
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

DOI: https://doi.org/10.17762/ijritcc.v11i3.6193

Article Received: 18 December 2022 Revised: 26 January 2023 Accepted: 15 February 2023

1

IJRITCC | March 2023, Available @ http://www.ijritcc.org

An Efficient and Robust Tuple Timestamp Hybrid

Historical Relational Data Model

Lalit Gandhi1, Rahul Rishi2, Sonia Sharma3
1University Institute of Engineering and Technology,

Maharshi Dayanand University, Rohtak - 124001, India

gandhi_lalit@yahoo.co.in
2University Institute of Engineering and Technology,

Maharshi Dayanand University, Rohtak - 124001, India

rahulrishi@mdu.ac.in
3University Institute of Engineering and Technology,

Maharshi Dayanand University, Rohtak - 124001, India

soniasharma.rp.uiet@mdu.ac.in

Abstract—This paper proposes a novel, efficient and robust tuple time stamped hybrid historical relational model for dealing with temporal

data. The primary goal of developing this model is to make it easier to manage historical data robustly with minimal space requirements and

retrieve it more quickly and efficiently. The model's efficiency and results were revealed when it was applied to an employee database. The

proposed model's performance in terms of query execution time and space requirements is compared to a single relational data model. The

obtained results show that the proposed model is approximately 20% faster than the conventional single relational data model. Memory

consumption results also show that the proposed model's memory cost at different frequencies is significantly reduced, which is approximately

30% less than the single relational data model for a set of queries. Because net cost is strongly related to query execution time and memory cost,

the suggested model's net cost is also significantly reduced. The proposed tuple timestamp hybrid historical model acts as generic, accurate and

robust model. It provides the same functionality as previous versions, as well as hybrid functionality of previously proposed models, with a

significant improvement in query execution speed and memory usage. This model is effective and reliable for the use in a wide range of

temporal database fields, including insurance, geographic information systems, stocks and finance (e.g. Finacle in Banking), data warehousing,

scientific databases, legal case histories, and medical records.

Keywords — tuple timestamp, valid time, relational data, query execution time, memory cost, net cost.

I. INTRODUCTION

 The database that can record previous history data values

along with current snapshot of data are temporal databases.

Many computer applications rely on the ability of databases to

represent this temporal aspect of the real world, including

econometrics, finance, inventory control, accounting, legal,

medical records, land and geographical information systems,

and airline reservations. Temporal databases include regular

time series data such as stock ticks, EEG, and event sequences

such as sensor readings, packet traces, medical records,

weblog data, and temporal data such as relations with

timestamped tuples and databases with versioning [1]. The

query execution time and storage space requirements are

significant temporal database dimensions that need

optimization. Temporal databases are considered efficient if

the query execution time is kept as short as possible.

Furthermore, there should be no redundancy, and the memory

requirements for an effective temporal database should be

minimal. As a result, it is critical to create a database that is

efficient in terms of memory utilization, query execution, and

thus overall net cost.

 Because traditional databases lack the capacity to keep

multiple versions of records, a variety of temporal data

models have been proposed by many academicians and

researchers. They preferred to layer temporal components on

top of traditional databases and typically on relational

database [2-3]. A temporal database management system

called Roles Mode (TF-ORM) is built on top of a

conventional database [4-5]. A temporal relational model for

managing patient historical data [6], bi-temporal conceptual

data model (BCDM) [7], Tera-data [8-11], tuple timestamped

single relational model [12-13], tuple time stamp history

relational model [14-15], and multiple history relational

model [16] are among temporal data models that are

developed using relational database as foundation [16-26].

The tuple timestamp single relational (TTSR) model stores all

of its attributes, whether static or dynamic, in a single relation,

resulting in increased relation redundancy and storage

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

DOI: https://doi.org/10.17762/ijritcc.v11i3.6193

Article Received: 18 December 2022 Revised: 26 January 2023 Accepted: 15 February 2023

2

IJRITCC | March 2023, Available @ http://www.ijritcc.org

requirements. Tuple timestamp historical relation (TTHR)

uses two relations: one for storing current instances and

another for storing past occurrences. The tuple timestamp

multiple historical relation model (TTMHR) [16] was

developed to deal with temporally diverse dynamic features. It

made extensive use of relations to handle dynamic properties.

