
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6602

Article Received: 22 February 2023 Revised: 24 March 2023 Accepted: 15 April 2023

160

IJRITCC | May 2023, Available @ http://www.ijritcc.org

An Intelligent Framework for Estimating Software

Development Projects using Machine Learning

Prateek Srivastava1, Nidhi Srivastava2, Rashi Agarwal3 and Pawan Singh4

1,2 Amity Institute of Information Technology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
3Department of Computer Science and Engineering, Harcourt Butler Technical University, Kanpur, India

4Department of Computer Science and Engineering, ASET, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
1 prateeksri976@gmail.com , 2 nsrivastava2@lko.amity.edu ,3 dr.rashiagrawal@gmail.com, 4 psingh10@lko.amity.edu

Abstract: The IT industry has faced many challenges related to software effort and cost estimation. A cost assessment is conducted after

software effort estimation, which benefits customers as well as developers. The purpose of this paper is to discuss various methods for the

estimation of software effort and cost in the context of software engineering, such as algorithmic methods, expert judgment methods, analogy-

based estimation methods, and machine learning methods, as well as their different aspects. In spite of this, estimation of the effort involved in

software development are subject to uncertainty. Several methods have been developed in the literature for improving estimation accuracy, many

of which involve the use of machine learning techniques. A machine learning framework is proposed in this paper to address this challenging

problem. In addition to being completely independent of algorithmic models and estimation problems, this framework also features a modular

architecture. It has high interpretability, learning capability, and robustness to imprecise and uncertain inputs.

Keywords: Software Engineering, Software Project Estimation, Machine Learning, Effort and Cost Estimation.

I. INTRODUCTION

Estimating software projects is a critical and challenging

aspect of software development that can be extremely

complicated. It is difficult to make an accurate assessment of

software development during the early stages of a project. This

is due to the many uncertainties associated with inputs such as

changes in requirements, platform changes, size of the project,

budget constraints, complexity, etc. To meet the competitive

demands of today's industry, it is imperative to estimate

software effort early in the development process. The

procedure of software effort estimation consists of estimating

the amount of effort that will be required to finish a particular

software project based on the amount of time required. Several

studies in the literature have used interchangeably the terms

"software effort estimation" and "estimation of software

costs". In contrast, the estimation of software costs is a direct

result of software effort estimation [1].

There is a growing need for updated, reliable, high-quality

software that is easy to use, inexpensive, and delivered in a

short period of time. Hence, it is the client's or developer's

responsibility to perform a cost-benefit analysis. An analysis

of the estimation is converted into dollars. Since the demand

for software effort estimation has increased in the industry, it

has become a critical task to be performed during the early

stages of development. Successful software project

management relies heavily on accurate effort estimations [2].

Overestimating and underestimating depend on the allocation

of resources as overestimating is the allocation of excessive

resources, and underestimating is the allocation of insufficient

resources. The ability to predict effort accurately allows risks

to be reduced.

Among the branches of AI, machine learning is significant. It

has been widely used since 1991 to estimate the development

effort of software using Machine Learning. Based on the

information that we have gathered from previously completed

projects, machine learning allows us to perform estimations

[3]. With the implementation of this methodology, experts will

be less involved in estimating upcoming projects. It will be

more likely that they will spend more time on those aspects of

the software system that are likely to satisfy the customer. The

accuracy of these predictions has, however, only been studied

extensively in the last decade to compare them with various

methods (algorithmic models, expert judgment, etc). With the

development of machine learning techniques, the use of

algorithmic models (non-machine learning techniques) has

decreased.

II. RELATED WORKS

Leonardo Villalobos, et al., investigates the impact of random

search hyperparameter tuning on SVR accuracy and stability

in SEE. The results were compared between the grid search-

tuned models and the ridge regression models. Random search

is comparable to grid search based on the results of an analysis

of four data sets from the ISBSG 2018 repository. Compared

to tuning hyperparameters, this is an attractive solution. SVR

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6602

Article Received: 22 February 2023 Revised: 24 March 2023 Accepted: 15 April 2023

161

IJRITCC | May 2023, Available @ http://www.ijritcc.org

with RS-tuned hyperparameters achieved a 0.227% increase in

standardized accuracy compared to SVR using default

hyperparameters. In addition to SVR models, random search

also achieved a 0.840 ratio. SVRs tuned using RS and GS

were comparable in performance [4].

Passakorn Phannachitta, used Bayesian optimization technique

to optimize software effort estimators on 13 standard

benchmark datasets, all of which were fully optimized. The

performance metrics and statistical tests used for comparison

were robust. Adopting a combined effort adapter seems to be

an effective strategy for improving analogy-dependent

estimation accuracy. A traditional adaptation technique based

on productivity adjustment and the Gradient Boosting

Machine model performed best in the study when it was

integrated with an analogy-oriented model. The model

outperformed both state-of-the-art algorithmic-based

techniques as well as analogy-based and machine learning-

based techniques [5].

