
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5s

DOI: https://doi.org/10.17762/ijritcc.v11i5s.6642

Article Received: 24 February 2023 Revised: 06 April 2023 Accepted: 23 April 2023

178

IJRITCC | May 2023, Available @ http://www.ijritcc.org

Analyze the Performance of Software by Machine

Learning Methods for Fault Prediction Techniques

Nikita Gupta1, Ripu Ranjan Sinha2, Ankur Goyal3, Neelam Sunda4 and Divya Sharma5
1Department of Computer Science, RTU, Kota,

Rajasthan, India, nikitagupta.ssm@gmail.com
2Department of Computer Science, RTU, Kota,

Rajasthan, India, drsinhacs@gmail.com
3Department of Computer Science, Symbiosis Institute of Technology, Symbiosis International Deemed University,

Pune, Maharashtra, India, ankur_gg5781@yahoo.co.in
4Department of Computer Science, RTU, Kota, Rajasthan,

India, research.neelam@gmail.com
5Assistant Professor, Kanoria PG Mahila Mahavidyalaya, Jaipur, Rajasthan, India

Abstract— Trend of using the software in daily life is increasing day by day. Software system development is growing more difficult as these

technologies are integrated into daily life. Therefore, creating highly effective software is a significant difficulty. The quality of any software

system continues to be the most important element among all the required characteristics. Nearly one-third of the total cost of software

development goes toward testing. Therefore, it is always advantageous to find a software bug early in the software development process

because if it is not found early, it will drive up the cost of the software development. This type of issue is intended to be resolved via software

fault prediction. There is always a need for a better and enhanced prediction model in order to forecast the fault before the real testing and so

reduce the flaws in the time and expense of software projects. The various machine learning techniques for classifying software bugs are

discussed in this paper.

Keywords- Fault, Machine Learning, Decision Tree, SVM, KNN, Ensemble Techniques,Software,Fault detection model.

I. INTRODUCTION

An error state that does not adhere to the software specifications

or user expectations is referred to as a software defect in a

software system. Unexpected and frequently inaccurate results

produced by the programme are the result of a logic or coding

error. During the programming the programmer or the software

designer may make mistake, most of the errors are due to the

such type of mistakes. The following are examples of flaws in

software systems in reality: Arithmetic errors that arise from

mistakes in certain arithmetic expressions; syntax errors

brought on by the way the code was written. Logical errors are

errors in the code's implementation, Performance flaws result in

undesirable outcomes, Interaction between users and the

software results in interface defects [1].

The availability and dependability of software systems are

gravely threatened by software defects. Finding and fixing the

system's flaws is very expensive once the flawed system has

been put into place. By gaining crucial knowledge about the

kind and location of defects, developers and programmers can

profit from the prediction of unknown defects and increase the

necessary level of confidence in the system. Prediction of

software system flaws is currently one of the most researched

topics by researchers [2].

Defect predictions, which assist programmers in locating bugs

in malfunctioning code regions, allow programmers to prioritise

their testing techniques according to the severity of the

problematic code regions. Defect Prediction enables software

testers and developers to evaluate the product's quality,

determine whether or not quality standards are met, and

determine whether the finished product satisfies users' needs and

expectations. Additionally, it makes it easier to distribute

resources for the system's formal verification as it is being

developed [3].

Software has evolved into a crucial part of many systems as a

result of the use of computer technology. The creation of these

systems is becoming more difficult as software systems are

integrated into daily life. Therefore, creating highly effective

software is very difficult. The quality is still the most important

feature of any software system out of all the desired attributes.

By using out-dated methods, it is expensive to maintain product

quality This could require a significant investment of time,

money, and effort [4].

Prior to system testing, identifying fault-prone modules can help

the software manager allocate resources to the right modules in

order to cut costs and produce software that is almost error-free.

The ultimate objective of these fault identification systems'

design is to identify fault-prone modules as accurately as

possible. In these approaches for prediction, software fault

prediction is by far the most frequently researched topic, and

numerous research centres have started brand-new initiatives in

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5s

DOI: https://doi.org/10.17762/ijritcc.v11i5s.6642

Article Received: 24 February 2023 Revised: 06 April 2023 Accepted: 23 April 2023

179

IJRITCC | May 2023, Available @ http://www.ijritcc.org

this area. Models that are defective are predicted using software

metrics and fault data [5].

The characteristics for delivering software quality through the

application of metrics are well-established in the research

community. The process has made extensive use of statistical

methods. But over time, the trend has shifted away from

conventional statistical methods and toward machine learning

techniques. For fault prediction, various ML techniques have

been employed. Software faults can occur at any stage of the

software development process and are defined as programming

errors that prevent the software from performing its essential

function. They might originate from programming, design, or

the outside environment. Some software flaws can result in

anything from a straightforward calculation error to a complete

system failure, depending on the type of fault. [6]

This type of issue is intended to be resolved by software fault

prediction. There is always a need for better and better forecasts

in order to pinpoint the defect before actual testing and thereby

minimise delays and costs pertaining to software projects.

Prediction of the fault can be done with respect to the severity,

priority or for the developer classification. Not only on the bases

of these categories only, classification may also be done

depending on number of other ways also. Software modules are

typically divided into classes that are defective or not. If modules

contain a defect then it is represented as the faulty module,

however the module having no defect is represented as the non-

faulty module. Selecting a superior learning calculation seems to

be just as important for developing a product fault forecast

demonstration as selecting a programming measurement or other

parameter.

Machine learning uses historical data to predict the likelihood of

an event without explicit programming. The final result is

predicted by machine learning, which focuses on the output

variable and attempts to find patterns in the data. Machine

learning algorithms come in two different varieties. Algorithms

for supervised and unsupervised machine learning. In supervised

algorithms, the output variable will be predetermined, and we

will attempt to compare patterns between the dependent and

independent variables. In unsupervised machine learning

algorithms, the final outcome variable can be predicted by

passing the data. The idea of a dependent variable does not exist

in unsupervised machine learning algorithms. The algorithms

generate the final outputs using all of the data [44].

