
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6615

Article Received:05 March 2023 Revised: 02 April 2023 Accepted: 24 April 2023

282

IJRITCC | May 2023, Available @ http://www.ijritcc.org

Finite State Testing of Graphical User Interface

using Genetic Algorithm

Sumit Kumar1, Nitin2, Mitul Yadav3
1Department of Computer Science and Engineering

Veer Madho Singh Bhandari Uttarakhand Technical University

Dehradun, India

sumitnadar@gmail.com
2College of Engineering and Applied Science

University of Cincinnati

Cincinnati, USA

delnitin@gmail.com
3Department of Computer Science

Dev Bhoomi Institute of Technology

Dehradun, India

mitulyadav1905@gmail.com

Abstract— Graphical user interfaces are the key components of any software. Nowadays, the popularity of the software depends upon how

easily the user can interact with the system. However, as the system becomes complex, this interaction is also complicated with many states.

The testing of graphical user interfaces is an important phase of modern software. The testing of GUI is possible only by interacting with the

system, which may be a time-consuming process and is generally automated based on the test suite. The test suite generation proposed in this

paper is based on the genetic algorithm in which various test cases are generated heuristically. For performance validation of the proposed

approach, the same has been compared with a variant of PSO, and it found that GA is slightly better in comparison to the PSO.

Keywords- Graphical User Interface (GUI), Software Testing Life Cycle (STLC), Software Development Life Cycle (SDLC), Genetic

Algorithm.

I. INTRODUCTION

Most of the Software testing process requires the running of

a significant quantity of test scenarios which requires a

significant amount of time to complete. The effort required in

software is measured in person months which means the testing

process will also require a huge amount of time as it is not

possible to increase the team size after a certain threshold. In the

study, testing was performed to test the functionality of the

software along with hardware has accounted for 79 billion euros.

However, as the complexity of the software is increasing with

the advancement of development, it was projected that by the

end of 2014, the cost would grow to 100 billion euros[1]. In the

software industry, with the advancement of development,

software testing is now being automated; however, it totally

depends on the project budget. When the manual evaluation is to

be conducted, the analyzer usually analyzes the boundary values,

which have a higher probability of errors, and the log of each

case is maintained manually. Manual testing may contain a huge

amount of error due to human intervention. In auto-testing, this

interaction of humans with software is reduced. The most

popular tool used for testing is JUnit. It has been observed that

the total testing cost is reduced significantly if the procedure is

well-designed and carried out [2]–[4]. In order to drive the

research in the right direction based on the problem faced by the

industry, a set of best practices has been defined by the action

research methodology[5]. However, if the test cases generated in

the case of automated testing are not aligned with the standard

issues and do not cover the complete code, this may lead to a

waste of time and resources, which may be higher than that of

manual testing[6]. The ideal way to generate the test cases is to

start from the initial phase of software testing, that is,

requirement gathering and generating the model from the

requirement. Testing based on a model is termed model-based

testing. The different phases of the model-based tests are as

follows:

• Using the requirement from the client to generate the

model.

• Using the requirement, generate the test suite based on

the expectations of the client.

• Compare the results for validation that the software is

working correctly or not.

As we know, the testing companies of the two terms, that is,

verification that the product developed meets the expectation of

http://www.ijritcc.org/
mailto:delnitin@gmail.com

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6615

Article Received:05 March 2023 Revised: 02 April 2023 Accepted: 24 April 2023

283

IJRITCC | May 2023, Available @ http://www.ijritcc.org

the stakeholders and validation does the behavior of the software

is identical to the expectation of the client. The process of testing

ensures that the quality of the software developed is high. In the

table I, the summarization of the system is done based on layers.

Initially, the system is viewed as front end and back end. The

layers that describe the front end are GUI, and the backend is the

System core. The component of each of these will be GUI source

code architecture for the front end and software architecture for

the back end. Now to test regression testing manually and

acceptance testing is to be performed for the front end, while for

backend unit and integration testing is performed and the same

thing in an automated manner is to be performed, the tags will

be used for GUI testing and Unit testing is used for testing the

backend.