P.Suresh Kumar, et al., examine how ANN algorithms such as

higher-order neural networks, basic neural networks, and deep

learning networks could be applied to estimate software effort.

The purpose of this paper was to compare qualitative and

quantitative analyses of software effort estimation papers. A

survey was also conducted on the following topics: the most

widely used datasets for prediction, the most frequently used

hybrid algorithms for prediction, and the most commonly used

evaluation measures, namely the MMRE, MdMRE, and MRE

[6].

Israr ur Rehman, et al., examined five different machine

learning techniques in this paper. The study examines how

machine learning methods perform when estimating software

effort using seven standard data sets. In addition to MMRE

and PRED (25), the R2-score is used to rate the effectiveness

of the different approaches [7]. Based on all three metrics,

decision tree-based techniques produce more accurate results

for Desharnais, COCOMO, China, and Kitchenham. A ridge

regression method performed better than other methods on

both the Albrecht and NASA datasets, with decision trees

beating ridge regression for pred (25).

P.Suresh Kumar, et al., proposed a robust method for

analyzing regression data based on gradient-boosting

regressors. Using COCOMO’81 and CHINA data sets, the

performance of the regression models is compared. Various

evaluation metrics are applied to evaluate regression models,

like MAE, MSE, RMSE, and R2. Gradient boosting regressors

performed well based on the results obtained from the two

datasets, yielding accuracy of 98% and 93%, respectively.

Compared to all regression models used for these datasets, the

proposed method performs significantly better [8].

Amir Karimi, et al., presented a novel approach to fuzzy

inference utilizing a hybrid approach combining a fuzzy

inference system based on applied neural networks (ANFIS)

and a methodology known as differential evolution (DE). As

part of this investigation and development process, the

assessment criteria for testing and comparing the ANFIS-DE

algorithm with other well-known algorithms were thoroughly

investigated and applied, such as GAs, SBOs, and neuro-

adaptive systems. Using MMRE and PRED (0.25) criteria, the

proposed method improved accuracy by up to 7% when

compared to other algorithms in this study [9].

Robert Marco, et al., determined the hyperparameters of the

model using Bayesian optimization, which employs the

AdaBoost ensemble learning method and random forest. To

build the SEE model, they used the PROMISE repository as

well as the ISBSG dataset. An extensive comparison of the

developed model was conducted under three-fold cross-

validation with four machine-learning algorithms. This

comparison shows that the RF approach based on AdaBoost

ensemble learning and Bayesian optimization performs better

than the previous one. It also assigns a value to feature

importance, making it a promising tool for predicting software

effort [10].

K Nitalaksheswaro Rao, et al., proposed a novel learning-

based model called Optimized Learning-based Cost

Estimation (OLCE) which can provide accurate cost

predictions for both global projects and large-scale ones.

Based on the benchmarked COCOMO NASA 2 dataset, the

proposed system optimizes the learning method by integrating

artificial neural networks with new search methodologies. As a

result of the research, OLCE demonstrated approximately 73%

accuracy and 50% faster response time than existing models

that are said to be adopted for SCE. It can therefore be

concluded that OLCE is a cost-effective and accurate method

for SCE [11].

Maedeh Dashti, et al., proposed a novel method for optimizing

feature weighting based on the LEM algorithm. This paper

presents an approach to optimizing the weights of analogy-

based estimation that relies on a learnable evolution model. To

investigate this algorithm's effectiveness, two datasets were

used in this study, Desharnais and Maxwell. In addition to

MMRE and PRED (0.25), MdMRE criteria were used to

compare the proposed method with others [12].

III. TECHNIQUES USED FOR ESTIMATION

The practice of estimation is considered one of the most

challenging tasks in the software industry. The following

sections summarize some methods for estimating software

effort. There are three main categories of these approaches. In

this section, we will discuss algorithmic approaches, non-

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6602

Article Received: 22 February 2023 Revised: 24 March 2023 Accepted: 15 April 2023

162

IJRITCC | May 2023, Available @ http://www.ijritcc.org

algorithmic approaches, and machine learning approaches

[13].

3.1 An Algorithmic approach

Cost estimation for software projects is based on mathematical

equations. Cost estimates for software projects are determined

by project type, size, attributes, procedures, and team

members. The use of algorithmic techniques has allowed the

development of various models, including the FPBA, Putnam's

model, and the COCOMO model [14].