The objectives of this paper is mentioned below:

• This study discusses the various fault prediction

techniques in machine learning.

• This paper mention various datasets which is used in

order to analyze the performance for the software fault

prediction.

• This paper give thorough investigation of fault

prediction using the integral approach (machine

learning) and error probability methodology in order to

foresee the error that occurred during the coding phases.

The remainder of the paper is organized as follows: Section

2 presents an overview of the Concept of Bug life Cycle; Section

3 describes in detail of Literature Review; Section 4 explained

different Methods and Techniques; and finally Conclusions and

future scope are described in Section 5.

II. CONCEPT OF BUG LIFE CYCLE
The importance of anticipating bugs earlier in the SDLC is

demonstrated by the necessity of anticipating their occurrence

and understanding the defect life cycle. Avoiding the time,

expense, and effort required for defect detection and repair is

beneficial. The quantity of bugs discovered during the

development cycle is one of the major problems the modern

software industry is dealing with. This causes the product's final

delivery to be delayed and raises the overall cost of operation.

The average operation cost increase across projects is predicted

to be 10% as a result of bugs that occur during software

production and code development. We attempt to address the

situation given the urgency of the hour. The model can be used

as input to predict when a bug will occur before a tester notices

it. As a result, the developer can review the code in the past and

quickly address any problems. The model works well with the

most well-known frameworks for software development,

including waterfall, agile, V-shape, spiral, and others. We

created this final set of machine learning models by keeping the

various frameworks for software development modelling. This

serves as a general representation for all defect prediction

algorithms. One of the crucial elements is being aware of the

defect management life cycle. The figure 1 shows the different

phases of the bug life cycle [45].

• New: We refer to a defect as being new if it is reported

by testers or anyone else for the first time during the

“Software Development Life Cycle(SDLC)”

• Assigned: According to the seniority and priority of

the bugs, each newly reported bug is assigned to one

of the team members for immediate resolution. Then,

the corresponding developer will carry out the

necessary work.

• Open: If a bug is discovered after a developer's initial

testing, it will be moved to the open state. Typically, a

team of developers or product researchers can handle

this. Fixed: Based on severity and priority, all bugs that

are in the open state must be fixed. Within the software

development life cycle, the stakeholders collectively

determine the severity and priority of the bugs.

• Fixed: Based on severity and priority, all bugs that are

in the open state must be fixed. Within the software

development life cycle, the stakeholders collectively

determine the severity and priority of the bugs.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5s

DOI: https://doi.org/10.17762/ijritcc.v11i5s.6642

Article Received: 24 February 2023 Revised: 06 April 2023 Accepted: 23 April 2023

180

IJRITCC | May 2023, Available @ http://www.ijritcc.org

• Retest: If a bug is not tested or the description is

incorrect, additional testing may be necessary to

ensure that the reported bug is valid in all

circumstances.

• Closed: If the bug is correctly fixed, this will be

regarded as a bug that has been fixed.

Figure 1: Different Phases of bug life cycle

• Deferred: Some of the bugs will be pushed to the

upcoming release due to priorities. These insects have

been identified as various

• Duplicated: The term "repeated bug" refers to a bug

that has occurred more than once.

• Rejected: The tester raised the rejected bugs, which are

not true bugs. These are primarily the result of a

mismatch in skill sets and requirements.

As shown in the figure 2, a machine learning model may be used

to pinpoint the software fault. The steps below are used to

identify the software fault using the machine learning model.:

1. Data Collection: first of all, data need to be collected

from various heterogonous resources of bug/fault

repositories.

2. Pre-processing: Prior to applying the model, data need

to be framed in order to deal with the missing values,

duplicate values and noise etc.

3. Feature Extraction: After the prepressing, features are

extracted from the data using the suitable technique

like: ‘Principal component analysis (PCA)’, ‘Linear

discriminant analysis (LDA)’ or ‘Nonlinear

dimensionality reduction via kernel principal

component analysis (KPCA)’ etc.

4. Model Training: Once the features extracted or

decided, now the data is ready to build the model and to

train the mode. So the model need to prepared using the

appropriated algorithm like decision tree, SVM, KNN

or ensemble approach. Almost 70% of the data is used

for training of the model

5. Model Optimization: When it comes to algorithms,

optimization is one of the most important factors.

Learning optimization manages the cost function by

greatly reducing the cost with the aid of the machine.

The goal of many straightforward algorithms is to

minimise the cost function by determining the

parameters. Each parameter affecting the cost function

is computed using the gradient descent approach [7-8].

6. Model Evaluation: A model's performance is assessed

using a variety of performance measures, including

recall, precision, accuracy, f-measure, and expectation

time. If the performance of the model is not as per the

expectation, then the model may be reconstructed or

new feature may be selected or again optimized it

depends on the requirement or situation. In other words,

it can be said that the step 2-5, any step may be repeated

[9-10].

Figure 2: Fault Detection Model

III. LITERATURE REVIEW

Breu S et al., 2010 [11] studied how bug tracking systems,

which are tools used for managing software projects, can be

improved. Almost 600 defect reports from two projects, Mozilla

and Eclipse, were viewed by the authors to examine the

questions contained in the bug reports. They categorized the

questions and measured how quickly and how often they were

answered. The results showed that users play an important role

in helping to solve the bugs they report, so they suggested four

ways in which bug tracking systems can be improved. The main

approaches discussed in this research work are qualitative and

quantitative analysis. Qualitative analysis involves examining

the data qualitatively, or in other words, looking at the data and

making conclusions based on the patterns found. Quantitative

analysis involves measuring the data in order to make more

concrete and detailed conclusions. It was concluding that active

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5s

DOI: https://doi.org/10.17762/ijritcc.v11i5s.6642

Article Received: 24 February 2023 Revised: 06 April 2023 Accepted: 23 April 2023

181

IJRITCC | May 2023, Available @ http://www.ijritcc.org

user participation is essential to being able to make progress on

bugs reported through bug tracking systems.