TABLE I. COMPARES THE DIFFERENT LAYERS OF SOFTWARE AND WAYS

OF TESTING

System

View

System

Layers

System

Components

Manual

Testing

Automated

Testing

Front

End

GUI

Model

GUI Source

Code

Architecture

Regression

System and

Acceptance

Testing

Tag-based GUI

Testing

Back End
System

Core

S/W

Architecture

Reviews

Unit

Testing and

Integration

Testing

Unit Testing

The Graphical user interface is the bridge between the user

and backend logic that exploits the graphical capabilities of the

computer to make easy interaction. The GUI has become

complex as the functionality of the system is becoming complex.

To ensure that the system works effectively, it is mandatory to

ensure the software testing is done thoroughly. The most

important thing about GUI testing is that the order of interaction

also impacts the behavior of the system. The different

interactions are to be covered, various test suites are written, and

regression testing is performed. Figure 1 describes the calculator

designed using MATLAB, which is considered the software

under test.

Figure 1. Describes calculator as software under test

A finite state machine is basically defined by the five tuples

that are a set of states, the input symbols and the output, the

transition function, and the final state. Input is given to a

particular state and based on the input; the transition is made to

another state.

II. RELATED WORK

In this section, various techniques used to generate the test

cases have been discussed. In software testing, the various basic

operation of GUI, like click, right-click, mouse-click, and many

more, defines the GUI primitives of the software. The test suite

basically defines the path from lower order to higher order for

the formal language. In general, it could be imagined as the

linear process of test case generation and testing on these test

cases. Based on the case study, it has been identified that this

method requires coverage of all paths, transitions, and all

possible interactions in order to identify the faults effectively[7].

Another method suggested in [8] used UML based model,

which comes in the category of partition method. In this

approach, the test cases are generated based on activity control

flow; using this approach helps in improving the efficiency of

the testing. The basic idea is to first transform the GUI into

UML-based models. The tool based on this approach,

TDE/UML, was developed to generate the test cases. This

approach covers the various graph coverage properties like a

round trip, All paths, various activities, and all paths. The tools

also have the capability to have sample data, choice-based

coverage to test specific scenarios, and Complete coverage to

perform thorough testing.

In [9] suggested balancing the cost of testing to the

effectiveness of fault detection. The authors have suggested a

framework that can generate the model and perform the analysis

of the scenario to be feasible and cost-effective. Based on the

analysis, the event interaction coverage is generated. This

approach also ensures that various possible states of the GUI are

covered or not.

The consolidation-based model was generated in[10][11].

The models are converted into event flow models, which are

ripped from the software using the special module termed GUI

ripper. The GUI ripper is one of the modules that are available

in the first GUI testing tool that is GUITAR. Based on the study

by the authors, it has been identified that the suggested technique

is effective in identifying the faults in the software under test.

In another study, an approach based on the structure of the

GUI is being studied[12]. This model is based on Hierarchical

Predicate Transitions Nets (HPrTNs), which consider the events

and states with equal weightage. The study of these techniques

leads to the conclusion that this technique is capable of all the

possible coverages like states, transitions, and threads. However,

the main issue with this study is that no information about the

automation tools has been provided.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6615

Article Received:05 March 2023 Revised: 02 April 2023 Accepted: 24 April 2023

284

IJRITCC | May 2023, Available @ http://www.ijritcc.org

III. PROPOSED APPROACH

The test case generation has been done using various nature-

inspired techniques. These techniques that have been popularly

used are genetic algorithm, differential evolutionary algorithm,

and particle swarm optimization[13]–[18]. A genetic algorithm

is one of the popular techniques used to explore the search space

using Darwin's theory of survival of the fittest. In this paper, the

proposed approach based on a genetic algorithm has been

suggested. The reason for selecting the genetic algorithm is due

to the reason of easy encoding for the binary problems, and

secondly, it is easy to explore the huge search space easily using

Heuristic methods rather than relying on the classical approach

that may lead to NP-hard solutions. The detailed algorithm

describing the proposed approaches is stated below:

