

regarded as a bug that has been fixed. 

 
Figure 1: Different Phases of bug life cycle 

 

• Deferred: Some of the bugs will be pushed to the 

upcoming release due to priorities. These insects have 

been identified as various 

• Duplicated: The term "repeated bug" refers to a bug 

that has occurred more than once. 

• Rejected: The tester raised the rejected bugs, which are 

not true bugs. These are primarily the result of a 

mismatch in skill sets and requirements. 

As shown in the figure 2, a machine learning model may be used 

to pinpoint the software fault. The steps below are used to 

identify the software fault using the machine learning model.: 

1. Data Collection: first of all, data need to be collected 

from various heterogonous resources of bug/fault 

repositories. 

2. Pre-processing: Prior to applying the model, data need 

to be framed in order to deal with the missing values, 

duplicate values and noise etc.  

3. Feature Extraction: After the prepressing, features are 

extracted from the data using the suitable technique 

like: ‘Principal component analysis (PCA)’, ‘Linear 

discriminant analysis (LDA)’ or ‘Nonlinear 

dimensionality reduction via kernel principal 

component analysis (KPCA)’ etc. 

4. Model Training: Once the features extracted or 

decided, now the data is ready to build the model and to 

train the mode. So the model need to prepared using the 

appropriated algorithm like decision tree, SVM, KNN 

or ensemble approach. Almost 70% of the data is used 

for training of the model 

5. Model Optimization: When it comes to algorithms, 

optimization is one of the most important factors. 

Learning optimization manages the cost function by 

greatly reducing the cost with the aid of the machine. 

The goal of many straightforward algorithms is to 

minimise the cost function by determining the 

parameters. Each parameter affecting the cost function 

is computed using the gradient descent approach [7-8]. 

6. Model Evaluation: A model's performance is assessed 

using a variety of performance measures, including 

recall, precision, accuracy, f-measure, and expectation 

time. If the performance of the model is not as per the 

expectation, then the model may be reconstructed or 

new feature may be selected or again optimized it 

depends on the requirement or situation. In other words, 

it can be said that the step 2-5, any step may be repeated 

[9-10]. 

 

 
Figure 2: Fault Detection Model 

III.  LITERATURE REVIEW 

Breu S et al., 2010 [11] studied how bug tracking systems, 

which are tools used for managing software projects, can be 

improved. Almost 600 defect reports from two projects, Mozilla 

and Eclipse, were viewed by the authors to examine the 

questions contained in the bug reports. They categorized the 

questions and measured how quickly and how often they were 

answered. The results showed that users play an important role 

in helping to solve the bugs they report, so they suggested four 

ways in which bug tracking systems can be improved. The main 

approaches discussed in this research work are qualitative and 

quantitative analysis. Qualitative analysis involves examining 

the data qualitatively, or in other words, looking at the data and 

making conclusions based on the patterns found. Quantitative 

analysis involves measuring the data in order to make more 

concrete and detailed conclusions. It was concluding that active 
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user participation is essential to being able to make progress on 

bugs reported through bug tracking systems.  

Bhattacharya P and Neamtiu I, 2011[12] explained that 

predicting bug-fix time is helpful. The authors use two 

approaches in this paper— ‘Regression Testing’ and ‘Machine 

Learning’—to assess the predictive power of existing models 

on 512,474 bug reports from different projects: Chrome, 

Eclipse and Mozilla. The testing results revealed that the 

explanatory accuracy of the existing models ranges from 30% 

to 49%, highlighting the importance of along with more 

predictor factors (attributes) when developing a prediction 

model. The authors also discovered that, unlike in commercial 

software, there is no connection between the likelihood of a bug 

being fixed, a bug-reputation, openers and as well as the time it 

takes to fix a bug in the projects that were examined. In this 

paper, a machine learning classification model is used, which is 

trained using the various input attribute values with respect to 

the expected output classes. After training, the model is 

presented with a set of input attributes and it predicts the most 

likely output class. It was concluded that existing models used 

for predicting bug-fix time have limited predictive power and 

need to be improved. The authors also discovered that, contrary 

to recent studies on commercial software, there is no connection 

between the likelihood of a bug being fixed, the reputation of 

the person who reported the bug, and the length of time it takes 

to fix a bug in the projects they looked at. 