Bhattacharya P and Neamtiu I, 2011[12] explained that

predicting bug-fix time is helpful. The authors use two

approaches in this paper— ‘Regression Testing’ and ‘Machine

Learning’—to assess the predictive power of existing models

on 512,474 bug reports from different projects: Chrome,

Eclipse and Mozilla. The testing results revealed that the

explanatory accuracy of the existing models ranges from 30%

to 49%, highlighting the importance of along with more

predictor factors (attributes) when developing a prediction

model. The authors also discovered that, unlike in commercial

software, there is no connection between the likelihood of a bug

being fixed, a bug-reputation, openers and as well as the time it

takes to fix a bug in the projects that were examined. In this

paper, a machine learning classification model is used, which is

trained using the various input attribute values with respect to

the expected output classes. After training, the model is

presented with a set of input attributes and it predicts the most

likely output class. It was concluded that existing models used

for predicting bug-fix time have limited predictive power and

need to be improved. The authors also discovered that, contrary

to recent studies on commercial software, there is no connection

between the likelihood of a bug being fixed, the reputation of

the person who reported the bug, and the length of time it takes

to fix a bug in the projects they looked at.

Zaineb, Ghazia, and IrfanAnjum Manarvi, 2011[13]

quantifies the actual percentage of rejected bugs, and provides

a list of causes that can lead to bug rejection. It also delves into

the relation between severity levels and bug rejections, as well

as discussing the effect of invalid bug reports on the efficiency

of software testing. Eventually, the objective of this study is to

take attention to the increasing rate of rejected bugs and how it

can negatively impact software projects in terms of time and

cost. Data collected from the bug tracking system and develops

a cause-effect diagram to pinpoint the sources of invalid bug

reports. It also looks into the defect rejection rate, reported bugs,

time, effort, cost, and number of test cases executed in order to

analyse the influence of rejected bugs. Finally, the paper

provides recommendations on how to decrease the rejection rate

in order to reduce the negative effects on software projects.

Lastly, the authors provide correlation analysis between the

number of reported bugs and rejected bugs, as well as

recommendations on how to decrease the rejection rate.

An approach based on classification was put forth by Kanwal

J. and Maqbool O. in 2012[14] to create a bug report

recommender. The paper compares two classes of classifiers

(‘Naive Bayes’ and ‘Support Vector Machine’) in order to

assess the performance of the recommender. It also investigates

the effects of various feature combinations on the accuracy of

the results. The paper also introduces two new metrics to

analyse the bug priority recommender's performance: ‘Nearest

False Negatives (NFN)’ and ‘Nearest False Positives (NFP)’. In

short, this paper looks at how bug report management can be

improved through the use of a classification-based

recommender. When text features are used, it has been found

that the ‘Support Vector Machine’ classifier outperforms the

‘Nave Bayes’ algorithm in terms of accuracy. For categorical

features, the Naïve Bayes classifier outperforms SVM. It was

observed that after combining the text and categorical features

highest accuracy is witnessed. The paper also presents two new

metrics, ‘Nearest False Negatives (NFN)’ and ‘Nearest False

Positives (NFP)’, that add to our understanding of the bug

priority recommender's output.

SJ Dommati et al., 2013 [15] explained the need for a

structured mining algorithm that can be used to classify bugs.

This algorithm would involve extracting features from bug

reports, reducing noise in the data, and using probabilistic Naïve

Bayes approach to classify network bugs. The performance of

different algorithms using accuracy and recall parameters when

given unseen bugs as input was compared. In other words, the

paper looks at how a software program can identify different

bugs and classify them correctly. In order to determine the class

to which the bug should be assigned, a structured mining

algorithm that uses the crash log as the input is presented by the

author. This algorithm uses feature extraction, noise reduction,

and classification of network bugs using the probabilistic Naïve

Bayes approach.

MDM Suffian and S Ibrahim, 2014[16] creates a prediction

model for defects in system testing. This model's primary

objectives are to assist the testing team in managing and

controlling the test execution process as well as to act as an early

indicator of the quality of the software entering system testing.

Metrics from earlier system testing phases are found and

analysed to create this model. Regression analysis is then used

to create mathematical equations using this data. The desired

prediction model has p-value less than 0.05 and R-squared

(adjusted) values greater than 90%. Finally, this model is

proved with new projects to make sure it is suitable for actual

implementation. The author came to the conclusion that it is

feasible to develop a prediction model for system testing flaws

that can act as a preliminary gauge of the calibre of the software

being submitted for system testing. This model is based on

metrics gathered from earlier system testing phases, and its

suitability for actual implementation is confirmed with new

projects.

Zhang, Yong, et al, 2014 [17] described how to use multiple

individual classifiers (e.g., algorithms) together in order to

achieve better performance than using just one single classifier

alone. The idea behind this approach, called ensemble learning,

is that different base classifiers can contribute differently

towards the final classification result and so it makes sense to

http://www.ijritcc.org/
https://scholar.google.com/citations?user=U-FQfZ4AAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=D2BdSc8AAAAJ&hl=en&oi=sra

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5s

DOI: https://doi.org/10.17762/ijritcc.v11i5s.6642

Article Received: 24 February 2023 Revised: 06 April 2023 Accepted: 23 April 2023

182

IJRITCC | May 2023, Available @ http://www.ijritcc.org

assign greater weights or importance values for those with

higher accuracy rates. To do this efficiently, the authors propose

an optimization technique known as differential evolution

which helps determine these weightings automatically based on

their effectiveness during testing of various scenarios. Finally,

once all the weights have been determined they are combined

according to what's referred to as weighted voting combination

rule - essentially meaning each vote counts more if it’s from a

model/classifier deemed more accurate by differential evolution

earlier on in the process.