3.1.1 Function Point Based Analysis (FPBA)

By analysing the functions that a software system provides to

the user, Function Point Analysis (FPBA) calculates its

complexity and size. Tools or languages used to develop the

software project are used to define its functionality. As a

measure of the size of a system, FPBA overrides some of the

major problems associated with Lines of Code (LOC)

measurements. Function points are independent of the tools,

languages, or procedures that are used during processing; in

other words, they do not depend on processor hardware,

database management systems, programming languages, or

any other technology used during processing [15]. It is also

possible to estimate function points based on the specifications

of the design or the requirements. This makes it possible to

estimate the development effort at the beginning of the project.

3.1.2 Putnam’s Model

The model is derived from Rayleigh/Norden's allocation of

manpower and analysis of a number of completed projects

[13].The software equation defines Putnam's model as follows:

𝑆=𝐸∗𝐸𝑓𝑓𝑜𝑟𝑡1/3∗ 𝑡𝑑4/3 (1)

Software delivery time is td, and E is the external factor that

reproduces the competence of a developer, which can be taken

from historical data using software equations. The effort is

measured in person-years and the size of S is in lines of code.

Putnam also established an essential relation.

𝐸𝑓𝑓𝑜𝑟𝑡= 𝐷0∗ 𝑡𝑑3 (2)

Manpower build-up parameter D0 is set to 8 for newly

developed software and 27 for remodelled software.

Preparation and SLIM (Software Living Management) often

utilize Putnam's model. Manpower planning and estimation

are handled by SLIM using Putnam's model.

3.1.3 COCOMO (Constructive Cost Model)

Barry Boehm introduced the CONSTRUCTIVE COST

MODEL. The model estimates project development efforts

based on a group of models. Cost and time are estimated in

COCOMO based on lines of code and system complexity.

COCOMO also considers project attributes, hardware,

assessments of the production process, and other factors. The

quality of software products is defined by two parameters of

the COCOMO model, such as effort calculation and

development time. In order to estimate the effort required to

complete a task, the number of people involved must be taken

into consideration. The unit of measurement is person-month.

Development time is the amount of time needed to complete a

task. It is expressed in months, weeks, and days. Cost

estimations at the different levels of software products can be

calculated using COCOMO models of various types [16].

3.2 Non-Algorithmic Approach

This approach is used to estimate initial design experience and

design requirements. Non-algorithmic models are able to

estimate using previous experience and projects, similar to

underestimation projects. The following are some examples of

non-algorithmic approaches.

3.2.1 Expert Judgement

Cost estimation for software projects is frequently generated

using expert judgment (EJ) techniques. Predicting the cost of

upcoming products requires estimations based on a variety of

assumptions and judgments [17]. Estimating software project

costs is actually done by tapping into groups, characters, or

groups of people with expert knowledge using EJ. Expert

judgement relies on knowledge, experience, and motivation

from experts, as well as on a discussion between analysts and

experts within the area of expertise. EJ estimates the cost of

software projects based on past experience. The expert utilizes

his or her experience from previous projects to assist in the

planned project using the EJ method. Methods based on EJ

may be used to measure variances between past and upcoming

programs. These methods are especially useful in the case of

new programs without any previous examples.

3.2.2 Analogy Based Estimation

There are many forms of Case-Based Reasoning (CBR), and

one of them is Analogy-based cost estimation (ABE). A case

is defined as a partial event in both space and time, a notion of

a specific set of events [18]. It is evident that the ABE method

of cost estimation for software projects can be applied in most

cases. This is because it relies on past information provided by

comparable projects, and that comparisons are made by

comparing the significant attributes and features of the

projects. ABE can be used for estimation by following these

steps:

1. Projects are categorized as planned.

2. An historic database is used to choose the exact comparable

finalized project which has the same attributes.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6602

Article Received: 22 February 2023 Revised: 24 March 2023 Accepted: 15 April 2023

163

IJRITCC | May 2023, Available @ http://www.ijritcc.org

It is better to use ABE in the early phases of projects when

there is limited information available. It is a simple and easy

method that takes less time. Due to the method's reliance on

historical project records, the success rates of an organization

are likely to be high.

3.2.3 Bottom Up and Top-Down Approach

A top-down or bottom-up approach may be used in EJ

software development. An effort estimate could be based on

the project's possessions, divided into activities, or estimated

as the sum of the estimates for each activity (bottom-up) [19].

Top-down estimation is used for the entire SCE, which is

distributed into various subsidiary sections of the project. Cost

estimation of software projects is generally faster and easier

with this method since it requires the least amount of

information. Documentation, integration, configuration, and

other system-level activities are considered in this method.

3.3 Machine Learning

In software development, machine learning (ML) techniques

are becoming more popular. Mathematical models are a part of

artificial intelligence (AI) that identify patterns in data and

arrive at conclusions based on the data [20]. By using such

algorithms, some information can be derived from the input

(training data) that can be used to examine newly generated

data (test data). Several techniques for machine learning exist,

such as supervised learning, in which input-output mappings

for a set of training data have prior knowledge; algorithm

learning that occurs without labelled data is unsupervised

learning, and reinforcement learning (reward learning

approach).