Although these earlier models are easy to implement, they are

not so efficient in terms of query execution speed. However,

the redundancy caused by tuple time stamping resulted in

excessive memory requirements. As a result, these models

have a relatively high net cost. Despite the fact that several

temporal data models have been proposed, none has received

universal acceptance. As a result, a robust temporal data

model with efficient query execution time, minimal memory

cost, and enhanced net cost is still required.

 The Tuple Timestamp Hybrid Historical Relational

(TTHHR) model proposed here records temporally

homogeneous and heterogeneous characteristics with valid

time separately. This improved model employs valid time and

tuple time stamping to account for the start and end time

validity [26-27]. It keeps a single history relation for attributes

with a consistent temporal pattern and multiple history

relations for attributes with a variable temporal pattern when

recording time entries. The model is robust and retains the

behavior of previous versions; it acts as a tuple timestamp

history relation model if all of the dynamic attributes of the

relation are temporally homogeneous, and it does so with

greater efficiency. If all of the relation's attributes are

temporally heterogeneous, the model behaves similarly to a

tuple timestamp multiple historical relational model. If, on the

other hand, there is a mix of both homogeneous and

heterogeneous attributes, the model exhibits hybrid behavior.

Furthermore, the proposed model is hybrid and generic in

nature, allowing it to handle all types of data while requiring

less memory and requiring less query execution time,

resulting in improved results and a lower net cost in

comparison [29]. The model is deployed and evaluated for a

hypothetical enterprise with ninety thousand employee

records to calculate salary and other earnings such as

reimbursements, arrears, and so on. The results show a

significant decrease of approximately 30% reduction in

memory storage space requirements, as well as a significant

reduction in query execution time, i.e. 20% enhancement. As

a result, the model produces better net cost results than the

previous models.

 Section II shows the architecture of the proposed tuple

timestamp hybrid historical Relational data model. Section III

explains how the proposed model is implemented, Section IV

presents the results & discussion and Section V concludes the

paper.

II. ARCHITECTURE OF PROPOSED MODEL

Figure 1 depicts the architectural design of the

proposed model. The application interface allows the user to

communicate with the temporal database. Attributes are

filtered and classified into three categories: static attributes

temporally homogeneous dynamic attributes and temporally

heterogeneous dynamic attributes. Users can manage both

historical and current data instances through the application

interface. Only the current static single relation is required to

save static attribute data values. A single current relation is

required to store temporally homogeneous time-varying

attributes, and a single History relation is required to preserve

history values. To store data for temporally heterogeneous

attributes, multiple (equivalent to the number of

heterogeneous attributes) current and historical relations are

required. Data insertion is recorded using the current relation

only. When an attribute is changed, the trigger is activated,

and previous values for that attribute are transferred into a

historical relation, updating that specific current relation with

the latest values. The tuple's past values are sent to the history

table, and the higher bound of the time range is set to match

the lower bound of the current table's time range. As a result,

all current and historical values are kept in separate tables,

each with its own time period. No records are erased because

delete transactions are not permitted in temporal databases.

The historical relations are also preserved using tuple time

stamping. Valid-time is used as the time element in the

proposed model's tuples. The primary key of the history table

is the same as the primary key of the current table, as is the

time range of the history table. B-tree indexing is used to tune

query execution & improved performance

III. IMPLEMENTATION OF PROPOSED MODEL

To implement and evaluate the proposed TTHHR model,

salary and other earnings dataset of around ninety thousand

records for employees of a hypothetical organization is used.