Prasad, M. C., Lilly Florence, and Arti Arya, et al., 2015 [18]

proposed classification techniques for software defect

prediction using software metrics. These techniques involve the

use of data mining to identify defects based on existing software

metrics, which can help improve overall quality and

performance. The specific methods mentioned include decision

tree algorithms, ‘Support Vector Machines (SVMs)’, ‘Artificial

Neural Networks (ANNs)’ and logistic regression models. Each

technique has advantages and disadvantages depending on the

type of problem being solved or analysed. It was concluded that

software defect prediction models can be used to recognise

potential defects in a product and help developers improve the

quality of their code.

Cross-project defect prediction was the subject of an

exploratory study by Satin, Ricardo FP et al. in 2015 [19]. The

study examines the effects of applying various classification

algorithms and a performance indicator when creating

predictive models. The study applies various classification,

feature selection, and clustering algorithms to 1270 projects in

order to identify and group alike projects. The study then

evaluates the performance of the different algorithms and

measures the performance achieved through the application of

the algorithms. The Naive Bayes algorithm performed the best,

the study's results show, with 31.58% accurate predictions in 19

models that used it.

Jin, Kwanghue, et al., 2016 [20] proposed a method for

improving bug severity prediction. This entails incorporating

text and meta-fields from bug reports into our classifier model,

as well as including 'normal' severity bugs, which account for a

sizable portion of the total number of reported bugs. These two

approaches have not been taken into consideration by other

studies before this one, so it provides an innovative way for

predicting bug severity more accurately than ever before.

Li, Jian, et al., 2017[21] proposed a new method for improving

software reliability by predicting potential bugs in the code. The

author proposed the framework using the Convolution Neural

Network to predict the bug/defect. The proposed approach

generates features from programmes' Abstract Syntax Trees

using deep learning techniques (ASTs). The ASTs are first

transformed into token vectors, which are then encoded as

numerical vectors by using word embedding and mapping

methods. These numerical vector representations of the

program code can be fed into a convolutional neural network

model that automatically learns semantic and structural

information about the program's functionality. Finally, both the

learned feature set generated by DP-CNN along with traditional

hand crafted features will be used together for more effective

software defect prediction results compared to existing

methods. Studies reveal that this strategy can up to 12% more

accurately predict defects than current methods.

Xuan, Jifeng, et al., 2017 [22] offered a new approach to bug

triage, which is the process of sorting and categorizing bugs in

software development. This proposed method combines both

supervised (using labelled data) and unsupervised (using

unlabelled data) techniques such as naive Bayes classifier and

expectation maximization to take advantage of all available

information from both types of reports. Additionally, the

authors use weighted recommendation lists that assign weights

according to multiple developers' opinions when training the

model for better accuracy results on Eclipse's bug report dataset.

In summary, proposed semi-supervised text classification

approach improves upon existing methods by providing more

accurate predictions with fewer labels required for training

purposes.

Gomes, Heitor Murilo, et al., 2017[23] proposed a taxonomy

(a system or structure) for understanding different types of

ensemble learning algorithms used with data streams, such as

combination techniques, diversity measures and dynamic

updates like adding/removing classifiers from the model when

needed. It also provides an overview on open source tools

available related to these topics as well as discussing current

challenges faced by researchers working with big datasets that

evolve over time (concept evolution), feature drifts etc.,

Singh, V. B et al., 2017[24] used machine learning algorithms

for automatic bug prediction. The authors used text mining

techniques to extract summary terms from historical data which

were then used as training candidates in order to develop models

for making predictions on different levels of severity (e.g., low,

medium or high). Author also employed two approaches called

Vote and Bagging ensemble methods in order to deal with

imbalanced datasets where some classes have more examples

than others. Finally, they tested their approach by comparing

results between Eclipse projects and Mozilla products using k-

NN classifiers (which performed better) as well as SVM

classifiers; showing that cross project predictions are possible

even when dealing with different domains/products. In terms of

various performance measures, it was found that k-NN

classifiers outperformed SVM. Naive Bayes-measure was

below 34.25%. All severity levels, including those with fewer

bug reports, saw an improvement in accuracy and f-measure

after developing training candidates by combining multiple

datasets. The overall performance of the f-measure was

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5s

DOI: https://doi.org/10.17762/ijritcc.v11i5s.6642

Article Received: 24 February 2023 Revised: 06 April 2023 Accepted: 23 April 2023

183

IJRITCC | May 2023, Available @ http://www.ijritcc.org

improved by 5% and 10% respectively by the two ensemble

approaches (vote and bagging), when dealing with imbalanced

datasets. Finally, cross project predictions between Eclipse

projects and Mozilla products were successful using both k-NN

as well as SVM classifiers; showing that reliable models can be

built even across domains/products

Alia, SayedaShamma, et al., 2018[25] offered a newmethod

called Class-Membership Information of a Term (CMT) which

can be used to classify and predict the severity of software bugs.

This approach does not require any prior knowledge or

parameter tuning, making it computationally simple compared

to current approaches. Studies done on three benchmark

datasets reveal that CMT outperforms other cutting-edge

techniques by up to 5% and 12.5%, respectively, in both within-

project classification and cross-project classification.

By utilising text mining, Katerina Goseva-Popstojanova and

Jacob Tyo, 2018 [26], were able to categorise software bug

reports into categories related to security and those that weren't.

It employs three different types of feature vectors in both

supervised (where labels are provided for the data) and

unsupervised learning approaches. For supervised learning,

multiple classifiers were tested on different sized training sets

while a novel unsupervised anomaly detection method was

proposed as well. The evaluation was done based on NASA

datasets which showed that better performance can be achieved

when more security information is available in the dataset used

for classification tasks.

