
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 5 907 – 911

__

907
IJRITCC | May 2017, Available @ http://www.ijritcc.org

Contemporary Approach for Technical Reckoning Code Smells Detection using

Textual Analysis

Dr. P. Sengottuvelan,

Associate Professor, Department of computer science,

Periyar University PG Extension Centre,

Dharmapuri - 636705, INDIA (phone: 04342-230399;

e-mail: sengottuvelan@gmail.com

M. Sangeetha,

 Ph.D Research scholar, Department of computer science,

Periyar University PG Extension Centre,

Dharmapuri - 636705, INDIA

e-mail: mslion2010@gmail.com

Abstract—Software Designers should be aware of address design smells that can evident as results of design and decision. In a software

project, technical debt needs to be repaid habitually to avoid its accretion. Large technical debt significantly degrades the quality of the software

system and affects the productivity of the development team. In tremendous cases, when the accumulated technical reckoning becomes so

enormous that it cannot be paid off to any further extent the product has to be abandoned. In this paper, we bridge the gap analyzing to what

coverage abstract information, extracted using textual analysis techniques, can be used to identify smells in source code. The proposed textual-

based move toward for detecting smells in source code, fabricated as TACO (Textual Analysis for Code smell detection), has been

instantiated for detecting the long parameter list smell and has been evaluated on three sampling Java open source projects. The results

determined that TACO is able to indentified between 50% and 77% of the smell instances with a exactitude ranging between 63% and

67%. In addition, the results show that TACO identifies smells that are not recognized by approaches based on exclusively structural

information.

Index Terms— Code Smell, Software refactoring, Technical Debt, Code Debt.

___*****___

I. INTRODUCTION

In real world environment source code of software is becomes

more intricate to read or debug and even harder to widen.

Cleaning up bad smells in the source code is used to improve

software readability and extensibility. Software refactoring is

the process of changing the internal structure of object-oriented

software to improve the quality of software code, especially in

terms of maintainability, extensibility, and reusability while

software outer performance remains unchanged. In order to

improve software refactoring, several tools has been employed

for code smell detection.

Bad smells in the code

The term bad smell was introduced by Fowler and Beck.

According to Martin Fowler, ―A code smell is a exterior

suggestion that usually corresponds to a deeper problem in the

system‖. Code smells are not usually bugs-that are technically

weaknesses in design the term appears to have been coined by

Kent Back and Wards Wiki in late 1990‘s. The term code smell

is also used by agile programs. Smells are come from some

recurring, poor designs solution also known as anti patterns.

The smells need to the carefully detected and monitored by

Researchers.

TABLE I

The Primary smells are

Code Smells Descriptions

Feature Envy

This smell, in which class is involved to use

data or function of another class in the source

code

Large Class

Too much functionality is collected into one

class. Some programmers or developers make

a large class for their handiness but it lead to

many confusions where the code is analyzed

or read by the programmer it is really hard to

understand the functionality of large classes

Duplicate

Code

The simplest duplicated code problem is when

the same expressions in two methods of same

classes

Long Method
Long procedure or method used in classes, so

it is difficult to understand

Long

Parameter list
Parameter list is too long

Divergent

Change

One class is commonly changed in different

ways from different reasons

Temporary

field

Class has a variable which is used in some

situations

Dead Code
Code that is never run or does not perform any

functionality in the source code

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 5 907 – 911

__

908
IJRITCC | May 2017, Available @ http://www.ijritcc.org

II. TECHNICAL DEBT

Technical debt (also known as design debt or code

debt) is ―A concept in training that reflects the extra

development work that arises when code that is easy to

implement in the short run is used as a substitute of applying

the best overall solution". Technical Debt is metaphor coined

by Ward Cumminghan in a 1992 report. Technical Debt is

analogous to financial debt. There is multiple source of

technical debt. Dimension of technical debt include

a. Code debt:

