
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6589

Article Received: 20 February 2023 Revised: 27 March 2023 Accepted: 10 April 2023

148

IJRITCC | May 2023, Available @ http://www.ijritcc.org

Enhancing Requirements Change Request

Categorization and Prioritization in Agile Software

Development Using Analytic Hierarchy Process

(AHP)

Kashif Asad1, Dr. Mohd. Muqeem2
1Integral University: Department of Computer Application

Lucknow, India

kashif.asad007@gmail.com
2Integral University: Department of Computer Application

Lucknow, India

muqeem@iul.ac.in

Abstract— Software development now relies heavily on agile methods, which call for the efficient administration and prioritization of

change requests. In order to improve requirement prioritization using the Analytic Hierarchy Process (AHP) in Agile methods, this study article

presents a new framework for classifying software requirements into Small Change Requests (SCRs) and Large Change Requests (LCRs). The

paper examines the difficulties associated with requirement prioritization and categorization in Agile settings and offers a methodical system

for dividing change requests into categories based on complexity, impact, and timeline. In order to provide a thorough grasp of the project

scope and objectives, the framework considers both functional and non-functional needs. A case study containing several Agile software

development projects is used to evaluate the performance of the suggested categorization and prioritization model. According to the findings,

the combination of SCR and LCR categorization with AHP enables more effective teamwork and greater matching of development goals with

partner objectives. The research also shows that the suggested framework's integration into the Agile development process results in a more

efficient decision-making process, less time wasted on talks, and improved resource distribution. The model aids in risk mitigation by allowing

a methodical and quantifiable approach to requirement prioritization. These risks are related to quick changes in project scope and changing

client requirements. By presenting a fresh framework for requirement categorization and prioritization, this study adds to the current discussion

on successful requirement management in Agile methods. Agile software development projects become more effective and adaptable overall

thanks to the incorporation of AHP, which guarantees a more methodical and objective prioritization process. This study has the potential to

greatly improve the administration of shifting needs and user expectations in Agile settings by offering a structured method to classify and rank

change requests.

Keywords- Agile Software Development, Requirement Change, Requirement Categorization, Impact Analysis, Requirement Prioritization,

Analytical Hiearchy Process, Change Request.

I. INTRODUCTION

Agile software development is common for handling tasks with

quickly changing requirements and goals. Agile methods help

software development teams react to changing needs and new

knowledge. Changes in requirements are common in agile

software development and can be brought on by a variety of

factors, including corporate, market, client, or software worker

expertise growth [13]. Agile practitioners face challenges

classifying and prioritizing requirements, especially when

working with varied change requests of different ranges and

effects. In contrast, agile software development gradually

elaborates the product pursuing user happiness and "welcomes

changing requirements, even late in development."[12].

This study paper presents a new framework for classifying agile

software development change requests into small change

requests (SCRs) and large change requests (LCRs) and using

the Analytic Hierarchy Process (AHP) to rank these

requirements. The framework improves decision-making and

resource and time allotment, improving project results and

software quality. This paper introduces agile software

development methods and the obstacles teams face when

handling and prioritizing change requests. Then, the criteria for

separating SCRs from LCRs are examined, considering factors

like the intricacy of the change, its impact on the current system,

and the time and effort needed to execute it. The process of

selecting which requirements need to be implemented ahead of

the others requires that a prioritization of the requirements be

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6589

Article Received: 20 February 2023 Revised: 27 March 2023 Accepted: 10 April 2023

149

IJRITCC | May 2023, Available @ http://www.ijritcc.org

performed [4]. We'll discuss this categorization's reasoning and

project management consequences. In rapid software

development, the Analytic Hierarchy Process is a reliable and

efficient demand ranking method. The AHP's methodical

strategy to paired evaluations and weighted decision-making

and its fit for agile projects' dynamic problems will be explored.

The study will then apply the AHP method to the classified

SCRs and LCRs to rate change requests by project relevance

and impact. A case study will demonstrate how agile teams can

use the AHP-based framework to rank change requests. The

case study will show how the proposed framework improves

efficiency, resource sharing, and uncertainty-based decision-

making. This study will also explore potential drawbacks and

alternatives to the proposed AHP-based framework. The talk

will also explore the framework's flexibility to handle projects

of various sizes and intricacies and its adaptability to agile

methods and corporate settings. In conclusion, this paper

proposes a novel AHP-based framework for classifying and

prioritizing change requests in agile software development.

This strategy helps agile teams handle demand management and

react to changing needs while delivering high-quality software

products on time. This paper's insights and suggestions can

improve agile software development by giving practitioners

tools for handling change and ensuring project success.

II. RELATED WORK

R. Thakurta [5] provided a scenario-based quantified

framework for prioritizing nonfunctional requirements. This

approach failed to integrate new or changed requirements, and

the assessment had validation issues. The "Requirements

Prioritizer" multi-criteria decision-making device [6]

prioritized requirements from any place. The authors presented

their support to the process of prioritizing stakeholders by

ordering requirements according to the importance of the

characteristics that were supplied by the pertinent stakeholders.

Every one of the requirements has to be able to stand on its own.

This strategy, which has been proposed, addresses both the

order inversion and the interdependence problems [7].

Gershenson and Stauffer [8] created a framework for the

categorization of the different requirements that corporations

must meet. The requirements of the corporation are derived

from various internal sources, such as marketing, finance,

manufacturing, and service, and they are intended to represent

the requirements of the corporation with regard to product

development. The impacts of using agile techniques in project

management, as well as the individuals participating in the

project and their applicability, were analyzed by Michael

Coram and his colleagues. In order to adapt to the adjustments,

the Agile Methods suggested taking a pragmatic strategy. When

utilized in the appropriate context, agile techniques can be of

great assistance [10]. For the problems that arise during agile

software development, Veerapaneni Esther Jyothi et al.

suggested a joint and original approach [15].