The process of identifying named entities that are specific to

software bugs in a software bug repository was described by

Zhou, Cheng, et al., 2018 [27]. A software bug repository is a

database that stores information about software bugs, such as

the type of bug, the severity of the bug, and the date it was

reported. Named entities are words or phrases that refer to

specific people, places, or things. Knowing software bug-

specific named entities in a “software bug repository” involves

identifying these words or phrases in the bug reports and

categorizing them according to their meaning. This process can

help software developers better understand the bug reports and

make it easier to fix the bugs.

Kumar, Raj, et al., 2019[28] discussed the issue of "software

bugs", which are errors that occur during design or

development, and cost a lot in terms of time and money. To

detect these bugs more efficiently, data mining techniques may

be applied on large repositories called bug repositories - this

will help extract hidden information from them. Finally,

numerous types of classification methods using data mining

have been studied in order to compare their accuracy when

detecting such issues with precision recall metrics like F-

measures etc.

Using an algorithm, Otoom, Ahmed Fawzi et al., 2019 [29]

divide incoming bug reports into corrective (defect fixing) and

perfective categories (major maintenance). The classification

model used keywords as features, meaning it looked for certain

words in each report to determine its category. After testing

their feature set on three different open source projects, they

achieved high accuracy with SVM classification algorithms

reporting an average accuracy rate of 93.1%. In other words,

this system could accurately identify whether a given bug report

should be classified as either corrective or perfective almost all

the time!

Aindrila Sarkar et al., 2019[30] conducted research at

Ericsson to reduce development costs by automating the

process of bug triaging. Bug triaging involves correctly

assigning bugs (errors or issues) to the right developer or team

for resolution. The researchers applied existing approaches

from literature on over 10,000 bug reports across 9 large

products and found that using simple textual and categorical

attributes in logistic regression classifier gave them highest

precision (78%) and recall (79%). They also tried adding crash

dumps/alarms information but it did not improve accuracy

significantly so they developed an approach where only high

confidence predictions were made which improved accuracy up

to 90%, however this could be done for 62% of all reported

bugs.

Cai, Xingjuan, et al. in 2020[31] presented an approach using

SVM that selects the parameters for the SVM and deals with

datasets where there is class imbalance. To accomplish this,

they propose a hybrid multi-objective cuckoo search under-

sampled software defect prediction model based on SVM

(HMOCS-US-SVM) that synchronously solves both of these

issues. The false positive rate (pf), probability of detection (pd),

and G mean are three indicators that this method uses to gauge

how well it performs when put to the test against eight distinct

datasets from the Promise database. Results demonstrate that

their approach works improved than other existing models for

solving the problem of software defect prediction.

Kumar, Raj, and Sanjay Singla, 2020[32] exposed data

mining algorithms can be used to classify software bugs

according to their severity. It contrasts the accuracy, precision,

recall, and execution time of four different algorithms (SVM,

KNN, Decision Tree, and Naive Bayes). SVM has highest

accuracy, according to the results, while decision trees and

Naive Bayes perform well in terms of other factors like

execution time.

Using the information from the bug report, Kim, Sunghun, et

al., 2021[33] described how a fault detection model can be

produced. However, this data can contain a lot of noise because

the current practices for collecting defects rely on voluntary bug

fix keywords or links to bug reports in change logs. Authors

proposed approaches to deal with that noise and measure its

impact on the accuracy of two well-known algorithms used for

predicting defects. It also introduces an algorithm which detects

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5s

DOI: https://doi.org/10.17762/ijritcc.v11i5s.6642

Article Received: 24 February 2023 Revised: 06 April 2023 Accepted: 23 April 2023

184

IJRITCC | May 2023, Available @ http://www.ijritcc.org

noisy instances and eliminates them so as to improve overall

performance when making predictions about potential bugs in

code.

Neighbourhood-based under-sampling (N-US), which Goyal,

Somya, and 2021 [34] proposed, can be used to address class

imbalance in software defect prediction (SDP). Class Imbalance

means that the dataset has more data points belonging to one

particular class than another. This algorithm under samples the

dataset, meaning it reduces its size by removing some data

points from majority classes while keeping all minority classes

intact so as not to lose any information. Using five benchmark

datasets from the NASA repository—KC1, KC2, JM1 and

CM1—the proposed N-US approach was associated with three

standards under sampling techniques and found to be superior

in terms of accuracy, AUC score, and ROC curve position.

Koksal, Omer, and Bedir Tekinerdogan, 2022[36] proposed

an automated bug classification for large-scale software

projects. Defect reports are pieces of information sent by users

to the developers when they encounter an issue with their

software, and classifying them correctly helps identify what

caused the problem so it can be fixed quickly. In this study, text

mining, machine learning (ML) and natural language

processing (NLP) approaches were used to classify bugs in both

English and Turkish languages from commercial software

systems - something which hasn't been done before. The results

showed that automatic bug classification was more accurate

than manual methods while also reducing time spent on

manually categorizing each report.

IV. METHODS AND TECHNIQUES:

Bug dataset(s) may be taken from the various bug repositories

like Mozilla, Firefox, Eclipse, Jira etc. for the study [37]. Fault

detection/analysis can be done using the statistical as well as the

machine learning algorithms as shown in the figure 3.

Statistical Methods for Fault Analysis: Static analysis is a

type of automated testing that looks for errors or defects in the

code before it's released to customers. It can help identify issues

like incorrect data types, missing checks on user input, and other

programming mistakes which could lead to security

vulnerabilities if left unchecked. Software reviews involve

manual inspection by developers or testers who look at the

source code line-by-line looking for potential problems with

logic flow, coding style violations, etc., as well as any bugs they

may find while doing so. Both methods have their advantages;

however, when used together they provide an effective way of

detecting faults prior to release of a product ensuring its quality

meets customer expectations [38].