Figure 2 depicts the pre-processing of the dataset. The

"tsrange" data type is used to timestamp the tuples. The

original relations are segmented into static, temporally

homogeneous, and temporally heterogeneous relations,

allowing queries to be performed in accordance with the

proposal. The attributes are separated so that relations and

thus data can be recorded and preserved only according to

their validity. The proposed model is found to be 1.2 times

faster than the conventional tuple timestamp single relational

model for a set of queries (TTSR). Furthermore, the proposed

model has a lower memory cost by about 30%, resulting in a

significant net cost reduction.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

DOI: https://doi.org/10.17762/ijritcc.v11i3.6193

Article Received: 18 December 2022 Revised: 26 January 2023 Accepted: 15 February 2023

3

IJRITCC | March 2023, Available @ http://www.ijritcc.org

Figure 1 Architecture of proposed model

Figure 2 Dataset Processing

Figure 3 depicts the entity relationship diagram for

the proposed tuple timestamp hybrid historical model's

employee database. To group all static attributes of employees

in the employee table, only one relation is required. Because

the values for these attributes do not change over time, no

history table is required. Dynamic attributes are classified

according to their temporal nature. The attributes that change

over the same time interval, such as BASIC SALARY, DA,

HRA, MEDICAL ALLOWANCE, and TOTAL SALARY,

are temporally homogeneous because DA, HRA, MEDICAL

ALLOWANCE, and TOTAL SALARY are dependent on

BASIC SALARY, and any change in BASIC SALARY has a

direct impact on all other related attributes over the same time

interval. Temporally heterogeneous attributes change at

different time intervals, as shown in the diagram-

REMUNERATION, ARREAR, and CHILD ALLOWANCE

are examples of temporal heterogeneous attributes.

In the Entity Relationship Diagram, history tables are denoted

by the suffix "hist," whereas current snapshots of the database

are denoted by the suffix "fore." The employee table contains

all static attributes. The earnings_fore table contains all

temporally homogeneous attributes and a parallel history

table, with EMPNO as the primary key and analogous time

values. When the earnings_fore database is updated, the

earnings_hist table is populated with previous values using a

trigger. EMPNO in conjunction with valid-time serves as the

earnings_hist table's primary key. There are also a number of

other temporally diverse attributes, such as arrears,

remuneration, and child allowance. Separate relations are

designed for each attribute. EMPNO in conjunction with time

values serve as the primary key for these heterogeneous

relations such as ARREAR_FORE,

REMUNERATION_FORE, CHILD_ALLOWANCE_FORE.

When an update is performed on a “fore” relation, the

corresponding history table ARREAR_HIST,

REMUNERATION_HIST or CHILD_ALLOWANCE_HIST

relation is populated with the previous values. When an

update operation is performed on a fore table in the current

database, the before update trigger is activated, and previous

values in the relevant history table are transferred. The start

valid time of the updated tuple is set in the fore table to

coincide with the valid end time of the related history table.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

DOI: https://doi.org/10.17762/ijritcc.v11i3.6193

Article Received: 18 December 2022 Revised: 26 January 2023 Accepted: 15 February 2023

4

IJRITCC | March 2023, Available @ http://www.ijritcc.org

Figure 3 Entity Relationship Diagram

Because 'm' dynamic attributes are of temporally

homogeneous type and there are 'n' total dynamic attributes.

To record the data values for these m temporally

homogeneous attributes appended with primary key and valid

time, only one table and corresponding single history table are

required. Rest n-m temporally heterogeneous attributes

require n-m tables to record dynamic heterogeneous attribute

values along with the primary key and valid time. To keep the

history values for these relations, n-m history relations are

also required. The proposed model supports the Insertion,

Update and retrieval. Deletion is not permitted in temporal

databases. Following are the algorithms for DML process.

a. INSERTION in temporal database

Only the current (fore) tables are exercised for insert

transactions in temporal databases. Data values can be

inserted by user for static and dynamic attributes. Valid start

and end time are also inserted by user for the dynamic

attributes with help of time range data types.