A. Algorithm:

Input: Population size (N), Pc Probability of Crossover, Pm

Probability of Mutation

Output: The best set of Individuals

Step 1: Identify the total states for generating the model

Step 2: Group the states into different classes based on their

frequency and allocate proportionate weight to them

Step 3: Initialize the random population of size in the form of

chromosome to term as the parent population

Step 4: Evaluate the fitness value as the population generated

Step 5: Select the N good solution from the matting pool

Step 6: Apply crossover on the parent population to generate

offspring

Step 7: Based on the probability of mutation, randomly mutate

the population

Step 8: if the Stop criteria are met, step 8; else, apply selection

and go to Step 4.

In order to understand the working of the proposed

algorithm, let us consider the GUI of calculation; the numbers

are 0 to 9.

Given: Number → 0-9,

Reset → C

Symbol → +, -, *, /

Figure 2. Describes software under test on the state machines

Figure 2 describes the finite state machine of the calculator.

In figure 2, the initial state is represented by q0. The various

possible state transition from q0 is either a number from 0 to 9

will be pressed, or C that is the reset button is pressed; thirdly,

some operator might be pressed. If C is pressed, the state will

reset to the initial state q0. This has been described by the self-

loop and back loops in the transition diagram. However, if a

number is pressed state is transited to q1, and the display will

show the number or, every time, multiplied by ten and added to

the number. Once the operator is pressed, the system again

changes its state from q1 to q2 and receive another set of number.

If an operator is pressed, the result will be displayed as output

and can be considered the final state of the model.

This state model is coded that can be used to crosscheck the

results generated by the actual software and the model. The test

cases that are to be compared are generated with the help of a

genetic algorithm once the anomaly is identified between the two

models and software that is reported as a fault in the actual

software.

B. Implementation

Figure 3 explains the flow chart for the genetic algorithm.

 No

 Yes

Figure 3. Flowchart of Genetic algorithm

Begin

Population Size(N), No of

generation Gen, Pc,Pm,

Initialize N Individuals to form a

population

Evaluate Fitness & Initialize count to 0

Count! = Gen

Use Genetic operator: Roulette

wheel, Single point crossover with

Pc and Mutation with Pm

Probability

Display the set of

Individuals

End

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6615

Article Received:05 March 2023 Revised: 02 April 2023 Accepted: 24 April 2023

285

IJRITCC | May 2023, Available @ http://www.ijritcc.org

 The model used in this study is developed using the

MATLAB script. The input to this script will be the set of inputs

that are generated by the genetic algorithm. The various

customization of genetic algorithms in view of the problem is

stated below:

1) Encoding Process

Encoding describes the process of representing the problem

of the real world to the search space defined by the algorithms.

In the current problems, the possible events in the case of the

calculator are pressing the buttons of the calculator. These events

can be represented by a unique number which can be easily

coded into binary values; hence each event will have a unique id

that can be represented by four bits. Another challenge is what

should be the size of the test case to keep it small and reasonable;

keep it at 5. Hence the five events will be represented by twenty-

length chromosomes. The initial chromosome was generated

randomly. The mathematical formulation for the fitness values

is:


=

=
||

1

)(
L

i

iWf (1)

In the above equation, the weight values of each event are

computed based on the number of events that is L. The

computation of the weight matrix is described in table II. In this

table II, the events that are the button pressed have been

classified into four categories. The first and third category is the

input in the form of numbers that will be from 0 to 9. Hence total

weight will be the probability of occurrence of the event that is

1/10. Similarly, the other weights are calculated. However,

Operator C is considered to have a weight of 0 as this reset the

state to initial and should be avoided.