3.3.1 Approaches of Machine Learning

Machine Learning technologies are used in software industry

to give an effective prediction or decision support. The various

Machine Learning methods are illustrated in figure 1.

Figure 1 Different methods of Machine Learning

3.3.1.1 Supervised Learning

This type of learning requires the assistance of a supervisor or

teacher. The supervisor provides the labeled data necessary to

construct the model and generate test results. Learning occurs

in two stages when using supervised learning algorithms.

Student masters the information presented by the teacher at the

beginning of the first stage. Information is received and

understood by the student. At this stage, the teacher is unaware

of whether a student is able to comprehend the information.

A second phase of learning occurs during this stage. In order

to determine how much information has been absorbed by a

student, the teacher asks a series of questions. Students are

assessed based on these questions, and they are informed

about their results by their teachers. Typically, this type of

learning is referred to as supervised learning [21].

There are two approaches to supervised learning:

1. Classification

2. Regression

Classification

In the field of artificial intelligence, classification is a method

of supervised learning. Classification algorithms use

independent variables to determine input attributes. A label or

dependent variable represents the target attributes. A

classification model describes how input variables are related

to target variables through a structure. There are two stages

involved in classification learning. In the initial stage of

learning, the learning algorithm takes the labelled datasets and

begins to learn, and then the model is generated after the

samples have been processed. A model constructed in the first

stage is tested with a test or unknown sample in the second

stage and an appropriate label is assigned to it. This is the

process of classification.

Regression

A regression model predicts a continuous variable, such as

price, unlike a classification algorithm. To put it simply, it is a

numerical value. In a regression model, input x is transformed

into a fitted line of the form y=f(x). There is an independent

variable Y which controls the outcome of the study while a

dependent variable is X.

3.3.1.2 Unsupervised learning

It is also possible to learn by self-instruction, which is one of

the two types of learning. There is no supervisory or teaching

component, as implied by the name. Learning is most often

accomplished by self-instruction when a supervisor or teacher

is not available. Using a trial-and-error method of instruction,

this process is conducted [22].

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6602

Article Received: 22 February 2023 Revised: 24 March 2023 Accepted: 15 April 2023

164

IJRITCC | May 2023, Available @ http://www.ijritcc.org

There are objects provided for the program, however no labels

have been defined. Based on the principles of grouping, the

algorithm observes examples and recognizes patterns. Objects

are grouped in such a way that they are related to one another.

An example of an unsupervised algorithm would be cluster

analysis and dimension reduction.

Cluster analysis

Unsupervised learning is illustrated by cluster analysis. By

clustering or grouping objects, it tries to group them together.

An object is clustered based on its attributes using cluster

analysis. Data objects in different partitions vary from each

other significantly, while some are similar.

Dimensionality reduction

An example of an unsupervised algorithm is a dimension

reduction algorithm. By utilizing the variance of the data, it

takes a high-dimensional dataset and outputs it in a lower-

dimensional dataset. It consists of reducing the dataset to a

small number of features while maintaining generality.

3.3.1.3 Semi-supervised learning

There are instances in which a dataset contains a large amount

of unlabelled data and a few labelled data. Humans have

difficulty performing labelling because it is very costly and

time-consuming. By assigning a pseudo-label to unlabelled

data, semi-supervised algorithms generate output using

unlabelled data [23]. Once the datasets have been labelled and

pseudo-labelled, they can then be combined.

3.3.1.4 Reinforcement learning

A reinforcement learning system mimics the way that humans

learn. A reinforcement learning agent interacts with its

environment in order to receive rewards [23]. This is in the

same way that humans use their ears and eyes to perceive the

world and act upon it. There can be many types of agents,

including humans, animals, robots, or even non-human

programs. Agents gain experience through rewards.

Maximizing rewards is the objective of an agent. A reward

could be a positive one (reward) or a negative one

(punishment). It is easier to learn when the rewards are more

appealing.

IV. PROPOSED ESTIMATION FRAMEWORK

It is possible to determine software development effort and

cost using the proposed estimation methodology which is

presented in figure 2. To estimate the effort and costs involved

in developing software, this provides a structured approach to

managing and planning the project.

4.1 Identification of Experimental Dataset

It is challenging to begin a research project without accurate,

complete, and relevant data from experimental datasets that

meet all industry standards. It is crucial to collect and prepare

data carefully. We should make sure that all the data files

concerned are in the most recent version before documenting a

dataset.

Users commonly encounter the following problems with their

data:

1. Records in the dataset cannot be uniquely identified by

variables.

2. Observations that are duplicated.

3. A merge of multiple datasets may result in errors.

4. Comparing the contents of the survey questionnaire with

the content of the data files produced incomplete results.