In order to determine the characteristics of requirement

changes, Ghosh [14] carried out an experimental study on 30

software development initiatives that involved requirement

changes. The author employed a regression-based forecast

algorithm to determine an EV value at any time. In Scrum, there

is neither a specified method nor a structure that is established

specifically for the purpose of forecasting requirement

fluctuation. Baxter et al. [11] developed a framework for the

integration of design knowledge reuse and requirements

management. This framework enables the application of

requirements management as a dynamic process. Hussain et al.

[9] provided an overview of the process of change management.

The process of change management begins with the submission

of change proposals; the change proposition is made accessible

to all stakeholders. The implementation of software that is

capable of managing the change is the second stage. The third

step is to analyze how the suggested change will affect the

system. During the process of change management, one of the

most essential activities is to determine the effects that the

requested change will have on the organization and to estimate

the amount of revenue that will be required to carry out the

requested change. The consolidated structure of the change

management process was established after the three previously

mentioned stages had been identified. Quesf, A. [17] addresses

the requirements traceability challenge that arises in agile

software development, as well as the relationships that exist

between the refactoring and traceability processes, as well as

the effect that these processes have on one another. Mueller

Investigate the effect of requirements changes on development

output in an agile-scrum software development process to

determine if there is a link between development effort and

requirement changes [26].

A software change classification has been proposed by Buckley

et al. [31], and it is founded on characterizing the mechanisms

of change as well as the variables that influence software

change. According to Khan et al. [33], the communication

activity is an essential part of the RCM process. Furthermore,

during the implementation of the suggested requirement

changes in the agile GSD paradigm, the significance of this

activity grows significantly. Akbar et al. [2] noted that

requirements can alter throughout software development, from

requirements elicitation to release. Nurmuliani et al. [3]

describe it "requirement change" because it means changing to

meet the needs of customers, partners, companies, and the

workplace as they change. Forrester [28] states that agile

requirements management tools need to have seven features in

order to be effective. These features include the ability to

support agile methodologies, traceability and change impact,

user story creation and management, social collaboration,

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6589

Article Received: 20 February 2023 Revised: 27 March 2023 Accepted: 10 April 2023

150

IJRITCC | May 2023, Available @ http://www.ijritcc.org

visualization of requirements, scalability, and integrations with

other tools.

McGee and Greer [30] came up with a taxonomy that is

structured on the basis of the origin of RC and their

categorization in accordance with the change source domain.

The classification makes it possible for software practitioners to

differentiate between the variables that contribute to

requirements uncertainty, which ultimately results in improved

visibility of change identification. By combining the agile

methodology with the CMMI, Glazer et al. [32] provided Web

software development companies with a means to create high-

quality systems without sacrificing their adaptability to change.

Web application creation is the foundation of I4.0 technologies.

A comprehensive literature analysis on requirements

engineering practices and difficulties in the setting of ASD was

performed by Inayat et al. [29]. The study revealed that there is

a total of seventeen different RE practices in agile, as well as

five problems with conventional techniques that were solved by

agile requirements engineering, and eight problems with RE in

agile itself.

III. REQUIREMENTS CHANGE TAXANOMY

Figure 1. Requirements Change Taxonomy

A. Categorization Of Change Requirements

In Agile, changes are expected and handled with the help of

iteration meetings, iterative development, and an ordered

product list. The agile approach is a useful tool for managing

requirements in an incremental method, which becomes

increasingly important as the nature of the requirements

changes and becomes more unpredictable [34]. In order to

effectively solicit, record, implement, and handle changes to

Requirements, a method known as Change Requirement

Management (CRM) is employed. Analysis, assessment,

execution, and change request management are the core tenets

of customer relationship management [27]. Any proposed

alterations are thoroughly analyzed before being integrated into

the project plan. Agile approaches value adaptability and rapid

response. The main reasons for Requirement Change

Management are changing customer needs, changing market

trends, and changing company or business needs [20]. The RM

system should be used to document any and all activities in a

corporation that are connected to a requirement [23]. There are

various categories of requirements, such as functional, non-

functional, and quality aspects of a product. Frequently, there

may be dependencies between various requirements [35].

Requirements can be classified into following-:

i) Functional Requirements are descriptions of what a software

system should do and how it should respond to particular inputs

or actions. These criteria describe the functions, services, and

features that the software program must provide to satisfy the

company requirements and customer demands. User interfaces,

data processing and storing, user administration, monitoring

and statistics, and system interaction are all examples of

functional needs. The functional requirements provide a

definition of the behaviors or activities that the system ought to

be capable of supporting [36].

ii) Non-Functional Requirements: Non-functional requirements

describe the characteristics or traits of the software system, such

as its usefulness, speed, dependability, security, scaling, and

maintainability. The effectiveness of the system's performance

of its duties is more important than its usefulness. Non-

functional criteria can also specify limits on the system, such as

legal conformance or interoperability with other systems. The

non-functional requirements refer to the characteristics of the

system that are not immediately related to the functions that are

performed by the system [37]. Non-functional criteria can

include things like reaction speed, access, data protection and

security, and simplicity of upkeep.

iii) Technical Requirements: Technical requirements are

descriptions of the hardware, software, and other technological

components needed to create, implement, and manage the

software system. In this context, "requirements" refer to the

technologies, tools, and platforms that will be used to construct

the system, as well as the hardware and infrastructure that will

be required to support it. Performance, security, and scaling

criteria may also be specified in technical specifications. The

technology, database management system, operating system,

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6589

Article Received: 20 February 2023 Revised: 27 March 2023 Accepted: 10 April 2023

151

IJRITCC | May 2023, Available @ http://www.ijritcc.org

server hardware, and network architecture are a few examples

of technological needs.

TABLE I. DESCRIPTION OF REQUIREMENT TYPES

Requirement Type Requirement Description

Functional Requirements Allow customers to search for products by

keyword

Functional Requirements Allow customers to add products to a

shopping cart

Functional Requirements Allow customers to create an account and

save their info

Functional Requirements Allow customers to view their order

history

Non-Functional Requirements The website should load within 3 seconds

Non-Functional Requirements The website should be accessible to

people with disabilities

Non-Functional Requirements The website should be secure and protect

customer data

Technical Requirements The website should be built using ReactJS

Technical Requirements The website should be hosted on AWS

Technical Requirements The website should use a PostgreSQL

database

B. Factors Affecting Categorization Of Change

Requirements

i) Impact analysis: Suppose a client asks a change to a software

product's user interface. To determine how the change will

affect the software's current operation, the development team

must first perform an impact study. They might find that the

change will necessitate substantial alterations to the underlying

code, adding to the effort and possibly postponing the delivery

of the product.

ii) Timeframe: Let's say a software product proprietor asks for

a new function to be introduced. The development team must

assess the timeframe needed to execute the change and any

possible impact it might have on the project's general schedule.