Machine Learning Algorithms for Fault Detection: As

shown in Figure 3, a dataset (or datasets) must be pre-processed

in order to remove anomalies before applying any machine

learning algorithm for fault detection [28]. Proceeding further

features can be selected using the appropriate feature selection

algorithm like Principal Component Analysis (PCA). The

method used for the feature need to be selected on the basis of

the dataset and the basis of the machine learning algorithm that

we are going to use for the fault detection. The module will be

classified as defective or not defective using a supervised

machine learning approach. There are many supervised

machine learning algorithms that can be used, including

Decision Tree, Support Vector Machine (SVM), Naive Bayes,

and K-Nearest Neighbour (KNN). Sometimes to achieve the

high efficiency ensemble approaches may be used.

Figure 3: Methodology for Fault Detection.

• Naïve Bayes: Naive Bayes classifier is one of the most

commonly used machine learning algorithm which

uses Bayes theorem and is specifically designed to

classify continuous variables. A naive Bayes classifier

(sometimes called a hidden Markov model) is a

statistical model that assumes that the probabilities of

the parameters or features are independent of the data.

The model uses these assumptions of independence to

find a joint probability distribution over all possible

parameter values. [39]. It is a probabilistic classifier

and posterior probability is calculated using the Bayes

theorem. The impact of a predictor's value (y) on a

particular class (m) is thought to be independent of the

value of other predictors [46]. Following equating

used in Naïve Bayes algorithm.

𝑃(𝑚|𝑦) =
𝑃(𝑦|𝑚)𝑝(𝑚)

𝑃(𝑦)
 (1)

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5s

DOI: https://doi.org/10.17762/ijritcc.v11i5s.6642

Article Received: 24 February 2023 Revised: 06 April 2023 Accepted: 23 April 2023

185

IJRITCC | May 2023, Available @ http://www.ijritcc.org

P(m) denotes the class's prior probability, P(m|y) the

class's posterior probability for a specific predictor

(attribute), P(y|m) denotes the likelihood, or

probability, of the predictor given a class, and p

denotes the predictor's prior probability (y).

• Decision Tree: Decision tree is a powerful tool to

analyse the data and generate values associated with

the variables. It must be said that decision tree is not a

linear algorithm that makes calculations by series of

simple steps (if, then, else case), but rather an

interactive system of decisions, based on the results of

which a new decision can be made for each node in the

tree. This approach allows us to analyse complex

chains of events represented by numerous interrelated

variables and their possible combinations. It is a tree-

structured classifier, where internal nodes represent

the features of a dataset, branches represent the

decision rules and each leaf node represents the

outcome. In most of the cases DT is used for the

classification, however it can also be used for the

regression also. DT algorithms include the Iterative

Dichotomies 3 (ID3) and ID3 Successor (C4.5)

algorithms, the Classification and Regression Tree

(CART) algorithm, the Chi-squared Automatic

Interaction Detector (CHAID) algorithm, the

Multivariate Adaptive Regression Splines (MARS)

algorithm, the Generalized, Unbiased Interaction

Detection and Estimation (GUIDE) algorithm, and the

Conditional Inference Trees algorithm (CTREE) [42].

• SVM: Support vector machines (SVMs), models

based on supervised learning and coupled with

learning algorithms, offer a useful method for

analysing data based on classification and regression

analysis. One of the benefits of SVM is that it performs

better than other model techniques with fewer

characteristics, while another is that it has a more

robust model. A third benefit is that SVM takes less

time to compute than other methods like neural

networks [40-41]. To differentiate the data points, the

hyperplane in used in the SVM algorithm. Equation

x+b=0 (2)

represents the hyperplane

where b is an offset and w is a vector's hyperplane

normal.

We can say that a point is positive if the value of w.

x+b>0; otherwise, it is negative. So that the margin has

a maximum distance, we now need (w,b).

Support vector machines' benefits include [47]:

➢ Efficient in environments with high-dimensions.

➢ This method is still effective when the number of

dimensions exceeds the number of samples.

➢ Because the decision function only uses a portion

of the training points (also referred to as support

vectors), it is also memory-efficient.

➢ The decision function is flexible in that different

Kernel functions can be specified for it. Users can

specify their own kernels in addition to the

widely used ones that are available.

The following are some drawbacks of support vector

machines [47]:

➢ If the number of features is significantly greater

than the number of samples, it is imperative to

avoid over-fitting when choosing kernel

functions and regularisation terms.

➢ Instead of directly providing probability

estimates, SVMs use an expensive five-fold

cross-validation procedure (see Scores and

Probabilities, below).

• KNN: K nearest neighbour (KNN) is a method of

machine learning to classify new data points based on

their similarity to existing ones. KNN uses the distance

(similarity) of two data points to each other and

calculates a small number of neighbours that are more

similar than the original data point, using them to

calculate the classification prediction. K represents the

number of the neighbouring data points. The accuracy

of the KNN algorithm depends on the selection of the

value of the ‘K’ and distance metrics [41]. Following

equation represents, how distance can be calculated

between two data points e.g. x and y.

 (3)

• Manhattan Distance (when value of p is1)

• The Euclidean Distance is applied when p = 2

• Chebychev Distance (when value of p = ∞)

Ensemble Techniques: An advanced meta machine learning

algorithm that has gained favour recently is ensemble

classification approaches. To improve prediction performance,

these strategies aggregate predictions from various learning

algorithms. In general, the inherent principles and sensitivity to

training data of various machine learning algorithms varies. As

a result, based on a set of data, various categorization

approaches produce various predictions. These many outcomes

are used by ensemble machine learning approaches to produce

improved prediction outcomes. These methods aim to improve

prediction accuracy from any one of the individual learning

algorithms by reducing the bias and variance of prediction

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5s

DOI: https://doi.org/10.17762/ijritcc.v11i5s.6642

Article Received: 24 February 2023 Revised: 06 April 2023 Accepted: 23 April 2023

186

IJRITCC | May 2023, Available @ http://www.ijritcc.org

models. Bagging, Boosting, Stacking and Voting are the some

of the ensemble machine learning techniques [43].