b. Design debt

c. Test debt

d. Documentation debt

III. RESEARCH PROBLEM AND MOTIVATION

Fig 1. DIMENSION OF TECHNICAL DEBT

III. RESEARCH PROBLEM AND MOTIVATION

Technical debt is an symbol used to describe the

consequences of poor software design and bad coding. In

particular, the debt represents a measure of code that

needs to be re- written or accomplished before a particular

task can be considered complete [9]. The image explains well

the trade-offs between delivering the most suitable but still

immature product, in the shortest time possible [7], [9], [13],

[14], [24]. Code smells i.e., symptoms of poor design and

implementation choices [11], are one of the most important

factors subscribe to technical debt. In the past and, most

conspicuously in recent years, several studies investigated the

relevance that code smells have for developers [21], [32], the

extent to which code smells favor to remain in a software

system for long periods of time [2], [8], as well as the side

effects of code smells, such as increase in change and

responsibility proneness[12] or decrease of software

understandability [1] and maintainability [25], [31], [30].

The results achieved in these studies have recommended the

need to properly manage smells aiming at improving the

quality of software systems. Thus, several tools and

methods approaches have been projected for detecting

smells [17], [18], [19], [20], [22], [23], [26], [27], [28],

and, whenever possible, triggering refactoring operations [5],

[4], [27]. While approaches to appropriate smells have

investigated the use of both structural and conceptual

information extracted from source code, approaches to identify

smells are based on structural information only. Recently,

Palomba et al. [22] have also used chronological information to

identify smell. In the framework of their study, the authors

obtained that using chronological information it is possible to

identify smell instances that are missed using structural in

sequence only. In this paper, we speculate that also by using

conceptual information it is possible to categorize smell

instances that are missed by using other sources of information.

In other words, we suppose that, as obtained in other software

engineering tasks (see e.g., [6], [15], [16]), conceptual

properties can provide complementary information to structural

properties when identifying smells in source code. In order to

verify our conjecture, we present TACO (Textual Analysis for

Code smell detection), a textual-based smell detection

approach. TACO has been instantiated for the detection of a

specific smell, i.e., Long parameter list. However, the approach

can be easily extended to other smells. The choice of Long

parameter list is not random, but guided by the idea that such a

smell is a ideal candidate to evaluate the benefits of conceptual

information. certainly, a method with a high number of lines of

code likely implements different responsibilities and thus

textual examination could be mostly suitable to identify such

responsibilities.

IV. APPROACH AND UNIQUENESS

Fowler [11] described the Long parameter list as a method

Long parameter list is a parameter list that is too long and thus

difficult to understand.

Symptoms: A method with too many parameters that is

difficult to understand Solution: Introduce Parameter Object,

Replace Method with Method Object

Thus, the key idea behind TACO is that a Long parameter

list contains a set of code blocks conceptually unrelated each

that should be managed separately. Figure 1overviews the

main steps of the proposed approach. First, TACO extracts

from a method Mi the blocks composing it, applying the

technique proposed by Wang et al. [29]. Then, from each

block TACO extracts the identifiers and comments

concentrated effort the text from non-relevant words, such as

language keywords. Each cleaned block of code is viewed as a

document, and for each pair of code block is computed a value

of similarity using Latent Semantic Indexing (LSI) [10]. The

similarity values between all the possible pairs of blocks are

stored in a block similarity matrix, where a nonspecific entry

ci,j represent the similarity between the method blocks bi and

bj . If in the block similarity matrix there is ingress (i.e.,

similarity between two code blocks) lower than α, then a Long

parameter list instance is identified. The constraint ‗α‘ has been

Code Debt

Design Debt

Test Debt

……

Document

ation Debt

Static

analysis

tool

violation

Inconsiste

nt coding

Design

smell

Violation

of design

rules

Lack of

test

Inadequate

test
…..

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 5 907 – 911

__

909
IJRITCC | May 2017, Available @ http://www.ijritcc.org

empirically evaluated and set to 0.4.

V. PRELIMINARY EVALUATION

We estimate the accuracy of TACO in detecting Long

Parameter list smell instances in three softwares, Phython ,

Apache Xerces2 and Eclipse Core3 . Be- sides the

investigation of the accuracy of TACO we also prepare the

projected approach with a structural-based technique, namely

DECOR [18]. In order to appraise the precision of the

experimented techniques, we compare the set of Long

parameter list instance identified by a specific technique with

the set of instances manually identified in the object system.

Details on how these smells have been manually recognized

can be found in the paper by Palomba et al. [21]. Then, we

appraise the accuracy of the experimented techniques by using

three widely-adopted Information Retrieval (IR) metrics,

namely recall, precision, and F-measure [3].