5. Data that is not labelled.

6. Missing values in variables.

7. A data file that contains unneeded or temporary variables.

8. Direct identifiers or sensitive data.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6602

Article Received: 22 February 2023 Revised: 24 March 2023 Accepted: 15 April 2023

165

IJRITCC | May 2023, Available @ http://www.ijritcc.org

Experiments should use high-quality datasets that have well-

defined details, which are appropriate for software estimation.

Machine learning deep learning algorithms are trained using

software estimation experimental datasets. To obtain relevant

and appropriate data, it is necessary to identify them from

publicly available repositories [24]. Below is a list of some

software estimation datasets.

Table 1 Experimental Datasets for Estimation in Software

development

Datasets Number of Attributes Records

Albrecht 8 24

China 19 499

Cocomo81 19 63

Desharnais 12 81

Maxwell 27 62

Nasa93 24 93

ISBSG16 264 7518

Kitchenham 10 145

Kemerer 8 15

Miyazaki94 9 48

Finnish 9 38

We must choose one experimental dataset from Table 1 to

proceed further.

4.2 Data Understanding and Preparation

The process of interpreting data involves reviewing data and

applying different analytical techniques to draw relevant

conclusions from it. To answer pertinent questions, data

interpretation is used to categorize, manipulate, and

summarize information. A variety of data sources may be used

to gather data, and these data tend to arrive in haphazard order

at the beginning of the estimation process. Interpreting data

properly is of paramount importance, so it must be performed

correctly. Cleansing, transforming, and reducing data are the

three main steps of data preparation.

4.2.1 Selection and Cleaning

A crucial part of machine learning is data cleaning. It has a

significant role to play in the creation of a model. Clean data is

crucial to the success of a project. In order to make their work

more efficient, data scientists tend to spend a great deal of

time on this step since they believe "Good data is more useful

than fancy algorithms”. Clean datasets often allow us to

achieve accurate results with simple algorithms as well, which

can be very useful if we need to compute very large datasets.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6602

Article Received: 22 February 2023 Revised: 24 March 2023 Accepted: 15 April 2023

166

IJRITCC | May 2023, Available @ http://www.ijritcc.org

Our model will perform better if we carefully choose the input

we need and delete duplicate and redundant columns. Using

appropriate data types can conserve memory by transforming

numerical data into integers.Data from experiments determine

how incomplete information is resolved. It may be necessary

to investigate imputation, which replaces absent values with

placeholders or other values based on assumptions.

4.2.2 Transformation of data

Transforming data means converting it from one scale to

another. Our model must be implemented so that a significant

increase in accuracy can be achieved. Transformation is

therefore avoided when datasets behave as if they have already

been refined. Machine learning models cannot handle data

without completing certain data transformation stages. There

are several steps in this process: removing string formatting,

carriage returns, gaps at the beginning and end of entries,

monetary symbols, and more. A phrase becomes less

understandable for people if textual and other letters are

deleted. However, an algorithm can digest the data more

efficiently.

Transformation of data begins with identifying the data types,

sources, and structures; determining how the transformations

should be structured; and defining how fields will be

aggregated or changed. The process involves extracting and

transforming data from its original source.

4.2.3 Data Reduction

In data reduction, the original volume of the data is reduced,

and it is represented as a much smaller amount than before.

The integrity of data is ensured while the data is reduced

through data reduction techniques. The goal of data reduction

is to make it more compact. The application of sophisticated

and computationally expensive algorithms is easier when the

data size is smaller. Data reduction can be carried out by

reducing the number of rows (records) or columns

(dimensions).

To reduce data, there are several strategies available, including

the following:

● Aggregation of data cubes.

● Selecting attributes from a subset.

● Choosing from a variety of options, etc.

4.3 Machine Learning

Once the experimental data has been refined and cleaned to

meet the desired standards, the next step is to estimate the

effort and cost associated with this evaluation. It is possible to

reduce software development risk by using machine

learning/deep learning in estimation [25]. This can improve

software development project planning, improve project

efficiency, and increase project success.

4.3.1 Data Pre-processing

During the pre-processing stage, raw input data is corrected,

refined, and converted into a format that is useful for the

learning process. Alternatively, the process of enhancing raw

data by adjusting, cleaning, and converting it into enhanced

refined forms is known as pre-processing. Machine learning /

deep learning models may be adversely affected by unreliable

data. It is possible that inaccurate and inconsistent results may

result from poor data quality, especially if there are missing

records or outliers.

Data preparation involves removing unwanted information,

such as duplicate observations, observations with irrelevant

information, and observations without information. We

transform refined data if the set of records is biased or skewed

after removing unwanted information.

There are numerous approaches and techniques available for

cleaning data and preparing experimental datasets, but only

those that meet our requirements can be chosen for

implementation.