ALGORITHM TO INSERT NEW TUPLES IN TEMPORAL TABLES

INSERT INTO TABLE_NAME (COL1,COL2,….,COLN,TIME_RANGE)VALUES

(VALUE1,VALUE2,…….VALUEN,TSRANGE(DATE1,DATE2));

IF (PRIMARY KEY ALREADY EXISTS IN TABLE_NAME) THEN RETURN

PRIMARY_KEY_CONSTRAINT_VIOLATION

ELSE

RETURN INSERTION SUCCESSFUL

ENDIF

Example:

INSERTION OF DATA IN STATIC TABLE -

INSERT INTO EMPLOYEES (EMP_NO, EMP_NAME, GENDER, DOB) VALUES

(111,'ANSHUL','M', '1975/09/17');

INSERTION OF DATA IN DYNAMIC TABLE -

INSERT INTO EARNINGS_FORE (EMP_NO, BASIC, DA, HRA,

MEDICAL_ALLOWANCE, TOTAL, TIME_RANGE)

VALUES (111, 10200, 8000, 4000, 1000, 23200 TSRANGE

('2018/01/01 00:00:00',

'2018/01/31 23:59:00', '[]'));

b. RETRIEVAL from temporal database

Data retrieval from the proposed TTHHR model can be

done via four different ways. In the first case if user requires

only the static data, therefore user can directly access the data

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

DOI: https://doi.org/10.17762/ijritcc.v11i3.6193

Article Received: 18 December 2022 Revised: 26 January 2023 Accepted: 15 February 2023

5

IJRITCC | March 2023, Available @ http://www.ijritcc.org

from static table. Secondly, if the user intends to extract the

dynamic data for current instance only then he can access

from the 'fore' tables only. In case user needs the data that fall

in history time period, then it can be accessed from 'hist'

tables. Finally, if the data is required for time period that

overlaps current and history time period, it can be accessed by

joining the 'fore' and 'hist' tables for that particular time range.

ALGORITHM FOR RETRIEVAL OF DATA:

SELECT * FROM FUNC (PARAMETERS, TIME_RANGE)

IF (TIME-RANGE IS NOT THERE AND USER NEED STATIC DATA)

SELECT TUPLE/S FROM A STATIC TABLE WHEN THE CRITERIA

MEETS THE PARAMETERS

STATIC TABLE TUPLE/S RETURNED

ELSEIF (TIME_PERIOD &> (SELECT FORE_TABLE.TIME_RANGE

FROM FORE_TABLE WHERE (CRITERIA MEETS THE

PARAMETERS)))

FORE_TABLE TUPLE/S RETURNED

ELSEIF (TIME_PERIOD << (SELECT HIST_ TABLE.TIME_ RANGE

FROM HIST_TABLE WHERE (CRITERIA MEETS THE

PARAMETERS)))

HIST_TABLE TUPLE/S RETURNED

ELSE

BOTH FORE_TABLE AND HIST_TABLE TUPLE/S RETURNED WHERE

FORE_TABLE.TIME_RANGE && TIME_PERIOD AND

HIST_TABLE.TIME_RANGE&&TIME_PERIOD

ENDIF

Example

SELECT * FROM EARNINGS_FORE WHERE TIMERANGE && TSRANGE

('2020-06-01 00:00:00', '2020-06-30 23:59:59','[]')

c. UPDATE of temporal database

Update on the dynamic temporal table is different from static

tables. Whenever update is applied on the 'fore' table, the

previous values of the tuple are transferred to the 'hist' table.

Before update trigger is activated as soon as there is any

update is applied on the 'fore' table. The upper bound of the

time-range attribute of hist table is set equal to the lower

bound of the time-range attribute of the fore table, the older

values of the present table are placed into the history table.

ALGORITHM FOR UPDATE IS AS FOLLOWS.