Zaineb, Ghazia, and IrfanAnjum Manarvi, 2011[13] 

quantifies the actual percentage of rejected bugs, and provides 

a list of causes that can lead to bug rejection. It also delves into 

the relation between severity levels and bug rejections, as well 

as discussing the effect of invalid bug reports on the efficiency 

of software testing. Eventually, the objective of this study is to 

take attention to the increasing rate of rejected bugs and how it 

can negatively impact software projects in terms of time and 

cost. Data collected from the bug tracking system and develops 

a cause-effect diagram to pinpoint the sources of invalid bug 

reports. It also looks into the defect rejection rate, reported bugs, 

time, effort, cost, and number of test cases executed in order to 

analyse the influence of rejected bugs. Finally, the paper 

provides recommendations on how to decrease the rejection rate 

in order to reduce the negative effects on software projects. 

Lastly, the authors provide correlation analysis between the 

number of reported bugs and rejected bugs, as well as 

recommendations on how to decrease the rejection rate. 

An approach based on classification was put forth by Kanwal 

J. and Maqbool O. in 2012[14] to create a bug report 

recommender. The paper compares two classes of classifiers 

(‘Naive Bayes’ and ‘Support Vector Machine’) in order to 

assess the performance of the recommender. It also investigates 

the effects of various feature combinations on the accuracy of 

the results. The paper also introduces two new metrics to 

analyse the bug priority recommender's performance: ‘Nearest 

False Negatives (NFN)’ and ‘Nearest False Positives (NFP)’. In 

short, this paper looks at how bug report management can be 

improved through the use of a classification-based 

recommender. When text features are used, it has been found 

that the ‘Support Vector Machine’ classifier outperforms the 

‘Nave Bayes’ algorithm in terms of accuracy. For categorical 

features, the Naïve Bayes classifier outperforms SVM. It was 

observed that after combining the text and categorical features 

highest accuracy is witnessed. The paper also presents two new 

metrics, ‘Nearest False Negatives (NFN)’ and ‘Nearest False 

Positives (NFP)’, that add to our understanding of the bug 

priority recommender's output. 

SJ Dommati et al., 2013 [15] explained the need for a 

structured mining algorithm that can be used to classify bugs. 

This algorithm would involve extracting features from bug 

reports, reducing noise in the data, and using probabilistic Naïve 

Bayes approach to classify network bugs. The performance of 

different algorithms using accuracy and recall parameters when 

given unseen bugs as input was compared. In other words, the 

paper looks at how a software program can identify different 

bugs and classify them correctly. In order to determine the class 

to which the bug should be assigned, a structured mining 

algorithm that uses the crash log as the input is presented by the 

author. This algorithm uses feature extraction, noise reduction, 

and classification of network bugs using the probabilistic Naïve 

Bayes approach.  

MDM Suffian and S Ibrahim, 2014[16] creates a prediction 

model for defects in system testing. This model's primary 

objectives are to assist the testing team in managing and 

controlling the test execution process as well as to act as an early 

indicator of the quality of the software entering system testing. 

Metrics from earlier system testing phases are found and 

analysed to create this model. Regression analysis is then used 

to create mathematical equations using this data. The desired 

prediction model has p-value less than 0.05 and R-squared 

(adjusted) values greater than 90%. Finally, this model is 

proved with new projects to make sure it is suitable for actual 

implementation. The author came to the conclusion that it is 

feasible to develop a prediction model for system testing flaws 

that can act as a preliminary gauge of the calibre of the software 

being submitted for system testing. This model is based on 

metrics gathered from earlier system testing phases, and its 

suitability for actual implementation is confirmed with new 

projects. 