TABLE II. DETAILS ABOUT THE DIFFERENT EVENTS AND THEIR WEIGHTS

S. No Category Possible event Weight

assigned

1 Operand A 0,1,2,3,4,5,6,7,8,9 0.1

2 Operator *,-,+,\ 0.25

3 Operand B 0,1,2,3,4,5,6,7,8,9 0.1

4 E.val =,or +,*, \, - 0.20

2) Selection Operator:

After the creation of the test cases using the random

population, their fitness is calculated using the fitness function

defined for the evaluation. Now to differentiate the good solution

from the bad solution, the selection algorithm of the roulette

wheel is proposed. In this approach, relative fitness is taken into

consideration while assigning spaces on the wheel. The good

solution will have higher space on the wheel in comparison to

the bad solution. As the area on the wheel has increased for a

good solution, this ensures a higher probability of selection of

the good solution in comparison to the bad solution. The same

has been described in figure 4.

Figure 4. Describes the roulette wheel with a good solution having a

large area of the wheel

3) Crossover Operator:

The set of two good solutions that represent parents are

selected. To generate the offspring, the single-point crossover is

used. In this approach, random crossover sites are selected, and

the chromosome values of the mixed to generate a pair of

offspring. In general, the generation of offspring from parents is

kept high and is usually kept in the range of 0.7 to 0.9. In the

current study, A value of 0.8 has been entered.

4) Mutation Operator:

As for the evolutionary algorithms, there is always some

external environmental factor, and there is some factor of

adaptation. This adaptation is provided using a mutation

operator. However, this change is slow in nature but can help

when the solution is a struct in the local minima. In the current

study, the rate of mutation is set to 0.2.

5) Termination:

There are two possible grounds for terminating the genetic

algorithm:

a) Using the threshold on fitness function: As the

algorithm explores the new solution, the value of the fitness

function also improves. After each generation, the best

individual fitness is recorded, and once the defined threshold is

reached, the algorithm will exit from the generation cycle and

report the solutions.

b) Using the generation count: In some cases, there is a

probability that the threshold of the fitness function may not be

achieved, which may lead to infinite execution. In order to avoid

such scenarios, the generation number is fixed in advance. In the

current study, this value is set to 20.

IV. RESULT AND DISCUSSION

Following 20 rounds of the genetic algorithm with a 100-

size population, the results of the last iteration have been

recorded; these results will contain the chromosome values,

which are the test cases for testing the software under test.

However, in order to test the software with GUI, the test cases

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6615

Article Received:05 March 2023 Revised: 02 April 2023 Accepted: 24 April 2023

286

IJRITCC | May 2023, Available @ http://www.ijritcc.org

generated will be provided as the input to another software that

will generate the events on the software under test; the software

used here is Autoit. Once the test case is executed, the results

obtained are recorded. At the same time, results are also

generated by the model designed by the tester. The example of

the test case generated for size five chromosome is as follows

0 1 14 2 12

This test case can be read as follows:

0 1 14 2 12

The expression in the calculator is processed if any of the

operators is pressed on the calculator. The results generated from

the calculator will be generated will be recorded in the log files

for further verification of the software behavior. These logged

results are compared with the model. In case of fault, the test

cases with such scenarios will get identified. The auto script used

for GUI testing is given below:
Win_Activate("GUI_Calculator")

Mouse_Click (“left," 31,81)

Mouse_Click (“left," 89,190)

Mouse_Click (“left," 84,149)

Mouse_Click (“left," 188,183)

In the above script, the first command used to start the

application in the windows environment that is GUI_Calculator.

The second command is mouseclick from the left corner to the

mentioned coordinates. The complete script is autogenerated by

the program.

TABLE III. FITNESS-BASED CHROMOSOME RESULT

Ind.

No
G.1 G.2 G.3 G.4 G.5

Fitn

ess

Mod

el

Valu

e

 GUI

Value

11 7 6 15 5 2 0.4 52 52

95 4 12 15 7 5 0.5 75 75

29 4 12 6 9 9 0.6 2796 2796

38 8 3 2 12 1 0.6 832 832

94 14 1 5 2 0 0.6 1520 1520

13 7 8 13 3 9 0.6 2 2

99 13 8 13 9 6 0.7 0 0

58 15 8 9 2 13 0.7 1 1

47 13 4 11 13 0 0.8 E NaN

40 12 6 14 8 12 0.8 64 64

From table III, the best value from the output produced by

the model and GUI are displayed together with the model, and

for division by zero, NaN is displayed. However, the output of

the model is E, which is the opposite of what was expected.