In addition, we also evaluate the overlap between TACO and

DECOR by measuring the smell instances accepted by both the

technique (TACO ∩ DECOR), the instances identified by

TACO only (TACO \ DECOR) and the instances identified by

DECOR only (DECOR \ TACO). Table I shows the results

achieved. As we can see, TACO is able to detect Long

parameter list instances with good accuracy in all the object

systems. certainly, TACO is able to achieve, overall, a

precision of 75% and a recall of 62% (F-measure=63%), while

DECOR is able to achieve a precision of 54% and a recall of

74% (F-measure=51%).

TABLE II

OVERLAP BETWEEN TACO AND DECOR

 System TACO \ DECOR TACO n DECOR

DECOR n TACO

 phython 12% 44%

44%

 Clion 0% 43%

57%

 Eclipse 77% 23%

0%

In Eclipse Core, where DECOR detects a large number of

candidate smells (i.e., 122), obtaining a very low value of

precision. On this system, TACO detects 6 instances of Long

parameter list, achieving a good concession between precision

and recall (F- measure=71%). Analyzing more in details the

reasons behind this result, we observed that Eclipse has several

number of methods having more than 100 lines of code,

and this is why they are detected as Long parameter list by

the code analysis technique. However, the most part of these

methods manage a single responsibility, but in a long piece of

code. For example, the method find Types From Imports of the

-class Completion Engine is identified by DECOR as Long

parameter list since it has 125 lines of code, but it only contains

the implementation of an algorithm that ends the reference of a

class looking at its imports. On the other hand, our approach is

able to identify different types of Long parameter list.

As an example, the method finds Types and Packages of the

class Completion Engine allows to discover the classes and the

packages of a given project. Clearly, this method manages

different tasks, even if its size is not high. This means that the

use of textual analysis is actually useful to let alone the

identification of many false positive candidates, but also to

detect instances of Long parameter list that the structural

technique is not able to detect. This claim is supported by the

results achieve when analyze the overlap between TACO and

DECOR .

 TABLE III

 DECOR TACO

(see Table II). The two approaches are highly complementary

on two out of three systems analyzed in the study. This result

suggests that structural and abstract information are

complementary when used to identify smells and thus better

accuracy might be obtained by combining the two approaches.

Future work will be loyal to investigate such an aspect.

VI. CONCLUSION

We presented TACO (Textual Analysis for Code smell

detection), an approach to detect Long parameter list smells in

source code by analyzing the textual information extracted by

the code blocks in a method. The analysis of textual

information for smell detection represent a ruler of this paper,

since all the detection approaches proposed in the literature so

far use structural or past information. As future work, we plan

to instantiate TACO for detecting other kinds of smells. For

example, Eclipse and Gene-based Algorithm used detected

Project Prec. Recall F-measure Prec. Recall F-

measure

 Phython 0.84 0.5 0.63 0.63 0.5

0.56

 Clion 0.63 0.72 0.67 0.68 0.57

0.62

Eclipse 0.10 1 0. 19 0.67 0.77

0.71

Overall 0.52 0.74 0.51 0.65 0.61

0.63

Replace.

parameter method

Long parameter

list
Block b1

Pruned block

Long

parameter

identifier

yes

Compute

similarity For

each pair

Extract blocks

Similar matrix

Fig. 2. TACO Identification of Long parameter smell.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 5 907 – 911

__

910
IJRITCC | May 2017, Available @ http://www.ijritcc.org

smells and applying the same technique presented in this paper

at a higher level of granularity, i.e., instead of computing

comparison between code blocks it is necessary to compute the

relationship between methods (in case of Eclipse) or classes

(in case of Gene-based). Also the Feature Envy smell can be

detected by using TACO. In this case it is necessary to compute

the similarity between a method and all the used classes aiming

at identifying the envied class. In addition, the preliminary

estimate of TACO indicated a quite low overlap between the

set of smells identified by TACO and a structural based

detection technique.