Zhang, Yong, et al, 2014 [17] described how to use multiple 

individual classifiers (e.g., algorithms) together in order to 

achieve better performance than using just one single classifier 

alone. The idea behind this approach, called ensemble learning, 

is that different base classifiers can contribute differently 

towards the final classification result and so it makes sense to 
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assign greater weights or importance values for those with 

higher accuracy rates. To do this efficiently, the authors propose 

an optimization technique known as differential evolution 

which helps determine these weightings automatically based on 

their effectiveness during testing of various scenarios. Finally, 

once all the weights have been determined they are combined 

according to what's referred to as weighted voting combination 

rule - essentially meaning each vote counts more if it’s from a 

model/classifier deemed more accurate by differential evolution 

earlier on in the process.  

Prasad, M. C., Lilly Florence, and Arti Arya, et al., 2015 [18] 

proposed classification techniques for software defect 

prediction using software metrics. These techniques involve the 

use of data mining to identify defects based on existing software 

metrics, which can help improve overall quality and 

performance. The specific methods mentioned include decision 

tree algorithms, ‘Support Vector Machines (SVMs)’, ‘Artificial 

Neural Networks (ANNs)’ and logistic regression models. Each 

technique has advantages and disadvantages depending on the 

type of problem being solved or analysed. It was concluded that 

software defect prediction models can be used to recognise 

potential defects in a product and help developers improve the 

quality of their code. 

Cross-project defect prediction was the subject of an 

exploratory study by Satin, Ricardo FP et al. in 2015 [19]. The 

study examines the effects of applying various classification 

algorithms and a performance indicator when creating 

predictive models. The study applies various classification, 

feature selection, and clustering algorithms to 1270 projects in 

order to identify and group alike projects. The study then 

evaluates the performance of the different algorithms and 

measures the performance achieved through the application of 

the algorithms. The Naive Bayes algorithm performed the best, 

the study's results show, with 31.58% accurate predictions in 19 

models that used it. 

Jin, Kwanghue, et al., 2016 [20] proposed a method for 

improving bug severity prediction. This entails incorporating 

text and meta-fields from bug reports into our classifier model, 

as well as including 'normal' severity bugs, which account for a 

sizable portion of the total number of reported bugs. These two 

approaches have not been taken into consideration by other 

studies before this one, so it provides an innovative way for 

predicting bug severity more accurately than ever before. 

Li, Jian, et al., 2017[21] proposed a new method for improving 

software reliability by predicting potential bugs in the code. The 

author proposed the framework using the Convolution Neural 

Network to predict the bug/defect. The proposed approach 

generates features from programmes' Abstract Syntax Trees 

using deep learning techniques (ASTs). The ASTs are first 

transformed into token vectors, which are then encoded as 

numerical vectors by using word embedding and mapping 

methods. These numerical vector representations of the 

program code can be fed into a convolutional neural network 

model that automatically learns semantic and structural 

information about the program's functionality. Finally, both the 

learned feature set generated by DP-CNN along with traditional 

hand crafted features will be used together for more effective 

software defect prediction results compared to existing 

methods. Studies reveal that this strategy can up to 12% more 

accurately predict defects than current methods. 

Xuan, Jifeng, et al., 2017 [22] offered a new approach to bug 

triage, which is the process of sorting and categorizing bugs in 

software development. This proposed method combines both 

supervised (using labelled data) and unsupervised (using 

unlabelled data) techniques such as naive Bayes classifier and 

expectation maximization to take advantage of all available 

information from both types of reports. Additionally, the 

authors use weighted recommendation lists that assign weights 

according to multiple developers' opinions when training the 

model for better accuracy results on Eclipse's bug report dataset. 

In summary, proposed semi-supervised text classification 

approach improves upon existing methods by providing more 

accurate predictions with fewer labels required for training 

purposes. 