If the change is complicated and will take a long time to

execute, the team may recommend breaking it down into

smaller, more doable jobs to ensure that it is finished within the

project's timeframe.

iii) Effort: The amount of work, time, and resources required to

execute a change proposal in a project are referred to as effort

when discussing the variables influencing the classification of

change needs. The task completed by one person in a given

number of hours or days is usually defined in person-hours or

person-days.

C. How Change Requirements in Agile categorize into

Small Change Request and Large Change Request

We can use the following parameters to classify change

proposals into Small and Large based on the impact analysis on

the project and time frame: The change request will be

categorized as a Small Change Request if it has a minimal

impact on the project and can be executed quickly. The details

regarding the change request, along with all of the specifics of

the change request, are included in the document for the change

request [16]. The change request will be categorized as a Large

Change Request if it has a significant impact on the project and

takes more time to execute.

Impact Analysis is the process of determining the prospective

impact of a proposed change to a software system. Impact

Analysis considers a variety of variables, including the impact

on functionality, performance, scalability, security, and user

experience, among others. These impact ratings are typically

given based on a thorough analysis of the proposed change and

its potential impact on various aspects of the software system.

• Functionality: This impact rating could be based on

how much the proposed change would affect the overall

functionality of the software system. A change that introduces

new functionality or significantly alters existing functionality

could be given a higher rating than a change that only makes

minor adjustments.

• Performance: This impact rating could be based on

how the proposed change would affect the speed or

responsiveness of the software system. A change that would

significantly slow down the system or make it less responsive

could be given a higher rating than a change that has little

impact on performance.

• Scalability: This impact rating could be based on how

the proposed change would affect the ability of the software

system to handle larger volumes of data or users. A change that

would significantly limit the scalability of the system could be

given a higher rating than a change that has little impact on

scalability.

• Security: This impact rating could be based on how the

proposed change would affect the overall security of the

software system. A change that introduces new security risks or

significantly weakens existing security measures could be given

a higher rating than a change that has little impact on security.

• User Experience: This impact rating could be based on

how the proposed change would affect the overall user

experience of the software system. A change that significantly

improves or degrades the user experience could be given a

higher rating than a change that has little impact on user

experience.

These ratings are typically assigned by a team of experts who

have a deep understanding of the software system and the

proposed change. The ratings are based on a combination of

technical analysis, experience, and judgment. Once the impact

ratings are assigned, they can be used to calculate the overall

impact analysis score using the formula mentioned earlier. The

formula to calculate Impact Analysis Score can be expressed as:

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6589

Article Received: 20 February 2023 Revised: 27 March 2023 Accepted: 10 April 2023

152

IJRITCC | May 2023, Available @ http://www.ijritcc.org

Impact Analysis Score = ∑ (Wi * Xi)

Where Wi is the Weightage Factor for Each Impact Area

(functionality, performance, scalability, security, user

experience)

Xi = The impact rating for each impact region on a range of 1

to 10. (where 1 is the lowest impact and 10 is the highest impact)

To demonstrate how Impact Analysis Score is determined, let's

look at an example. Consider the following when examining a

modification proposal that has the following impact on a

software application: Let's suppose that we have given each

impact region the following weights:

Functionality: 0.3, Performance: 0.2, Scalability: 0.1, Security:

0.3, User Experience: 0.1

IV. RESEARCH METHOD

This section provides an overview of the research technique that

was used in the study, which was the application of the Analytic

Hierarchy Process (AHP) for the purpose of classifying change

requests in Agile software development projects and assigning

priorities to those change requests.

A. DATA COLLECTION

In a digital world that is becoming more competitive, an e-

commerce site needs to be able to change and get better all the

time to keep and gain clients. This case study looks at how to

find, prioritize, and apply different change requests (CRs) to

make an e-commerce website better.

TABLE II. DESCRIPTION OF REQUIREMENT TYPES

Change Request Description of Change Request

CR-001 Add new payment method

CR-002 Fix search functionality

CR-003 Implement customer reviews for products

CR-004 Optimize website performance

CR-005 Update user interface design

CR-006 Improve inventory management system

CR-007 Fix broken links

Each impact region is given a weightage factor, which is a

figure that represents its relative significance or importance in

the total impact analysis. The total of all weightage variables

should equal 1 (or 100%), and it is typically expressed as a

percentage or numeric value. We'll also assume the following

impact ratings for each change request.

TABLE III. IMPACT RATING OF CHANGE REQUEST

Change

Request

Function

ality

Perfor

mance

Scalabili

ty

Securi

ty

User

Experien

ce

CR-001 9 6 3 8 5

CR-002 5 9 4 7 8

CR-003 8 5 6 9 7

CR-004 7 8 5 6 9

CR-005 4 3 2 5 8

CR-006 8 7 9 8 4

CR-007 2 2 1 2 3

Using the formula, we can calculate the Impact Analysis Score

for each change request as follows:

TABLE IV. RESULTANT IMPACT ANALYSIS SCORE

Change Request Impact Analysis Score

CR-001 7.3

CR-002 6.8

CR-003 7.4

CR-004 7.2

CR-005 4.2

CR-006 7.5

CR-007 1.9

B. Implementing Impact Analysis Score And Time

Frame For Change Request Categorization In ASD

The following parameters can be used to illustrate this

classification:

• Small Change Request: Impact Analysis Score ≤ 6,

Timeframe ≤ 2 sprints, and Effort Score ≤ 4

• Large Change Request: Impact Analysis Score > 6,

Timeframe > 2 sprints, or Effort Score > 4

Estimate the Effort in person-hours for each change request and

calculate the Effort Score (E) using the formula:

E = Person-hours required / 8.