4.3.1.1 Machine Learning Expert

To select the appropriate ML/DL algorithm as part of machine

learning methodologies, experts from interdisciplinary fields

are required to provide human intervention in the process.

These experts are called ML experts. There is the participation

of machine learning experts in the methodologies of machine

learning. Their expertise in designing ML systems as

professionals provides them with a unique perspective on their

potential and limitations. Data are reviewed and analysed by

experts in the field of machine learning in order to determine

the most effective frameworks, correlations, and

characteristics. Due to the lack of experience and capabilities

associated with the ML system's solution, the involvement of

ML professionals is essential. The use of DL techniques does

not require human intervention.

4.3.2 Machine Learning Deep Learning Techniques

As humans learn from experience, machines learn from data

through machine learning algorithms. Data patterns are

recognized directly by machine learning algorithms, without

relying on a predetermined equation for modelling. In contrast,

deep learning is used to process unlabelled or unstructured

data. Therefore, it is capable of automatically detecting

differences between different categories of data.

This phase is crucial to the estimation process as it

incorporates ML/DL techniques. Machine learning estimates

software using a variety of approaches and technologies.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6602

Article Received: 22 February 2023 Revised: 24 March 2023 Accepted: 15 April 2023

167

IJRITCC | May 2023, Available @ http://www.ijritcc.org

Statistical inference, appraisal, and forecasting of experimental

results are possibilities enabled by Deep Learning/Machine

Learning techniques. Software estimation using Machine

Learning and Deep Learning has been developed using several

algorithms. There is a difference between Deep Learning and

Machine Learning in terms of their capabilities. These

algorithms perform the following actions in the following

pattern:

(1) Dataset division

(2) Feature extraction and selection

(3) Selection of appropriate ML/DL algorithm.

4.3.2.1 Dataset Division

Data can be used to train machine learning models, which can

then be used to generate predictions based on new data. Divide

the dataset according to the following steps:

Step 1: We select a dataset for experimentation.

Step 2: Training and testing datasets are now divided, such as

80% or 75% for training and 20% or 25% for testing. As a

rule, these are the standard ratios.

Step 3: There are two partitioned datasets: a training one and a

testing one. We may use the training dataset to perform the

next stage of feature extraction and selection. A testing dataset

enables the machine learning model to be evaluated in the

future after it has been trained.

Step 4: Data pre-processing is an essential and inevitable part

of training dataset preparation.

4.3.2.2 Feature Extraction and Selection

As part of feature extraction, attributes are retrieved from the

data. The selection of attributes is accomplished by converting

relevant attributes into sets and groups, as well as determining

which attributes have meaningful relationships between

entities. It is possible to generate customized attributes by

combining raw/provided attributes.

This process involves developing novel features from the

existing ones in a dataset and discarding the original features

to reduce the number of features in the data. Using

regularization techniques instead can result in a variety of

additional benefits, including increased accuracy during model

training and a reduction in overfitting risk.

4.3.2.3 Selection of appropriate ML/DL Algorithm

A rule-based approach for selecting appropriate algorithms

was developed by Machine Learning experts to analyse

estimates in software development. We use machine learning

techniques in this selection phase to enable prediction.

However, when we require both prediction and transfer

learning in the future, we can use other techniques such as

deep learning. Large or complex data sets might require deep

learning approaches.

In comparison to existing individual machine learning or deep

learning models, ensemble techniques provide more accurate

results. An ensemble approach is a method of providing better

results by combining multiple models (also known as base

learners). The prediction performance is improved by training

different types of learning machines and combining them.

K-fold cross-validation is also possible if the available

experimental attributes in the data are all required, but they are

still overfitting the model. In ML/DL models, we must split

data samples into groups in the training phase, so we select the

K number of best-performing algorithms. By applying cross-

validation to an experimental data set, we can determine

accuracy and positive predictive rates.

4.3.3 Evaluation Criteria

At this stage, we will measure model performance with MAE,

MMRE, RMSE, PRED and R2. Performance evaluation

metrics are listed below.

4.3.3.1 Mean Absolute Error (MAE)

An effective way of measuring evaluation criteria is through

MAE. The equation below indicates the average of absolute

errors between actual and projected efforts [13].

(3)

For each test data, AEi is the original value found in the

dataset. Using the created model, PEi is the resulting output.

The test set has TP records.

4.3.3.2 Mean Magnitude Relative Error (MMRE)

Software prediction models are mostly compared using

MMRE. We select the most appropriate model based on

MMRE [13].

(4)

Where the test set size is equal to N.

4.3.3.3 Mean Squared Error (MSE)

MSE measures how close the regression line is to the data

points by taking the projected value into account. By doing

this, we avoid the unfairness inherent in residual square sums.