V. CONCLUSION AND FUTURE SCOPE:

By foreseeing defects before the testing process, software fault

prediction reduces the need for fault discovery activities.

Additionally, it assists in expediting software quality assurance

efforts to be used in the latter stages of software development

and better utilising testing resources. We have found that

measuring software fault proneness is exceedingly complicated,

confusing, and multifaceted. At any stage of the software

development process, a flaw can be found. During the testing

phase, some problems go unnoticed and are sent. In this a

complete methodology used for machine learning algorithms for

the fault prediction is explained. Various datasets may be taken

in order to analyse the performance for the software fault

prediction. Python, R, Weka, Orange, Matlab etc. simulation

tools may be used for the implementation. After doing the

software bug classification using various machine learning

algorithms, a comparative analysis will be done on the basis of

the various performance measures like accuracy, recall,

sensitivity, F-measure etc. in order to find the best prediction

algorithmin.

REFERENCES:

[1] M. L. Hutcheson, Software testing fundamentals: Methods and

metrics. John Wiley & Sons, 2003.

[2] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of

the efficiency of change metrics and static code attributes for

defect prediction,” in Proceedings of the 30th international

conference on Software engineering, 2008, pp. 181–190.

[3] R. Wahono, “A systematic literature review of software defect

prediction,” Journal of Software Engineering, vol. 1, no. 1, pp. 1–

16, 2015.

[4] Ankur Goyal, Likhita Rathore, Sandeep Kumar,”A survey on

solution of imbalanced data classification problem using smote

and extreme learning machine”,Pages 31-44, Communication and

Intelligent Systems: Proceedings of ICCIS 2020.

[5] K. Aggarwal, Y. Singh, A. Kaur, and R. Malhotra, “Empirical

analysis for investigating the effect of object-oriented metrics on

fault proneness: a replicated case study,” Software process:

Improvement and practice, vol. 14, no. 1, pp. 39–62, 2009.

[6] Y. Singh, A. Kaur, and R. Malhotra, “Empirical validation of

object-oriented metrics for predicting fault proneness models,”

Software quality journal, vol. 18, no. 1, pp. 3–35, 2010.

[7] G. Murphy and D. Cubranic, “Automatic bug triage using text

categorization,” in Proceedings of the sixteenth international

conference on software engineering & knowledge engineering,

2004, pp. 1–6.

[8] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?”

in Proceedings of the 28th international conference on Software

engineering, 2006, pp. 361–370.

[9] Aishwary Kulshreshta, Ankur Goyal,” Image Steganography

Using Dynamic LSB with Blowfish Algorithm”, International

Journal of Computer & Organization Trends, Vol 3 ,2013.

[10] P. Knab, M. Pinzger, and A. Bernstein, “Predicting defect

densities in source code files with decision tree learners,” in

Proceedings of the 2006 international workshop on Mining

software repositories, 2006, pp. 119–125.

[11] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, “Information

needs in bug reports: improving cooperation between developers

and users,” in Proceedings of the 2010 ACM conference on

Computer supported cooperative work, 2010, pp. 301–310.

[12] P. Bhattacharya and I. Neamtiu, “Bug-fix time prediction models:

can we do better?” in Proceedings of the 8th Working Conference

on Mining Software Repositories, 2011, pp. 207–210.

[13] G. Zaineb and I. Manarvi, “Identification and analysis of causes

for software bug rejection with their impact over testing

efficiency,” International Journal of Software Engineering &

Applications, vol. 2, no. 4, p. 71, 2011.

[14] J. Kanwal and O. Maqbool, “Bug prioritization to facilitate bug

report triage,” Journal of Computer Science and Technology, vol.

27, no. 2, pp. 397–412, 2012.

[15] S. J. Dommati, R. Agrawal, S. S. Kamath, and others, “Bug

Classification: Feature Extraction and Comparison of Event

Model using Na\backslash" ive Bayes Approach,” arXiv preprint

arXiv:1304.1677, 2013.

[16] M. D. M. Suffian and S. Ibrahim, “A prediction model for system

testing defects using regression analysis,” arXiv preprint

arXiv:1401.5830, 2014.

[17] Y. Zhang, H. Zhang, J. Cai, and B. Yang, “A weighted voting

classifier based on differential evolution,” in Abstract and

Applied Analysis, 2014, vol. 2014.

[18] M. Prasad, L. Florence, and A. Arya, “A study on software

metrics based software defect prediction using data mining and

machine learning techniques,” International Journal of Database

Theory and Application, vol. 8, no. 3, pp. 179–190, 2015.

[19] R. F. Satin, I. S. Wiese, and R. Ré, “An exploratory study about

the cross-project defect prediction: Impact of using different

classification algorithms and a measure of performance in

building predictive models,” in 2015 Latin American Computing

Conference (CLEI), 2015, pp. 1–12.

[20] K. Jin, A. Dashbalbar, G. Yang, J.-W. Lee, and B. Lee, “Bug

severity prediction by classifying normal bugs with text and meta-

field information,” Adv. Sci. Technol. Lett, vol. 129, pp. 19–24,

2016.

[21] J. Li, P. He, J. Zhu, and M. R. Lyu, “Software defect prediction

via convolutional neural network,” in 2017 IEEE international

conference on software quality, reliability and security (QRS),

2017, pp. 318–328.

[22] J. Xuan, H. Jiang, Z. Ren, J. Yan, and Z. Luo, “Automatic bug

triage using semi-supervised text classification,” arXiv preprint

arXiv:1704.04769, 2017.