TABLE V. EFFORT SCORE

Change Request Person-hours Effort Score

CR-001 24 6.0

CR-002 56 2.0

CR-003 40 5.0

CR-004 16 8.0

CR-005 24 3.0

CR-006 80 10.0

CR-007 8 1.0

We have the following Timeframe in sprints for each change

request.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6589

Article Received: 20 February 2023 Revised: 27 March 2023 Accepted: 10 April 2023

153

IJRITCC | May 2023, Available @ http://www.ijritcc.org

TABLE VI. TIMEFRAME OF CHANGE REQUEST

Change Request Timeframe (sprints)

CR-001 3

CR-002 1

CR-003 2

CR-004 4

CR-005 1

CR-006 5

CR-007 1

Now let's categorize the change requests based on the criteria

defined above:

TABLE VII. RESULTANT CHANGE REQUEST CATEGORIZATION

Change

Request

Impact

Analysis

Score

Timeframe

(sprints)

Effort

Score
Category

CR-001 7.3 3 6.0 Large Change Request

CR-002 6.8 1 2.0 Large Change Request

CR-003 7.4 2 5.0 Large Change Request

CR-004 7.2 4 8.0 Large Change Request

CR-005 4.2 1 3.0 Small Change Request

CR-006 7.5 5 10.0 Large Change Request

CR-007 1.9 1 1.0 Small Change Request

The development team is now able to successfully prioritize and

handle the change requests based on the Impact Analysis Score,

Timeframe, and Effort Score.

Change Requests CR-001, CR-002, CR-003, CR-004, and CR-

006 will go through the Requirement Prioritization process,

whereas Change Requests CR-004 and CR-007 will go straight

to the Implementation process.

C. Causes for Variation in Agile Methodology

Requirements

TABLE VIII. FREQUENCY OF REQUIREMENT CHANGES

Frequency Percentage of Projects

Rarely 10%

Occasionally 40%

Often 35%

Always 15%

Figure 2. Reasons for Requirement Changes (Average Impact Rating)

Agile practitioners, such as product managers, programmers,

business analysts, and other stakeholders, were polled in order

to gather their feedback. The purpose of the survey was to

collect information on the frequency and primary causes of

requirement changes in initiatives. The significance of various

factors was asked to be ranked by the participants from 1 (least

important) to 5 (greatest importance). (most significant). The

analysis of the survey data yielded tabulated results that

demonstrated the most frequent triggers for requirement

changes in Agile projects.

V. REQUIREMENTS PRIORITIZATION

The Agile methodology includes requirement prioritization,

which enables teams to concentrate on completing the features

or requirements that are the most essential first. This section

outlines key steps in the requirement prioritization process,

highlighting the importance of identifying stakeholders, defining

user stories, prioritizing based on business value, technical

feasibility, and risk, employing prioritization techniques, re-

prioritizing regularly, and communicating priorities. In agile

development, the main goal is to make the customer satisfied

[19], if the needs of the consumers are met, the specifications for

the system are thought to be finished (satisfaction of the

customers). [24]. Agile teams can ensure that they are

successfully prioritizing requirements and delivering value to

consumers early and frequently if they adhere to these steps and

follow them in the appropriate sequence. When selecting which

requirements need to be implemented ahead of the others, a

requirement prioritization [3] is crucial. However, it has been

demonstrated that it is extremely difficult to prioritize

requirements, with flexibility being one of the most significant

challenges. [22] A significant number of stakeholders are

typically involved in initiatives of this magnitude.

• Identifying Stakeholders: Identifying and involving all

relevant stakeholders is the first step of the prioritization process.

Customers, end-users, business analysts, product proprietors,

developers, and other team members fall under this category. By

involving all parties, a comprehensive understanding of the

requirements is achieved, allowing for a more precise process of

prioritization.

• Defining Requirements: Change Requirements in

termed as user stories describe what a user intends to complete

with the product. Each user story must have a distinct objective,

scope, and acceptance criteria. These user stories serve as the

foundation for prioritizing requirements, ensuring that the final

product meets the demands and expectations of end-users.

• Prioritizing Requirements: The business value,

technical feasibility, and risk of user stories must be prioritized.

Priority should be given to the most important and valuable

stories, followed by those with less business value. This strategy

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6589

Article Received: 20 February 2023 Revised: 27 March 2023 Accepted: 10 April 2023

154

IJRITCC | May 2023, Available @ http://www.ijritcc.org

assures that the team concentrates on customer-value-

maximizing features.

• Employing Prioritization Techniques: MoSCoW,

Analytic Hierarchical Process, Kano Model, and Value vs.

Complexity are a few prioritization techniques that are

accessible to Agile teams. To facilitate a more efficient

prioritization process, teams should choose a technique that best

fits their project and circumstance.

• Re-prioritizing: Due to priorities can shift at any point

during the lifecycle of a project, it is essential to re-prioritize

requirements on a frequent basis. The team should conduct a

reassessment of their priorities at the conclusion of each sprint

or iteration, considering any new information that has come to

light along with comments from stakeholders. This ongoing

reprioritization helps to ensure that the project continues to

satisfy the ever-evolving requirements of the consumer.

• Communicating Priorities: Maintaining team unity and

assuring emphasis on providing value to the client require open

sharing of priorities. All team members ought to be conscious of

the present priorities and comprehend the justification for the

given significance hierarchy.

Figure 3. Requirements Prioritization Workflow

How Sprint Backlog can be utilized in Requirement

Prioritization

Product backlog is used as a receptacle for new requirements

to substitute old requirements, repair problems, or eliminate

functionality [21]. Product backlog is an acronym for "product

requirements backlog." The "sprint backlog" is a limited

collection of requirements that are contained within the "product

backlog." These requirements are distributed among team

members in preparation for an iterative development process

known as "sprint" [21]. Within the context of the Agile

methodology, a document known as the Sprint Backlog is a

collection of tasks that have been chosen by the development

team from the Product Backlog for fulfillment during the next

sprint. During the course of the sprint, the tasks are segmented

into more achievable subtasks and revised as new information

becomes available.