Our estimation errors are calculated using the MSE equation,

which uses both the model's actual output and its prediction

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6602

Article Received: 22 February 2023 Revised: 24 March 2023 Accepted: 15 April 2023

168

IJRITCC | May 2023, Available @ http://www.ijritcc.org

[13]. An error variation will be smaller if the MSE value is

smaller.MSE can be determined mathematically using the

following equation.

(5)

Where the test set size is equal to n.

4.3.3.4 Prediction (PRED (x))

The predictive performance of a regression model should be

measured to determine if it is superior to its competitors.

(1) Use different performance indicators to compare models.

(2) Evaluate the results of the measures outlined above.Below

is an equation that illustrates how to determine PRED(x)

mathematically [13].

(6)

There are N projects, where 'MRE' represents the percentage

of projects with MREs less than or equal to x. It is possible

that x could be 0.25, 0.50, 0.75, or 1.0. In a scenario where x is

0.50, PREDs (0.50) are projects with MREs under 50%.

4.3.3.5 Squared coefficient of correlation (R²)

We will examine the performance of the model at this stage by

calculating the Squared Correlation Coefficient (R2). The

equation below shows the performance evaluation metrics

[26].

(7)

For each estimated point, the first summation is per

appropriate point divided by N.

4.3.4 Experts from Interdisciplinary Fields

Interdisciplinary experts pass on the results obtained from the

performance metrics to the machine learning steps. Results are

assessed by experts in various fields. The ML model is tuned

to predict effort and costs more accurately based on the

evaluation of the findings.

4.4 Estimation Result

Studies done with experimental data are summarized in the

results section, as well as how these studies supersede

previous studies. Estimated results are matched with actual

entities at each step of the estimation process, while

proficiency is matched using evaluation criteria. As a further

step, any additional improvements or threats to the study may

be added for better prediction of software effort and cost

estimation.

V. CONCLUSION

Project managers need to estimate efforts in order to allocate

resources effectively and manage time effectively during the

development process. Initially, estimation was performed

using both algorithmic and non-algorithmic approaches. This

study explores the possibility of predicting software project

effort and costs through machine learning and deep learning

approaches. When provided with accurate, large, and well-

labelled data, ML models perform well, however, an

inefficient dataset reduces their performance. ML model

performance can be improved by using this scenario as the

foundation. Data division, data pre-processing, and the

algorithms used in the ML model also shape the model's

performance. In ML models, the variance of performance is

heavily influenced by the steps and phases. It may not be

possible for the model to give a 100 percent accurate

prediction; however, it can provide some useful estimations.

REFERENCES

[1] Jadhav, A. G., Kaur, M., & Akter, F. (2022). Evolution of

Software Development Effort and Cost Estimation Techniques:

Five Decades Study Using Automated Text Mining Approach.

Mathematical Problems in Engineering, 2022, 1–17.

https://doi.org/10.1155/2022/5782587

[2] Nassif, Ali Bou, et al. (2022). On The Value of Project

Productivity for Early Effort Estimation. Science of Computer

Programming, vol. 219, Elsevier BV. p. 102819.

https://doi.org/10.1016/j.scico.2022.102819

[3] Hameed, S., Elsheikh, Y., & Azzeh, M. (2022). An optimized

case-based software project effort estimation using genetic

algorithm. Information & Software Technology, 153, 107088.

https://doi.org/10.1016/j.infsof.2022.107088

[4] Villalobos-Arias, L., Quesada-López, C., Guevara-Coto, J.,

Martinez, A., & Jenkins, M. (2020). Evaluating hyper-

parameter tuning using random search in support vector

machines for software effort estimation. Predictive Models in

Software Engineering. https://doi.org/10.1145/3416508.

3417121

[5] Phannachitta, P. (2020). On an optimal analogy-based software

effort estimation. Information & Software Technology, 125,

106330. https://doi.org/10.1016/j.infsof. 2020.106330

[6] Kumar, P. S., Behera, H. S., K, A. K., Nayak, J., & Naik, B.

(2020). Advancement from neural networks to deep learning in

software effort estimation: Perspective of two decades.

Computer Science Review, 38, 100288.

https://doi.org/10.1016/j.cosrev.2020.100288

[7] Ali, Z., Rehman, I. U., & Jaan, Z. (2021). An Empirical

Analysis on Software Development Efforts Estimation in

Machine Learning Perspective. Distributed Computing and

Artificial Intelligence, 10(3), 227–240. https://doi.org/

10.14201/adcaij2021103227240

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6602

Article Received: 22 February 2023 Revised: 24 March 2023 Accepted: 15 April 2023

169

IJRITCC | May 2023, Available @ http://www.ijritcc.org

[8] Kumar, P. S., Behera, H. S., Nayak, J., & Naik, B. (2021). A

pragmatic ensemble learning approach for effective software

effort estimation. Innovations in Systems and Software

Engineering, 18(2), 283–299. https://doi.org/ 10.1007/s11334-

020-00379-y

[9] Karimi, A., & Gandomani, T. J. (2021). Software development

effort estimation modeling using a combination of fuzzy-neural

network and differential evolution algorithm. International

Journal of Power Electronics and Drive Systems, 11(1), 707.

https://doi.org/10.11591/ijece.v11i1. pp707-715

[10] Marco, R., Ahmad, S., & Ahmad, S. (2022). Bayesian

Hyperparameter Optimization and Ensemble Learning for

Machine Learning Models on Software Effort Estimation.