Gomes, Heitor Murilo, et al., 2017[23] proposed a taxonomy 

(a system or structure) for understanding different types of 

ensemble learning algorithms used with data streams, such as 

combination techniques, diversity measures and dynamic 

updates like adding/removing classifiers from the model when 

needed. It also provides an overview on open source tools 

available related to these topics as well as discussing current 

challenges faced by researchers working with big datasets that 

evolve over time (concept evolution), feature drifts etc., 

Singh, V. B et al., 2017[24] used machine learning algorithms 

for automatic bug prediction. The authors used text mining 

techniques to extract summary terms from historical data which 

were then used as training candidates in order to develop models 

for making predictions on different levels of severity (e.g., low, 

medium or high). Author also employed two approaches called 

Vote and Bagging ensemble methods in order to deal with 

imbalanced datasets where some classes have more examples 

than others. Finally, they tested their approach by comparing 

results between Eclipse projects and Mozilla products using k-

NN classifiers (which performed better) as well as SVM 

classifiers; showing that cross project predictions are possible 

even when dealing with different domains/products. In terms of 

various performance measures, it was found that k-NN 

classifiers outperformed SVM. Naive Bayes-measure was 

below 34.25%. All severity levels, including those with fewer 

bug reports, saw an improvement in accuracy and f-measure 

after developing training candidates by combining multiple 

datasets. The overall performance of the f-measure was 
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improved by 5% and 10% respectively by the two ensemble 

approaches (vote and bagging), when dealing with imbalanced 

datasets. Finally, cross project predictions between Eclipse 

projects and Mozilla products were successful using both k-NN 

as well as SVM classifiers; showing that reliable models can be 

built even across domains/products 

Alia, SayedaShamma, et al., 2018[25] offered a newmethod 

called Class-Membership Information of a Term (CMT) which 

can be used to classify and predict the severity of software bugs. 

This approach does not require any prior knowledge or 

parameter tuning, making it computationally simple compared 

to current approaches. Studies done on three benchmark 

datasets reveal that CMT outperforms other cutting-edge 

techniques by up to 5% and 12.5%, respectively, in both within-

project classification and cross-project classification. 

By utilising text mining, Katerina Goseva-Popstojanova and 

Jacob Tyo, 2018 [26], were able to categorise software bug 

reports into categories related to security and those that weren't. 

It employs three different types of feature vectors in both 

supervised (where labels are provided for the data) and 

unsupervised learning approaches. For supervised learning, 

multiple classifiers were tested on different sized training sets 

while a novel unsupervised anomaly detection method was 

proposed as well. The evaluation was done based on NASA 

datasets which showed that better performance can be achieved 

when more security information is available in the dataset used 

for classification tasks. 

The process of identifying named entities that are specific to 

software bugs in a software bug repository was described by 

Zhou, Cheng, et al., 2018 [27]. A software bug repository is a 

database that stores information about software bugs, such as 

the type of bug, the severity of the bug, and the date it was 

reported. Named entities are words or phrases that refer to 

specific people, places, or things. Knowing software bug-

specific named entities in a “software bug repository” involves 

identifying these words or phrases in the bug reports and 

categorizing them according to their meaning. This process can 

help software developers better understand the bug reports and 

make it easier to fix the bugs. 

Kumar, Raj, et al., 2019[28] discussed the issue of "software 

bugs", which are errors that occur during design or 

development, and cost a lot in terms of time and money. To 

detect these bugs more efficiently, data mining techniques may 

be applied on large repositories called bug repositories - this 

will help extract hidden information from them. Finally, 

numerous types of classification methods using data mining 

have been studied in order to compare their accuracy when 

detecting such issues with precision recall metrics like F-

measures etc. 

Using an algorithm, Otoom, Ahmed Fawzi et al., 2019 [29] 

divide incoming bug reports into corrective (defect fixing) and 

perfective categories (major maintenance). The classification 

model used keywords as features, meaning it looked for certain 

words in each report to determine its category. After testing 

their feature set on three different open source projects, they 

achieved high accuracy with SVM classification algorithms 

reporting an average accuracy rate of 93.1%. In other words, 

this system could accurately identify whether a given bug report 

should be classified as either corrective or perfective almost all 

the time! 