Table III describes the result obtained from the GA-based

approach, which is compared with model-based results. To

understand this table, consider the numbers as the exact number,

and 10 to 14 represents +, -, *, /, =.

In order to compare the performance of the proposed

algorithm, we have implemented the PSO algorithm as stated in

[19]. Both the algorithms were executed on a population size of

100 for 20 iterations. As the heuristic algorithms may not give

the best result in one execution there for ten runs of each of the

algorithm has been executed. The table described below

describes the performance of the algorithm in each run.

TABLE IV. COMPARE THE PROPOSED GA-BASED APPROACH WITH

PSO BASED APPROACH

V. CONCLUSION

GUI testing is one of the crucial tasks for the software

development life cycle. In this paper, we have compared the

performance of GA and PSO using the weighted fitness assigned

to the events. This makes an alternative solution to code

coverage. Similarly, to make the execution fast, we can limit the

number of events by chromosome size. On comparing the

solutions based on the fitness of the genetic algorithm and PSO,

we can observe that the Genetic algorithm is on a higher edge in

comparison to particle swarm optimization. In the future, we can

tune the fitness function to evaluate many events and integrate

the Hadoop environment to perform parallel execution to make

testing faster.

Run

Number

Generation

5

Generation

10

Generation

15

Generation

20

GA PSO GA PSO GA PSO GA PSO

R1 0.5 0.6 0.6 0.6 0.9 0.8 0.8 0.6

R2 0.7 0.6 0.8 0.8 0.7 0.8 0.9 0.8

R3 0.6 0.5 0.7 0.6 0.7 0.7 0.8 0.7

R4 0.6 0.5 0.8 0.8 0.7 0.8 0.9 0.7

R5 0.6 0.6 0.8 0.6 0.8 0.7 0.8 0.9

R6 0.5 0.7 0.7 0.6 0.8 0.8 0.9 0.9

R7 0.7 0.6 0.6 0.6 0.7 0.7 0.8 0.7

R8 0.7 0.6 0.7 0.8 0.8 0.8 0.8 0.7

R9 0.5 0.7 0.7 0.7 0.7 0.7 0.9 0.8

R10 0.6 0.6 0.6 0.7 0.8 0.7 0.9 0.7

Average 0.6 0.6 0.7 0.68 0.76 0.75 0.85 0.75

Standard

Deviation 0.08 0.07 0.08 0.09 0.07 0.05 0.05 0.10

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6615

Article Received:05 March 2023 Revised: 02 April 2023 Accepted: 24 April 2023

287

IJRITCC | May 2023, Available @ http://www.ijritcc.org

REFERENCES

[1] “Software Testing Spends to Hit b[1],100bn by 2014 |

ITOnews.eu.” https://itonews.eu/software-testing-spends/

(accessed Dec. 14, 2022).

[2] Y. Amannejad, V. Garousi, … R. I.-2014 I. S., and undefined

2014, “A search-based approach for cost-effective software

test automation decision support and an industrial case

study,” ieeexplore.ieee.org, pp. 302–311, 2014, doi:

10.1109/ICSTW.2014.34.

[3] V. Garousi and F. Elberzhager, “Test Automation: Not Just

for Test Execution,” IEEE Softw., 2017, doi:

10.1109/MS.2017.34.

[4] V. Garousi, E. Y.-2018 I. I. C. on, and undefined 2018,

“Introducing automated GUI testing and observing its

benefits: an industrial case study in the context of law-

practice management software,” ieeexplore.ieee.org, 2018,

doi: 10.1109/ICSTW.2018.00042.

[5] “5 Reasons Why Test Automation Can Fail | Thoughtworks.”