It is expected to be concluded before the conclusion of the

iteration, after which any tasks that have not been completed are

added to the Sprint Backlog.

Figure 4. Workflow Model of Sprint Backlog in Agile

A Sprint backlog is a collection of work items (such as user

stories, outstanding imperfections and other tasks) that is used

by software teams to coordinate the work that needs to be done

[20]. It is feasible to produce high-quality requirements if the

requirements priority procedure is carried out properly [25].

TABLE IX. PHASE WISE DESCRIPTION OF SPRINT BACKLOG IN AGILE

Phase Objectives Benefits Challenges

Requirement

Gathering

Understand user

standards and

gather complete

requirements.

Improves

project success

by ensuring the

product surplus

meets

stakeholder

needs.

Uncertain

requirements,

issues finding

agreement

among varied

stakeholders.

User Story

Creation

Translate

requirements

into user-

centric,

actionable work

items

Promotes

teamwork and

user value.

Writing clear

and concise user

stories, defining

accurate

acceptance

criteria.

Backlog

Organization

Maintain a

single,

organized

source of truth

Reduces

confusion and

repetition of

work by

facilitating

Maintaining the

backlog,

handling

constraints, and

managing links

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6589

Article Received: 20 February 2023 Revised: 27 March 2023 Accepted: 10 April 2023

155

IJRITCC | May 2023, Available @ http://www.ijritcc.org

for all work

items

easy

prioritization

and planning.

between user

stories.

Prioritization Determine the

order of

backlog items

based on value,

feasibility, and

risk.

Ensures the

team prioritizes

the best

features.

Balancing

conflicting

stakeholder

priorities,

accurately

assessing value

and risk.

Backlog

Refinement

Continuously

improve the

clarity and

readiness of

backlog items

Improves

sprint planning

and execution,

reduces

unexpected

issues.

Allocating

sufficient time

for refinement,

managing scope

creep.

Sprint

Planning

Select and plan

the work for the

upcoming

sprint.

Aligns the

team around an

aim and tasks,

enabling

resource

allotment.

Accurately

estimating

capacity,

constraints, and

cross-team

cooperation

Sprint

Execution

Complete the

selected user

stories within

the sprint

timeframe.

Maintains

client value

while growing

and improving.

Overcoming

obstacles,

motivating and

collaborating.

Review and

Feedback

Evaluate

completed work

and gather

stakeholder

feedback

Maintains

stakeholder

contact,

improves and

adapts to

changing

requirements

Obtaining

honest and

helpful criticism

and promptly

implementing it.

VI. ANALYTIC HIERARCHICAL PROCESS

The Analytic Hierarchy Process (AHP) is a systematic multi

criteria decision making that was developed by Salty [1] for the

purpose of handling complicated situations. If there are n total

requirements, then each level of the hierarchy in which this

technique is applied will conduct n(n-1)/2 comparisons [18]. In

order to arrive at a conclusion, decision-makers need to take into

consideration a number of different variables and make trade-

offs.

Step 1: Define the hierarchy The AHP hierarchy consists of the

overall goal, criteria, and alternatives (change requests in this

case). Here, our goal is to prioritize change requests, and we have

three criteria: Impact Analysis Score, Timeframe, and Effort

Score. The alternatives are the seven change requests (CR-001

to CR-007). We define the hierarchy for the AHP

implementation with the given data. Our goal is to prioritize

change requests, which forms the top level of the hierarchy. The

criteria and alternatives make up the next levels of the hierarchy.

Here's an example of the AHP hierarchy for the given data: The

hierarchy helps us to organize the complex problem of

prioritizing change requests into a structured format. We have

the overall goal at Level 1, the criteria that determine the priority

at Level 2, and the alternatives (specific change requests) that we

need to prioritize at Level 3.

Figure 5. Hierarchical Structure of Prioritized Change Request

TABLE X. IMPLEMENTATION OF AHP ALGORITHM

Algorithm: Requirement Priortisation Using AHP

1. Define the hierarchy:

 1.1. Set Goal (objective) = "Prioritize Change Requests"

 1.2. Set Criteria = [Impact Analysis Score, Timeframe, Effort Score]

 1.3. Set Alternatives = [CR-001, CR-002, CR-003, CR-004, CR-006]

2. Create pairwise comparison matrix (A) and set equal importance for all

criteria:

 2.1. Initialize matrix A with equal weights for all criteria

3. Calculate weight vector (w) from matrix A:

 3.1. For a consistent matrix with equal weights, set w = [1/3, 1/3, 1/3]

4. Create decision matrices for each criterion:

 4.1. For each criterion in Criteria:

 4.1.1. Create a decision matrix using the values of the criterion for each

alternative

5. Normalize the decision matrices:

 5.1. For each decision matrix:

 5.1.1. Normalize the matrix by dividing each value in the matrix by the

sum of the respective column

6. Calculate the weighted normalized decision matrices:

 6.1. For each normalized decision matrix:

 6.1.1. Multiply each value in the matrix by the corresponding weight

from the weight vector (w)

7. Calculate the overall priority score:

 7.1. Initialize an empty list to store overall priority scores

 7.2. For each alternative:

 7.2.1. Calculate the overall priority score by summing the values of each

row in the weighted normalized decision matrices

 7.2.2. Append the overall priority score to the list

8. Rank the change requests based on the overall priority score:

 8.1. Sort the list of overall priority scores in descending order

 8.2. Assign ranks to the change requests based on the sorted list

 8.3. Return the ranked list of change requests

Step 2: Create a pairwise comparison matrix for criteria as we

assumed equal weights for all criteria (Impact Analysis Score,

Timeframe, and Effort Score), the pairwise comparison matrix

for criteria is:

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6589

Article Received: 20 February 2023 Revised: 27 March 2023 Accepted: 10 April 2023

156

IJRITCC | May 2023, Available @ http://www.ijritcc.org

TABLE XI. PAIRWISE COMPARISON MATRIX

Criteria
Impact Analysis

Score
Timeframe Effort Score

Impact Analysis

Score
1 1 1

Timeframe 1 1 1

Effort Score 1 1 1

Step 3: Calculate the criteria weights Since all criteria have

equal importance, the weights for each criterion are equal (1/3).

we calculate the criteria weights for the AHP implementation.