International Journal of Advanced Computer Science and

Applications, 13(3). https://doi.org/10.14569/ijacsa.2022.

0130351

[11] Rao KN, Bolla JV, Mummana S, et al. (2022). OLCE:

Optimized Learning-based Cost Estimation for Global

Software Projects. Research Square. DOI: 10.21203/rs.3.rs-

2024296/v1.

[12] Dashti, M., Gandomani, T. J., Adeh, D. H., Zulzalil, H., &

Sultan, A. B. (2022). LEMABE: a novel framework to improve

analogy-based software cost estimation using learnable

evolution model. PeerJ, 7, e800. https://doi.org/10.7717/peerj-

cs.800

[13] Srivastava, P., Srivastava, N., Agarwal, R., & Singh, P. K.

(2022). A Systematic Literature Review on Software

Development Estimation Techniques. Advances in Intelligent

Systems and Computing, 119–134. https://doi.org/10.1007/

978-981-16-4641-6_11

[14] Sharma, A., & Chaudhary, N. (2023). Prediction of Software

Effort by Using Non-Linear Power Regression for

Heterogeneous Projects Based on Use case Points and Lines of

code. Procedia Computer Science, 218, 1601–1611.

https://doi.org/10.1016/j.procs.2023.01.138

[15] Khan, B. (2020). Software Cost Estimation: Algorithmic and

Non-Algorithmic Approaches. http://ijdsaa.com/

index.php/welcome/article/view/73

[16] Software Cost Estimation – A Comparative Study of

COCOMO-II and Bailey-Basili Models. (2020). IEEE

Conference Publication | IEEE Xplore. https://ieeexplore.

ieee.org/document/919416

[17] Srivastava, P., Srivastava, N., Agarwal, R., & Singh, P. K.

(2022b). Estimation in Agile Software Development Using

Artificial Intelligence. Lecture Notes in Networks and

Systems, 83–93. https://doi.org/10.1007/978-981-16-8826-3_8

[18] Sylla, A., Coudert, T., & Geneste, L. (2021). A Case-Based

Reasoning (CBR) approach for Engineer-To-Order systems

performance evaluation. IFAC-PapersOnLine, 54(1), 717–722.

https://doi.org/10.1016/j.ifacol.2021.08.182

[19] Rak, K., Car, Ž., & Lovrek, I. (2019). Effort estimation model

for software development projects based on use case reuse.

Journal of Software, 31(2), e2119. https://doi.org

/10.1002/smr.2119

[20] Ali, A., & Gravino, C. (2019b). A systematic literature review

of software effort prediction using machine learning methods.

Journal of Software, 31(10). https://doi.org/ 10.1002/smr.2211

[21] Predicting Software Effort Estimation Using Machine Learning

Techniques. (2018). IEEE Conference Publication | IEEE

Xplore. https://ieeexplore.ieee.org/abstract/document /8486222

[22] Toward Improving the Efficiency of Software Development

Effort Estimation via Clustering Analysis. (2022). IEEE

Journals & Magazine | IEEE Xplore.

https://ieeexplore.ieee.org/abstract/document/9803030

[23] Sinha, R. R. S. R. R., & Gora, R. K. (2021). Software Effort

Estimation Using Machine Learning Techniques. Lecture

Notes in Networks and Systems, 65–79.

https://doi.org/10.1007/978-981-15-5421-6_8

[24] Mustafa, E. I., & Osman, R. (2020). SEERA: a software cost

estimation dataset for constrained environments. Predictive

Models in Software Engineering. https://doi.org/

10.1145/3416508.3417119

[25] Varshini, A. G. P., Kumari, K. M., D, J., & Soundariya, S.

(2021). Comparative analysis of Machine learning and Deep

learning algorithms for Software Effort Estimation. Journal of

Physics, 1767(1), 012019. https://doi.org/ 10.1088/1742-

6596/1767/1/012019

[26] G, P. V. A., K, A. K., & Vijayakumar, V. (2021). Estimating

Software Development Efforts Using a Random Forest-Based

Stacked Ensemble Approach. Electronics, 10(10), 1195.

https://doi.org/10.3390/electronics10101195

http://www.ijritcc.org/