UPDATE FORE_TABLE SET

COLUMN1=VALUE1, COLUMN2=VALUE2 ….COLUMNN=VALUEN,

TIME_RANGE=TSRANGE (DATE1, DATE2)

WHERE CRITERIA MEETS PARAMETERS

BEFORE UPDATE TRIGGER <NAME-OF-TRIGGER>

IF (OLD.VALUES <> NEW.VALUES)

BEFORE UPDATE ON FORE_TABLE

EXECUTE PROCEDURE TRIGGER_PROC

INSERT INTO HIST_TABLE(TIME_RANGE_COLUMN,COLUMN2,….

COLUMNN) VALUES (TIME_RANGE_TYPE (LOWER (OLD.TIME_RANGE),

LOWER(NEW.TIME_RANGE)),OLD.COLUMN2,….OLD.COLUMNN)

SET OLD.VALUES IN FORE_TABLE TO NEW.VALUES

SUCCESSFULL UPDATE IS RETURNED

ELSEIF(LOWER (NEW.TIME_RANGE) < LOWER (OLD.TIME_RANGE)) THEN

RETURN INPUT ERROR

ENDIF

Example:

UPDATE EARNINGS_FORE SET SALARY=100499, TIME_RANGE=TSRANGE

('2021/01/01

00:00:00', '2022/01/01 23:59:00', '[]') WHERE EMP_NO= 3067

IV. RESULTS & DISCUSSION

The employee database dataset (90,000 records) was used

to run several queries on the proposed model (TTHHR) and

the previous conventional tuple time stamped single relational

model (TTSR). Unlike the TTHHR model, which keeps prior

records in separate history relations and the current snapshot

in "fore" tables, the TTSR model keeps both the current and

past occurrences of data in a single current and history model.

The results obtained revealed a significant reduction in

memory space requirements and query execution time. As a

result, the net cost is also lower.

(i) QUERY EXECUTION TIME

The term "query execution time" refers to how long it would

take to execute the optimal query execution strategy [30]. A

set of queries is created and executed in order to compare the

results of the TTSR and TTHHR models. After seven

iterations, the mean execution time for each query is used to

compare results. The queries used to evaluate the performance

of the TTSR and TTHHR models are listed in Table I. The

mean time is recorded using the Postgres PgAdmin utility.

PgAdmin provides an estimated optimal query execution plan

for tracking query execution time.

Only history tables are utilized to run Q1 and Q4. Queries Q2,

Q10, and Q11 can only be run with the current tables. For rest

all queries Q3, Q5, Q6, Q7, Q8, and Q9, current and historical

tables are exercised. Table II displays the mean execution

times in milliseconds of both models TTSR and TTHHR for

the queries listed in Table I. The proposed tuple time stamped

hybrid historical relation (TTHHR) model has a faster

execution time for the majority of queries. The accelerate ratio

is calculated as the ratio of the mean query execution times

for the two models.

Accelerate Ratio (AR) =

Mean Query Execution Time (µTTSR)/ Mean Query Execution

Time (µTTHHR)

In this formula, AR stands for accelerate ratio, µTTSR is mean

query execution time for tuple timestamp single relation

model, and µTTHHR is mean execution time for proposed

model mean query execution time. The performance in terms

of query execution time of the proposed model is compared to

single relational data model and results obtained shows that

proposed (TTHHR) model is approximately 1.2 times faster

than the conventional single relational (TTSR) data model.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

DOI: https://doi.org/10.17762/ijritcc.v11i3.6193

Article Received: 18 December 2022 Revised: 26 January 2023 Accepted: 15 February 2023

6

IJRITCC | March 2023, Available @ http://www.ijritcc.org

Hence, approximately 20% query execution time efficiency is

observed. Figure 4 represents comparison of mean query

execution time between single relational (TTSR) and

proposed model (TTHHR).The results clearly show that the

proposed model's query execution time is faster when the

query only returns results from the current or history table.

Whereas, the proposed model outperforms the single relation

model for queries that require data values from both the

present and history tables.