Aindrila Sarkar et al., 2019[30] conducted research at 

Ericsson to reduce development costs by automating the 

process of bug triaging. Bug triaging involves correctly 

assigning bugs (errors or issues) to the right developer or team 

for resolution. The researchers applied existing approaches 

from literature on over 10,000 bug reports across 9 large 

products and found that using simple textual and categorical 

attributes in logistic regression classifier gave them highest 

precision (78%) and recall (79%). They also tried adding crash 

dumps/alarms information but it did not improve accuracy 

significantly so they developed an approach where only high 

confidence predictions were made which improved accuracy up 

to 90%, however this could be done for 62% of all reported 

bugs. 

Cai, Xingjuan, et al. in 2020[31] presented an approach using 

SVM that selects the parameters for the SVM and deals with 

datasets where there is class imbalance. To accomplish this, 

they propose a hybrid multi-objective cuckoo search under-

sampled software defect prediction model based on SVM 

(HMOCS-US-SVM) that synchronously solves both of these 

issues. The false positive rate (pf), probability of detection (pd), 

and G mean are three indicators that this method uses to gauge 

how well it performs when put to the test against eight distinct 

datasets from the Promise database. Results demonstrate that 

their approach works improved than other existing models for 

solving the problem of software defect prediction. 

Kumar, Raj, and Sanjay Singla, 2020[32] exposed data 

mining algorithms can be used to classify software bugs 

according to their severity. It contrasts the accuracy, precision, 

recall, and execution time of four different algorithms (SVM, 

KNN, Decision Tree, and Naive Bayes). SVM has highest 

accuracy, according to the results, while decision trees and 

Naive Bayes perform well in terms of other factors like 

execution time. 

Using the information from the bug report, Kim, Sunghun, et 

al., 2021[33] described how a fault detection model can be 

produced. However, this data can contain a lot of noise because 

the current practices for collecting defects rely on voluntary bug 

fix keywords or links to bug reports in change logs. Authors 

proposed approaches to deal with that noise and measure its 

impact on the accuracy of two well-known algorithms used for 

predicting defects. It also introduces an algorithm which detects 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 5s 

DOI: https://doi.org/10.17762/ijritcc.v11i5s.6642 

Article Received: 24 February 2023 Revised: 06 April 2023 Accepted: 23 April 2023 

___________________________________________________________________________________________________________________ 

 

184 

IJRITCC | May 2023, Available @ http://www.ijritcc.org 

noisy instances and eliminates them so as to improve overall 

performance when making predictions about potential bugs in 

code. 

Neighbourhood-based under-sampling (N-US), which Goyal, 

Somya, and 2021 [34] proposed, can be used to address class 

imbalance in software defect prediction (SDP). Class Imbalance 

means that the dataset has more data points belonging to one 

particular class than another. This algorithm under samples the 

dataset, meaning it reduces its size by removing some data 

points from majority classes while keeping all minority classes 

intact so as not to lose any information. Using five benchmark 

datasets from the NASA repository—KC1, KC2, JM1 and 

CM1—the proposed N-US approach was associated with three 

standards under sampling techniques and found to be superior 

in terms of accuracy, AUC score, and ROC curve position. 

Koksal, Omer, and Bedir Tekinerdogan, 2022[36] proposed 

an automated bug classification for large-scale software 

projects. Defect reports are pieces of information sent by users 

to the developers when they encounter an issue with their 

software, and classifying them correctly helps identify what 

caused the problem so it can be fixed quickly. In this study, text 

mining, machine learning (ML) and natural language 

processing (NLP) approaches were used to classify bugs in both 

English and Turkish languages from commercial software 

systems - something which hasn't been done before. The results 

showed that automatic bug classification was more accurate 

than manual methods while also reducing time spent on 

manually categorizing each report. 