[23] H. Gomes, J. P. Barddal, F. Enembreck, and A. Bifet, “A survey

on ensemble learning for data stream classification,” ACM

Computing Surveys (CSUR), vol. 50, no. 2, pp. 1–36, 2017.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5s

DOI: https://doi.org/10.17762/ijritcc.v11i5s.6642

Article Received: 24 February 2023 Revised: 06 April 2023 Accepted: 23 April 2023

187

IJRITCC | May 2023, Available @ http://www.ijritcc.org

[24] V. Singh, S. Misra, and M. Sharma, “Bug severity assessment in

cross project context and identifying training candidates,” Journal

of Information & Knowledge Management, vol. 16, no. 1, p.

1750005, 2017.

[25] S. Alia, M. Haque, S. Sharmin, S. M. Khaled, and M. Shoyaib,

“Bug severity classification based on class-membership

information,” in 2018 Joint 7th International Conference on

Informatics, Electronics & Vision (ICIEV) and 2018 2nd

International Conference on Imaging, Vision & Pattern

Recognition (icIVPR), 2018, pp. 520–525.

[26] K. Goseva-Popstojanova and J. Tyo, “Identification of security

related bug reports via text mining using supervised and

unsupervised classification,” in 2018 IEEE International

conference on software quality, reliability and security (QRS),

2018, pp. 344–355.

[27] C. Zhou, B. Li, X. Sun, and H. Guo, “Recognizing software bug-

specific named entity in software bug repository,” in 2018

IEEE/ACM 26th International Conference on Program

Comprehension (ICPC), 2018, pp. 108–10811.

[28] R. Kumar, S. Singla, R. K. Yadav, and D. Kumar, “An

experimental analysis of various data mining techniques for

software bug classification,” International Journal of Innovative

Technology and Exploring Engineering, vol. 8, no. 8, pp. 108–

113, 2019.

[29] A. F. Otoom, S. Al-jdaeh, and M. Hammad, “Automated

classification of software bug reports,” in proceedings of the 9th

international conference on information communication and

management, 2019, pp. 17–21.

[30] A. Sarkar, P. C. Rigby, and B. Bartalos, “Improving bug triaging

with high confidence predictions at ericsson,” in 2019 IEEE

International Conference on Software Maintenance and Evolution

(ICSME), 2019, pp. 81–91.

[31] X. Cai et al., “An under-sampled software defect prediction

method based on hybrid multi-objective cuckoo search,”

Concurrency and Computation: Practice and Experience, vol. 32,

no. 5, p. e5478, 2020.

[32] R. Kumar and S. Singla, “Multiclass Severity Classification for

Software Bugs Using Support Vector Machine, K-Nearest

Neighbor, Decision Tree and Naı̈ve Bayes,” Journal of

Computational and Theoretical Nanoscience, vol. 17, no. 11, pp.

5109–5112, 2020.

[33] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise in

defect prediction,” in 2011 33rd international conference on

software engineering (ICSE), 2011, pp. 481–490.

[34] S. Goyal, “Handling class-imbalance with KNN (neighbourhood)

under-sampling for software defect prediction,” Artificial

Intelligence Review, vol. 55, no. 3, pp. 2023–2064, 2022.

[35] S. Sohrawardi, I. Azam, and S. Hosain, “A comparative study of

text classification algorithms on user submitted bug reports,” in

Ninth International Conference on Digital Information

Management (ICDIM 2014), 2014, pp. 242–247.

[36] Ö. Köksal and B. Tekinerdogan, “Automated classification of

unstructured bilingual software bug reports: An industrial case

study research,” Applied Sciences, vol. 12, no. 1, p. 338, 2021.

[37] A. Hamdy and G. Ezzat, “Deep mining of open source software

bug repositories,” International Journal of Computers and

Applications, pp. 1–9, 2020.

[38] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl,

and M. A. Vouk, “On the value of static analysis for fault

detection in software,” IEEE transactions on software

engineering, vol. 32, no. 4, pp. 240–253, 2006.

[39] I. Rish and others, “An empirical study of the naive Bayes

classifier,” in IJCAI 2001 workshop on empirical methods in

artificial intelligence, 2001, vol. 3, no. 22, pp. 41–46.

[40] R. Gholami and N. Fakhari, “Support vector machine: principles,

parameters, and applications,” in Handbook of neural

computation, Elsevier, 2017, pp. 515–535.

[41] Ankur Goyal, Vivek Kumar Sharma,” Modifying the MANET

routing algorithm by GBR CNR-efficient neighbor selection

algorithm”, International Journal of Innovative Technology and

Exploring Engineering,Vol 8,Issue 10,page no-912-917,2019.

[42] B. Charbuty and A. Abdulazeez, “Classification based on

decision tree algorithm for machine learning,” Journal of Applied

Science and Technology Trends, vol. 2, no. 1, pp. 20–28, 2021.

[43] A. Goyal and N. Sardana, “Empirical analysis of ensemble

machine learning techniques for bug triaging,” in 2019 Twelfth

International Conference on Contemporary Computing (IC3),

2019, pp. 1–6.

[44] S. D. Immaculate, M. F. Begam, and M. Floramary, “Software

bug prediction using supervised machine learning algorithms,” in

2019 International conference on data science and communication

(IconDSC), 2019, pp. 1–7.

[45] A. Agrawal, A. Choudhary, and H. Sharma, “An Empirical Study

on the Issues of Traditional Defect Life Cycle in Agile Model,”

2019.

[46] K. Vembandasamy, R. Sasipriya, and E. Deepa, “Heart diseases

detection using Naive Bayes algorithm,” International Journal of

Innovative Science, Engineering & Technology, vol. 2, no. 9, pp.

441–444, 2015.

[47] L. Cai and T. Hofmann, “Hierarchical document categorization

with support vector machines,” in Proceedings of the thirteenth

ACM international conference on Information and knowledge

management, 2004, pp. 78–87.

http://www.ijritcc.org/