In this specific case, we assume all criteria have equal

importance, which means the weights for each criterion will be

equal. Let's assign equal weights to the criteria: Impact Analysis

Score (IAS), Timeframe (TF), Effort Score (ES). Since there are

three criteria, we divide 1 (the total weight) by the number of

criteria, which is 3: Weight for each criterion = 1 / 3 ≈ 0.3333.

Now, we assign the calculated weight to each criterion:

IAS: 0.3333, TF: 0.3333, ES: 0.3333. This means that each

criterion has an equal influence on the prioritization of change

requests in our AHP implementation. The weights will be used

in subsequent steps to calculate the overall priority scores for

each alternative (change request).

Step 4: Create decision matrices for each criterion for each

criterion, we create a decision matrix using the given data.

TABLE XII. IMPACT ANALYSIS SCORE MATRIX

CR Impact Analysis Score

CR-001 7.3

CR-002 6.8

CR-003 7.4

CR-004 7.2

CR-006 7.5

TABLE XIII. TIMEFRAME MATRIX

CR Timeframe

CR-001 3

CR-002 1

CR-003 2

CR-004 4

CR-006 5

TABLE XIV. EFFORT SCORE MATRIX

CR Effort Score

CR-001 6.0

CR-002 2.0

CR-003 5.0

CR-004 8.0

CR-006 10.0

Step 5: Normalize the decision matrices for each decision

matrix, divide the values in each column by the sum of the

column values. Here's how to normalize the decision matrices

with the example data: First, calculate the sum of the column

values for each decision matrix. Impact Analysis Score matrix

sum: 36.2 Timeframe matrix sum: 15 Effort Score matrix sum:

31. Next, divide each value in each column by the sum of the

column values.

TABLE XV. NORMALIZED IMPACT ANALYSIS SCORE MATRIX

CR Impact Analysis Score

CR-001 7.3 / 36.2 = 0.201

CR-002 6.8 / 36.2 = 0.187

CR-003 7.4 / 36.2 = 0.204

CR-004 7.2 / 36.2 = 0.198

CR-006 7.5 / 36.2 = 0.207

TABLE XVI. NORMALISED TIMEFRAME MATRIX

CR Timeframe

CR-001 3 / 15 = 0.2

CR-002 1 / 15 = 0.066

CR-003 2 / 15 = 0.133

CR-004 4 / 15 = 0.266

CR-006 5 / 15 = 0.333

TABLE XVII. NORMALISED EFFORT SCORE MATRIX

CR Effort Score

CR-001 6 / 31 = 0.193

CR-002 2 / 31 = 0.064

CR-003 5 / 31 = 0.161

CR-004 8 / 31 = 0.258

CR-006 10 / 31 = 0.322

Step 6: Calculate the weighted normalized decision matrices

Multiply each value in the normalized decision matrices by the

corresponding weight (1/3 in this case). Here's how to calculate

the weighted normalized decision matrices for the example

data:

TABLE XVIII. WEIGHTED NORMALIZED IMPACT ANALYSIS SCORE

MATRIX

CR Impact Analysis Score

CR-001 0.201 * (1/3) = 0.067

CR-002 0.187 * (1/3) = 0.062

CR-003 0.204 * (1/3) = 0.068

CR-004 0.198 * (1/3) = 0.066

CR-006 0.207 * (1/3) = 0.069

TABLE XIX. WEIGHTED NORMALIZED TIMEFRAME SCORE MATRIX

CR Timeframe

CR-001 0.2* (1/3) = 0.066

CR-002 0.066 * (1/3) = 0.022

CR-003 0.133 * (1/3) = 0.044

CR-004 0.266 * (1/3) = 0.088

CR-006 0.333 * (1/3) = 0.111

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6589

Article Received: 20 February 2023 Revised: 27 March 2023 Accepted: 10 April 2023

157

IJRITCC | May 2023, Available @ http://www.ijritcc.org

TABLE XX. WEIGHTED NORMALIZED EFFORT SCORE MATRIX

CR Effort Score

CR-001 0.193 * (1/3) = 0.064

CR-002 0.064 * (1/3) = 0.021

CR-003 0.161 * (1/3) = 0.053

CR-004 0.258 * (1/3) = 0.086

CR-006 0.322 * (1/3) = 0.107

Now, we have weighted normalized decision matrices for each

criterion. The next step is to calculate the overall priority score

by summing the values of each row in the weighted normalized

decision matrices.

Step 7: Calculate the overall priority score Sum the values of

each row in the weighted normalized decision matrices to get

the overall priority score. For each change request, sum the

corresponding values from the weighted normalized Impact

Analysis Score matrix, Timeframe matrix, and Effort Score

matrix.

TABLE XXI. OVERALL PRIORITY SCORE MATRIX

CR Overall Priority Score

CR-001 0.067 + 0.066 + 0.064 = 0.197

CR-002 0.062 + 0.022 + 0.021 = 0.105

CR-003 0.068 + 0.044 + 0.053 = 0.165

CR-004 0.066 + 0.088 + 0.086 = 0.24

CR-006 0.069 + 0.111 + 0.107 = 0.287

Now, we have the overall priority score for each change request.

The next step is to rank the change requests based on their

priority score, from highest to lowest.

Step 8: Rank the change requests Sort the change requests

based on the priority score, from highest to lowest. This was the

AHP implementation for the given data. For a detailed

calculation, please refer to the previous response where we went

through each step with specific numbers. Here's how to rank the

change requests for the example data:

Figure 6. Overall Priority Score

VII. RESULTS AND DISCUSSION

In this study, we used the Analytic Hierarchy Process (AHP) to

use the multi-criteria decision-making method to classify and

rank change requests in Agile software development projects.

Based on their Impact Analysis Score, time range, and effort

score, the change requests were put into two groups: small and

large. Here's how it's put together:

Small Change Request: CR-005, CR-007.