IV. METHODS AND TECHNIQUES: 

Bug dataset(s) may be taken from the various bug repositories 

like Mozilla, Firefox, Eclipse, Jira etc. for the study [37]. Fault 

detection/analysis can be done using the statistical as well as the 

machine learning algorithms as shown in the figure 3. 

Statistical Methods for Fault Analysis: Static analysis is a 

type of automated testing that looks for errors or defects in the 

code before it's released to customers. It can help identify issues 

like incorrect data types, missing checks on user input, and other 

programming mistakes which could lead to security 

vulnerabilities if left unchecked. Software reviews involve 

manual inspection by developers or testers who look at the 

source code line-by-line looking for potential problems with 

logic flow, coding style violations, etc., as well as any bugs they 

may find while doing so. Both methods have their advantages; 

however, when used together they provide an effective way of 

detecting faults prior to release of a product ensuring its quality 

meets customer expectations [38]. 

Machine Learning Algorithms for Fault Detection: As 

shown in Figure 3, a dataset (or datasets) must be pre-processed 

in order to remove anomalies before applying any machine 

learning algorithm for fault detection [28]. Proceeding further 

features can be selected using the appropriate feature selection 

algorithm like Principal Component Analysis (PCA). The 

method used for the feature need to be selected on the basis of 

the dataset and the basis of the machine learning algorithm that 

we are going to use for the fault detection. The module will be 

classified as defective or not defective using a supervised 

machine learning approach. There are many supervised 

machine learning algorithms that can be used, including 

Decision Tree, Support Vector Machine (SVM), Naive Bayes, 

and K-Nearest Neighbour (KNN). Sometimes to achieve the 

high efficiency ensemble approaches may be used.   

 

 
Figure 3: Methodology for Fault Detection. 

 

• Naïve Bayes: Naive Bayes classifier is one of the most 

commonly used machine learning algorithm which 

uses Bayes theorem and is specifically designed to 

classify continuous variables. A naive Bayes classifier 

(sometimes called a hidden Markov model) is a 

statistical model that assumes that the probabilities of 

the parameters or features are independent of the data. 

The model uses these assumptions of independence to 

find a joint probability distribution over all possible 

parameter values. [39]. It is a probabilistic classifier 

and posterior probability is calculated using the Bayes 

theorem. The impact of a predictor's value (y) on a 

particular class (m) is thought to be independent of the 

value of other predictors [46]. Following equating 

used in Naïve Bayes algorithm. 

𝑃(𝑚|𝑦) =
𝑃(𝑦|𝑚)𝑝(𝑚)

𝑃(𝑦)
                  (1) 
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P(m) denotes the class's prior probability, P(m|y) the 

class's posterior probability for a specific predictor 

(attribute), P(y|m) denotes the likelihood, or 

probability, of the predictor given a class, and p 

denotes the predictor's prior probability (y). 

• Decision Tree: Decision tree is a powerful tool to 

analyse the data and generate values associated with 

the variables. It must be said that decision tree is not a 

linear algorithm that makes calculations by series of 

simple steps (if, then, else case), but rather an 

interactive system of decisions, based on the results of 

which a new decision can be made for each node in the 

tree. This approach allows us to analyse complex 

chains of events represented by numerous interrelated 

variables and their possible combinations. It is a tree-

structured classifier, where internal nodes represent 

the features of a dataset, branches represent the 

decision rules and each leaf node represents the 

outcome. In most of the cases DT is used for the 

classification, however it can also be used for the 

regression also. DT algorithms include the Iterative 

Dichotomies 3 (ID3) and ID3 Successor (C4.5) 

algorithms, the Classification and Regression Tree 

(CART) algorithm, the Chi-squared Automatic 

Interaction Detector (CHAID) algorithm, the 

Multivariate Adaptive Regression Splines (MARS) 

algorithm, the Generalized, Unbiased Interaction 

Detection and Estimation (GUIDE) algorithm, and the 

Conditional Inference Trees algorithm (CTREE) [42]. 