In future, a new approach is the possibility of combine the

two approaches to concentrated a mixture and more accurate

smell detector

REFERENCES

[1] M. Abbes, F. Khomh, Y.-G. Gue´he´neuc, and G. Antoniol, ―An

empirical study of the impact of two antipatterns, blob and

spaghetti code, on program comprehension,‖ in 15th European

Conference on Software Maintenance and Reengineering,

CSMR 2011, 1-4 March 2011, Old- enburg, Germany. IEEE

Computer Society, 2011, pp. 181–190.

[2] R. Arcoverde, A. Garcia, and E. Figueiredo,

―Understanding the longevity of code smells: preliminary

results of an explanatory survey,‖ in Proceedings of the

International Workshop on Refactoring Tools. ACM, 2011,

pp. 33–36. [3] R. Baeza-Yates and B. Ribeiro-Neto, Modern

Information Retrieval. Addison-Wesley, 1999.

[3] G. Bavota, M. Gethers, R. Oliveto, D. Poshyvanyk, and A. De

Lucia, ―Improving software modularization via automated

analysis of latent topics and dependencies,‖ ACM Transactions

on Software Engineering and Methodologies, vol. 23, no. 1, pp.

1–33, 2014.

[4] G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De

Lucia, ―Methodbook: Recommending move method refactorings

via relational topic models,‖ IEEE Transactions on Software

Engineering, 2014.

[5] G. Bavota, B. Dit, R. Oliveto, M. Di Penta, D.

Poshyvanyk, and A. De Lucia, ―An empirical study on the

developers' perception of software coupling,‖ in

Proceedings of the 2013 International Conference on

Software Engineering, ser. ICSE ‘13. Piscataway, NJ,

USA: IEEE Press, 2013, pp. 692–701. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2486788.2486879

[6] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E.

Lim, A. MacCormack, R. L. Nord, I. Ozkaya, R. S. Sangwan, C.

B. Seaman, K. J. Sullivan, and N. Zazworka, ―Managing

technical debt in software- reliant systems,‖ in Proceedings of

the Workshop on Future of Software Engineering Research, at

the 18th ACM SIGSOFT International Sym- posium on

Foundations of Software Engineering. Santa Fe, NM, USA:

ACM, 2010, pp. 47–52.

[7] A. Chatzigeorgiou and A. Manakos, ―Investigating the

evolution of bad smells in object-oriented code,‖ in

International Conference on the Quality of Information and

Communications Technology (QUATIC). IEEE, 2010, pp. 106–

115.

[8] W. Cunningham, ―The wycash portfolio management system,‖

SIGPLAN OOPS Mess., vol. 4, no. 2, pp. 29–30, Dec. 1992.

[Online]. Available: http://doi.acm.org/10.1145/157710.157715

[9] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K.

Landauer, and R. Harshman, ―Indexing by latent semantic

analysis,‖ Journal of the American Society for Information

Science, vol. 41, no. 6, pp. 391–407,1990. [11] M. Fowler,

Refactoring: improving the design of existing code.

Addison-Wesley, 1999.

[10] F. Khomh, M. Di Penta, Y.-G. Gue´he´neuc, and G.

Antoniol, ―An exploratory study of the impact of antipatterns

on class change- and fault-proneness,‖ Empirical Software

Engineering, vol. 17, no. 3, pp. 243–275, 2012.

[11] P. Kruchten, R. L. Nord, and I. Ozkaya, ―Technical debt: From

metaphor to theory and practice,‖ IEEE Software, vol. 29, no. 6,

pp. 18–21, 2012.

[12] E. Lim, N. Taksande, and C. B. Seaman, ―A balancing

act: What software practitioners have to say about technical

debt,‖ IEEE Software, vol. 29, no. 6, pp. 22–27, 2012.

[13] A. Marcus and D. Poshyvanyk, ―The conceptual cohesion of

classes,‖ in Proceedings of 21st IEEE International Conference

on Software Maintenance, Budapest, Hungary, 2005, pp. 133–

142.

[14] A. Marcus, D. Poshyvanyk, and R. Ferenc, ―Using the

conceptual cohesion of classes for fault prediction in object-

oriented systems,‖ IEEE Transaction on Software Engineering,

vol. 34, no. 2, pp. 287–300, 2008.