Large Change Request: CR-001, CR-002, CR-003, CR-004,

CR-006.

Change Requests CR-001, CR-002, CR-003, CR-004, and CR-

006 will go through the Requirement Prioritization process,

whereas Change Requests CR-004 and CR-007 will go straight

to the Implementation process.

After the Large Change Requests were put into groups, the AHP

method was used to decide which ones were most important.

This is how the list of priorities turned out:

1. CR-006

2. CR-004

3. CR-001

4. CR-003

5. CR-002

In the review of the results, it is emphasized how important it is

for Agile projects to use a structured and objective way to group

and rank change requests. The AHP method considers the fact

that this process is subjective and complicated by using multiple

factors and giving a clear, measurable reason for making

decisions. The suggested method for separating Small Change

Requests from Large Change Requests can help Agile teams

handle their tasks and adapt to changes in the project's needs.

By focusing on how to prioritize Large Change Requests, the

project team can make the best use of its resources, improve the

quality of the software, and shorten the time it takes to get the

product to market. The study also shows how the AHP method

could be changed to fit the needs of different Agile projects and

groups. In conclusion, the results of using the AHP method to

classify and rank change requests show that the multi-criteria

decision-making technique works well and is useful for Agile

software development projects. This method can help project

teams deal with and adapt to changes better, which can lead to

better software development results in the end.

VIII. CONCLUSION

As a powerful multi-criteria decision-making approach, the

Analytic Hierarchy Process (AHP) was used in this study to

categorize and rank change proposals in the setting of Agile

software development initiatives. The Impact Analysis Score,

the time time frame, and the effort score were used to categorize

the proposals for change. Following that, the change proposals

were divided into two groups: Small Change Requests: CR-005,

CR-007. Large Change Requests: CR-001, CR-002, CR-003,

0

0.1

0.2

0.3

0.4

CR-006 CR-004 CR-001 CR-003 CR-002

1 2 3 4 5

Overall Priority Score

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6589

Article Received: 20 February 2023 Revised: 27 March 2023 Accepted: 10 April 2023

158

IJRITCC | May 2023, Available @ http://www.ijritcc.org

CR-004, CR-006. The conclusions of this research highlight

how important it is for Agile projects to employ a systematic

and objective strategy to the categorization and prioritization of

change requests. The AHP technique takes into consideration

the intrinsic subjectivity and complexity associated with this

process by incorporating multiple criteria. As a result, it

provides a foundation for decision-making that is transparent,

quantitative, and justifiable. Agile teams can improve their

ability to successfully manage their responsibilities and adjust

to changing project requirements with the assistance of the

methodology that has been suggested for differentiating

between minor and major change requests. Project teams have

the ability to optimise resource distribution, improve software

quality, and reduce the amount of time it takes to bring a product

to market if they focus on the prioritization of major change

requests. In addition, the research demonstrates the adaptability

of the AHP technique, which can be reworked to meet the

individual requirements and accommodate the unique

conditions of a wide variety of Agile projects and teams. In

conclusion, the successful implementation of the AHP

technique to categorize and prioritize change requests provides

evidence of its effectiveness and demonstrates that it is suitable

for Agile software development projects. This technique has the

potential to make change management and transition more

effective, which will eventually result in better software

development results.

ACKNOWLEDGMENT

This work is acknowledged under Integral University

manuscript No. IU/R&D/2023-MCN0001930.

REFERENCES

[1] T. L. Saaty, ‘‘Analytic hierarchy process,’’ in Encyclopedia of

Operations Research and Management Science. New York, NY,

USA: Springer, 2013, pp. 52–64

[2] M. A. Akbar, Nasrullah, M. Shafiq, J. Ahmad, M. Mateen, and M.

T. Riaz, ‘‘AZ-model of software requirements change

management in global software development,’’ in Proc. Int. Conf.

Comput., Electron. Electr. Eng. (ICE Cube), Nov. 2018, pp. 1–6.

[3] N. Nurmuliani, D. Zowghi, and S. Powell, ‘‘Analysis of

requirements volatility during software development life cycle,’’

in Proc. Austral. Softw. Eng. Conf., 2004, pp. 28–37. 4. F. Sher,

D. N. Jawawi, R. Mohamad, and M. I. Babar, “Requirements

prioritization techniques and different aspects for prioritization a

systematic literature review protocol,” in Proceedings of 8th

Malaysian Software Engineering Conference (MySEC). IEEE,

2014, pp. 31–36.

[4] R. Thakurta, “A framework for prioritization of quality

requirements for inclusion in a software project,” Software

Quality Journal, vol. 21, no. 4, pp. 573–597, 2013.

[5] P. Achimugu, A. Selamat, and R. Ibrahim, “A web-based multi-

criteria decision-making tool for software requirements

prioritization,” in Proceedings of International Conference on

Computational Collective Intelligence. Springer, 2014, pp. 444–

453.

[6] P. Achimugu, A. Selamat, and R. Ibrahim, “A preference weights

model for prioritizing software requirements,” in Proceedings of

International Conference on Computational Collective

Intelligence. Springer, 2014, pp. 30–39.

[7] J.K. Gershenson, and L.A. Stauffer, A Taxonomy for Design

Requirements from Corporate Customers. Research in

Engineering Design, 11 (1999),103–115.

[8] Hussain, S., Ehsan, N. and Nauman, S. (2010) A Strategic

Framework for Requirements Change in Technical Projects: Case

Study of a R & D Project. 2010 3rd IEEE International

Conference on Computer Science and Information Technology

(ICCSIT), 5, 354-35.

[9] Coram, M. & S. Bohner. The Impact of Agile Methods on

Software Project Management. Engineering of Computer-Based

System. ECBS ‘05. 12th IEEE International Conference and

Workshops, 4-7 April 2005, p. 363-370 (2005).

[10] D. Baxter, J. Gao, K. Case et al., A framework to integrate design

knowledge reuse and requirements management in engineering

design. Robotics and Computer-Integrated Manufacturing,

24(2008), 585- 593.