• SVM: Support vector machines (SVMs), models 

based on supervised learning and coupled with 

learning algorithms, offer a useful method for 

analysing data based on classification and regression 

analysis. One of the benefits of SVM is that it performs 

better than other model techniques with fewer 

characteristics, while another is that it has a more 

robust model. A third benefit is that SVM takes less 

time to compute than other methods like neural 

networks [40-41]. To differentiate the data points, the 

hyperplane in used in the SVM algorithm. Equation 

x+b=0                                     (2) 

represents the hyperplane 

where b is an offset and w is a vector's hyperplane 

normal.  

We can say that a point is positive if the value of w. 

x+b>0; otherwise, it is negative. So that the margin has 

a maximum distance, we now need (w,b). 

Support vector machines' benefits include [47]: 

➢ Efficient in environments with high-dimensions. 

➢ This method is still effective when the number of 

dimensions exceeds the number of samples. 

➢ Because the decision function only uses a portion 

of the training points (also referred to as support 

vectors), it is also memory-efficient. 

➢ The decision function is flexible in that different 

Kernel functions can be specified for it. Users can 

specify their own kernels in addition to the 

widely used ones that are available. 

The following are some drawbacks of support vector 

machines [47]: 

➢ If the number of features is significantly greater 

than the number of samples, it is imperative to 

avoid over-fitting when choosing kernel 

functions and regularisation terms. 

➢ Instead of directly providing probability 

estimates, SVMs use an expensive five-fold 

cross-validation procedure (see Scores and 

Probabilities, below). 

• KNN: K nearest neighbour (KNN) is a method of 

machine learning to classify new data points based on 

their similarity to existing ones. KNN uses the distance 

(similarity) of two data points to each other and 

calculates a small number of neighbours that are more 

similar than the original data point, using them to 

calculate the classification prediction. K represents the 

number of the neighbouring data points. The accuracy 

of the KNN algorithm depends on the selection of the 

value of the ‘K’ and distance metrics [41]. Following 

equation represents, how distance can be calculated 

between two data points e.g. x and y.  

          (3)                               

 

• Manhattan Distance (when value of p is1) 

• The Euclidean Distance is applied when p = 2 

• Chebychev Distance (when value of p = ∞) 

Ensemble Techniques: An advanced meta machine learning 

algorithm that has gained favour recently is ensemble 

classification approaches. To improve prediction performance, 

these strategies aggregate predictions from various learning 

algorithms. In general, the inherent principles and sensitivity to 

training data of various machine learning algorithms varies. As 

a result, based on a set of data, various categorization 

approaches produce various predictions. These many outcomes 

are used by ensemble machine learning approaches to produce 

improved prediction outcomes. These methods aim to improve 

prediction accuracy from any one of the individual learning 

algorithms by reducing the bias and variance of prediction 
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models. Bagging, Boosting, Stacking and Voting are the some 

of the ensemble machine learning techniques [43]. 

V. CONCLUSION AND FUTURE SCOPE: 

By foreseeing defects before the testing process, software fault 

prediction reduces the need for fault discovery activities. 

Additionally, it assists in expediting software quality assurance 

efforts to be used in the latter stages of software development 

and better utilising testing resources. We have found that 

measuring software fault proneness is exceedingly complicated, 

confusing, and multifaceted. At any stage of the software 

development process, a flaw can be found. During the testing 

phase, some problems go unnoticed and are sent. In this a 

complete methodology used for machine learning algorithms for 

the fault prediction is explained. Various datasets may be taken 

in order to analyse the performance for the software fault 

prediction. Python, R, Weka, Orange, Matlab etc. simulation 

tools may be used for the implementation. After doing the 

software bug classification using various machine learning 

algorithms, a comparative analysis will be done on the basis of 

the various performance measures like accuracy, recall, 

sensitivity, F-measure etc. in order to find the best prediction 

algorithmin. 
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