[6] V. Garousi and E. Yildirim, “Introducing automated GUI

testing and observing its benefits: An industrial case study in

the context of law-practice management software,” Proc. -

2018 IEEE 11th Int. Conf. Softw. Testing, Verif. Valid.

Work. ICSTW 2018, no. April, pp. 138–145, 2018, doi:

10.1109/ICSTW.2018.00042.

[7] I. G. Harris, “Fault models and test generation for hardware-

software covalidation,” IEEE Des. Test Comput., vol. 20, no.

4, pp. 40–47, 2003, doi: 10.1109/MDT.2003.1214351.

[8] M. Vieira, J. Leduc, B. Hasling, R. Subramanyan, and J.

Kazmeier, “Automation of GUI testing using a model-driven

approach,” Proc. - Int. Conf. Softw. Eng., pp. 9–14, 2006,

doi: 10.1145/1138929.1138932.

[9] Q. X.-P. of the 28th international conference on and

undefined 2006, “Developing cost-effective model-based

techniques for GUI testing,” dl.acm.org, Accessed: Dec. 14,

2022. [Online]. Available:

https://dl.acm.org/doi/abs/10.1145/1134285.1134473

[10] A. M. Memon, “An event-flow model of GUI-based

applications for testing,” Softw. Test. Verif. Reliab., vol. 17,

no. 3, pp. 137–157, 2007, doi: 10.1002/stvr.364.

[11] A. M.-P. of T. O. 2004 workshop on and undefined 2004,

“Developing testing techniques for event-driven pervasive

computing applications,” cs.umd.edu, Accessed: Dec. 14,

2022. [Online]. Available:

http://www.cs.umd.edu/~atif/pubs/MemonBSPC2004.pdf

[12] H. Reza, S. Endapally, and E. Grant, “A model-based

approach for testing GUI using hierarchical predicate

transition nets,” Proc. - Int. Conf. Inf. Technol. Gener. ITNG

2007, no. April, pp. 366–370, 2007, doi:

10.1109/ITNG.2007.9.

[13] D. Berndt, J. Fisher, L. Johnson, J. Pinglikar, and A. Watkins,

“Breeding software test cases with genetic algorithms,” in

36th Annual Hawaii International Conference on System

Sciences, 2003. Proceedings of the, 2003, p. 10 pp. doi:

10.1109/HICSS.2003.1174917.

[14] A. Sheta, “Reliability Growth Modeling for Software Fault

Detection Using Particle Swarm Optimization,” in 2006

IEEE International Conference on Evolutionary

Computation, pp. 3071–3078. doi:

10.1109/CEC.2006.1688697.

[15] H. S. H. Khin, C. YoungSik, and S. P. Jong, “Applying

particle swarm optimization to prioritizing test cases for

embedded real time software retesting,” Proc. - 8th IEEE Int.

Conf. Comput. Inf. Technol. Work. CIT Work. 2008, pp.

527–532, 2008, doi: 10.1109/CIT.2008.Workshops.104.

[16] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De

Carmine, and A. M. Memon, “Using GUI ripping for

automated testing of android applications,” 2012 27th

IEEE/ACM Int. Conf. Autom. Softw. Eng. ASE 2012 - Proc.,

pp. 258–261, 2012, doi: 10.1145/2351676.2351717.

[17] P. Godefroid et al., “Automating Software Testing Using

Program Analysis,” IEEE Softw., vol. 25, no. 5, pp. 30–37,

Sep. 2008, doi: 10.1109/MS.2008.109.

[18] R. L. Becerra, R. Sagarna, and X. Yao, “An evaluation of

differential evolution in software test data generation,” 2009

IEEE Congr. Evol. Comput. CEC 2009, pp. 2850–2857,

2009, doi: 10.1109/CEC.2009.4983300.

[19] K. Senthil Kumar and A. Muthukumaravel, “Optimal test

suite selection using improved cuckoo search algorithm

based on extensive testing constraints,” Int. J. Appl. Eng.

Res., vol. 12, no. 9, pp. 1920–1928, 2017.

http://www.ijritcc.org/