[11] Cao, L. and Ramesh, B. (2008). Agile requirements engineering

practices: An empirical study. IEEE software, 25(1):60–67.

[12] Albuquerque, D., Guimaraes, E., Perkusich, M., Costa, A.,

Dantas, E., Ramos, F., & Almeida, H. (2020, March). Defining

agile requirements change management: a mapping study. In

Proceedings of the 35th Annual ACM Symposium on Applied

Computing (pp. 1421-1424)

[13] S. Ghosh, S. Ramaswamy, and R. P. Jetley, "Towards

Requirements Change Decision Support," 2013 20th Asia-Pacific

Softw. Eng. Conf, pp. 148- 155, Dec. 2013.

[14] Jyothi, V.E. & K.N. Rao. Effective Implementation of Agile

Practices: Ingenious and Organized Theoretical Framework.

International Journal of Advanced Computer Science and

Applications 2 (3): 41-48 (2011).

[15] Minhas, N.M., Qurat-ul-Ain, Zafar-ul-Islam and Zulfiqar, A.

(2014) An Improved Framework for Requirement Change

Management in Global Software Development. Journal of

Software Engineering and Applications, 7, 779-790.

[16] Quesf, A., 2010, Requirements Engineering in Agile Software

Development, Journal of Emerging Technologies in Web

Intelligence, Vol.2, No.3.

[17] P. Berander and A. Andrews, “Requirements prioritization,”

Engineering and managing software requirements, vol. 11, no. 1,

pp. 79–101, 2005.

[18] Anwer, S., Wen, L., & Wang, Z. (2019). A systematic approach

for identifying requirement change management challenges:

Preliminary results. Proceedings of the Evaluation and

Assessment on Software Engineering, 230-235.

[19] Sedano, T., Ralph, P., & Péraire, C. (2019, May). The product

backlog. In 2019 IEEE/ACM 41st International Conference on

Software Engineering (ICSE) (pp. 200-211). IEEE.

[20] Alsalemi, A. M., & Yeoh, E. T. (2015, December). A survey on

product backlog change management and requirement traceability

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 5

DOI: https://doi.org/10.17762/ijritcc.v11i5.6589

Article Received: 20 February 2023 Revised: 27 March 2023 Accepted: 10 April 2023

159

IJRITCC | May 2023, Available @ http://www.ijritcc.org

in agile (Scrum). In 2015 9th Malaysian Software Engineering

Conference (MySEC) (pp. 189-194). IEEE.

[21] Asif, S. A., Masud, Z., Easmin, R., & Gias, A. U. (2017).

SAFFRON: a semi-automated framework for software

requirements prioritization. arXiv preprint arXiv:1801.00354.

[22] Zhang, Z., Li, X., & Liu, Z. L. (2014, September). A Closed-loop

Based Framework for Design Requirement Management. In ISPE

CE (pp. 444-453).

[23] Saeeda, H., Dong, J., Wang, Y., & Abid, M. A. (2020). A

proposed framework for improved software requirements

elicitation process in SCRUM: Implementation by a real‐life

Norway‐based IT project. Journal of Software: Evolution and

Process, 32(7), e2247.

[24] AL-Ta’ani, R. H., & Razali, R. (2013). Prioritizing requirements

in agile development: A conceptual framework. Procedia

Technology, 11, 733-739.

[25] Mueller, C., 2011, Requirements Management in an Agile-Scrum,

Department of Computer Science San Marcos, TX.

[26] Shehzadi, Z., Azam, F., Anwar, M. W., & Qasim, I. (2019,

August). A novel framework for change requirement management

(CRM) in agile software development (ASD). In Proceedings of

the 9th International Conference on information communication

and management (pp. 22-26).

[27] LeClair, A., Bittner, K.: Agile Requirements Management,

Forrester Research, 15 July 2016 20. 11th annual state of Agile™

survey, VERSIONONE.COM, VersionOne, Inc. (2016)

[28] I. Inayat, S. S. Salim, S. Marczak, M. Daneva, and S.

Shamshirband. A systematic literature review on agile

requirements engineering practices and challenges. Computers in

Human Behavior, 51, Part B:915 – 929, 2015. Computing for

Human Learning, Behaviour and Collaboration in the Social and

Mobile Networks Era.

[29] S. McGee and D. Greer, "A software requirements change source

taxonomy," in Software Engineering Advances, 2009. ICSEA'09.

Fourth International Conference on, 2009, pp. 51-58.

[30] J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel,

"Towards a taxonomy of software change," Journal of Software

Maintenance and Evolution: Research and Practice, vol. 17, pp.

309-332, 2005.

[31] Glazer, H., Dalton, J., Anderson, D., Konrad, M.D., Shrum, S.:

CMMI or agile: why not embrace both! (2008).

[32] Khan, A., Basri, S., Dominic, P., et al.: ‘Communication risks and

best practices in global software development during

requirements change management: a systematic literature review

protocol’, Res. J. Appl. Sci., Eng. Technol., 2013, 6, p. 3514.

[33] B. M. M. Q. R. U. Q. M. A. Fateh ur Rehman, "Scrum Software

Maintenance Model: Efficient Software Maintenance in Agile

Methodology," in 2018 21st Saudi Computer Society National

Computer Conference (NCC), Riyadh, Saudi Arabia, 2018.

[34] F. Moisiadis. A Framework for Prioritizing Software

Requirements. PhD thesis, Macquarie University, Australia, July

2003.

[35] D. Summers, S. Joshi, and B. Morkos, ‘‘Requirements evolution:

Relating functional and non-functional requirement change on

student project success,’’ in Proc. 16th Int. Conf. Adv. Vehicle

Technol., Aug. 2014, Paper DETC2014-35023, V003T04A002,

doi: 10.1115/DETC2014-35023.

[36] S. Kugele, W. Haberl, M. Tautschnig, and M. Wechs,

‘‘Optimizing auto matic deployment using non-functional

requirement annotations,’’ in Proc. Int. Symp. Leveraging Appl.

Formal Methods, Verification Validation. Berlin, Germany:

Springer, 2008, pp. 400–414.

http://www.ijritcc.org/