[15] R. Marinescu, ―Detection strategies: Metrics-based rules for

detecting design flaws,‖ in 20th International Conference on

Software Mainte-

[16] N. Moha, Y.-G. Gue´he´neuc, L. Duchien, and A.-F. L. Meur,

―Decor: A method for the specification and detection of code and

design smells,‖ IEEE Transactions on Software Engineering,

vol. 36, no. 1, pp. 20–36, 2010.

[17] M. J. Munro, ―Product metrics for automatic identification

of ―bad smell‖ design problems in java source-code,‖ in

Proceedings of the 11th International Software Metrics

Symposium. IEEE Computer Society Press, September 2005.

[18] R. Oliveto, F. Khomh, G. Antoniol, and Y.-G. Gue´he´neuc,

―Numer- ical signatures of antipatterns: An approach based on b-

splines,‖ in Proceedings of the 14th Conference on Software

Maintenance and Reengineering, R. Capilla, R. Ferenc, and J.

C. Dueas, Eds. IEEE Computer Society Press, March 2010.

[19] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, and A. De

Lucia, ―Do they really smell bad? a study on developers‘

perception of bad code smells,‖ in In Proceedings of the 30th

IEEE International Conference on Software Maintenance and

Evolution (ICSME‘14), Victoria, Canada, 2014, to appear

[20] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, D. Poshyvanyk,

and A. De Lucia, ―Mining version histories for detecting code

smells,‖ IEEE Transactions on Software Engineering, 2015.

[21] D. Ratiu, S. Ducasse, T. Gˆırba, and R. Marinescu, ―Using

history information to improve design flaws detection,‖ in 8th

European Confer- ence on Software Maintenance and

Reengineering (CSMR 2004), 24-26 March 2004, Tampere,

Finland, Proceeding. IEEE Computer Society,2004, pp. 223–

232.

[22] F. Shull, D. Falessi, C. Seaman, M. Diep, and L. Layman,

Perspectives on the Future of Software Engineering. Springer,

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 5 907 – 911

__

911
IJRITCC | May 2017, Available @ http://www.ijritcc.org

2013, ch. Technical Debt: Showing the Way for Better Transfer

of Empirical Results, pp.179–190.

[23] D. I. K. Sjøberg, A. F. Yamashita, B. C. D. Anda, A. Mockus,

and T. Dyba˚, ―Quantifying the effect of code smells on

maintenance effort,‖ IEEE Trans. Software Eng., vol. 39, no. 8,

pp. 1144–1156, 2013.

[24] G. Travassos, F. Shull, M. Fredericks, and V. R. Basili,

―Detecting defects in object-oriented designs: using reading

techniques to increase software quality,‖ in Proceedings of the

14th Conference on Object- Oriented Programming, Systems,

Languages, and Applications. ACM Press, 1999, pp. 47–56.

[25] N. Tsantalis and A. Chatzigeorgiou, ―Identification of move

method refactoring opportunities,‖ IEEE Transactions on

Software Engineering, vol. 35, no. 3, pp. 347–367, 2011.

[26] E. van Emden and L. Moonen, ―Java quality assurance by

detecting code smells,‖ in Proceedings of the 9th Working

Conference on Reverse Engineering (WCRE‘02). IEEE CS

Press, Oct. 2002. [Online]. Available:

citeseer.ist.psu.edu/vanemden02java.html

[27] X. Wang, L. Pollock, and K. Vijay-Shanker, ―Automatic

segmentation of method code into meaningful blocks to improve

readability,‖ in Reverse Engineering (WCRE), 2011 18th

Working Conference on, Oct 2011, pp.35–44.

[28] A. Yamashita and L. Moonen, ―Exploring the impact of inter-

smell rela- tions on software maintainability: An empirical

study,‖ in International Conference on Software Engineering

(ICSE). IEEE, 2013, pp. 682–691.

[29] A. F. Yamashita and L. Moonen, ―Do code smells reflect

important maintainability aspects?‖ in 28th IEEE International

Conference on Software Maintenance, ICSM 2012, Trento,

Italy, September 23-28, 2012. IEEE Computer Society, 2012,

pp. 306–315.

[30] ——, ―Do developers care about code smells? an exploratory

survey,‖ in 20th Working Conference on Reverse

Engineering, WCRE 2013, Koblenz, Germany, October 14-17,

2013. IEEE, 2013, pp. 242–251...