Table-I Queries used for Performance Evaluation of different Models

Query No. Query Description

Q1

Select all attributes from the earnings table for employee 3067 where time period is in range

('2021/04/01/00:00:00','2022/01/31 23:59:00');

Q2

Select all attributes from the earnings table for employee 3067 where time period is in range

('2021/04/01/00:00:00','9999/01/01 23:59:00');

Q3

Select all attributes from the earnings table for employee 3067 where time period is in range

('2017/04/01/00:00:00','9999/01/01 23:59:00');

Q4

Select attributes from tables remuneration, child_allowance and arrear tables for employee 3067

where time period is in range ('2021/04/01/00:00:00','2022/01/31 23:59:00') for the period of one

year.

Q5

Select attributes from tables earnings, remuneration, child_allowance and arrear for employee

3067 using the earnings.time_range, remuneration.time_range, child_allowance.time_range and

arrear.time_range where time period is in range ('2021/04/01 00:00:00','9999/01/01 23:59:00') to

find out total earnings during the period.

Q6

Select attributes from tables earnings, remuneration, child_allowance and arrear for employee

3067 using earnings.time_range, remuneration.time_range, child_allowance.time_range and

arrear.time_range where time period is in range ('2017/04/01 00:00:00','9999/01/01 23:59:00') to

find out total earnings during the period.

Q7

Select all attributes from earnings table for employee 125 where date is '2022/04/01

00:00:00'::timestamp;

Q8

Select all attributes from earnings table for employee number 2125 where date is '2017/04/01

00:00:00'::timestamp;

Q9

Select attributes from tables earnings, remuneration, child_allowance and arrear for employee

2125 using earnings.time_range, remuneration.time_range, child_allowance.time_range and

arrear.time_range time period is '2017/04/01 00:00:00' :: timestamp to find out total earnings

during the period.

Q10

Select attributes from tables earnings, remuneration, child_allowance and arrear for employee

2125 using earnings.time_range, remuneration.time_range, child_allowance.time_range and

arrear.time_range time period is '2022/04/01 00:00:00' :: timestamp to find out total earnings

during the period.

Table II: Mean Query Execution time and Accelerate ratio

Q No

Mean Query execution Time in Single

Relation Mode µTTSR (milliseconds)

Mean Query execution Time in Proposed

Model µTTHHR (milliseconds)

Accelerate Ratio =

(µTTSR/ µTTHHR)

Q1 0.587 0.467 1.256959315

Q2 0.486 0.398 1.221105528

Q3 0.553 0.627 0.881977671

Q4 0.918 0.794 1.156171285

Q5 0.935 0.813 1.150061501

Q6 0.994 0.788 1.26142132

Q7 0.815 0.756 1.078042328

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

DOI: https://doi.org/10.17762/ijritcc.v11i3.6193

Article Received: 18 December 2022 Revised: 26 January 2023 Accepted: 15 February 2023

7

IJRITCC | March 2023, Available @ http://www.ijritcc.org

Q8 0.885 0.796 1.111809045

Q9 0.983 0.812 1.210591133

Q10 0.978 0.829 1.17973462

Figure 4 Comparison of Mean Query Execution Time by Single

Relational and Proposed Model

(ii) MEMORY COST

The phrase "memory cost" refers to amount of memory

storage required to store data. A number of queries are

designed and run in order to compare the results of the TTSR

and TTHHR models for required memory storage. Table- I

lists the queries used to evaluate the memory cost of the

TTSR and TTHHR models at different frequencies.

Total memory required for inserting ‘f’ (frequency) tuples

because of update operation for tuple timestamp single

relation (TTSR) will be given by

Memory Cost(R) = (Memory Cost (Key attributes) + Memory

Cost (Static attributes) + Memory Cost (Dynamic attributes)

+ Memory Cost (Timestamps))* frequency

= (K+S+D+T)*f

Total memory required for inserting ‘f’ tuples because of

update operation for tuple timestamp hybrid history (TTHHR)

relation will be given by

Memory Cost(R) = (Memory Cost (Key attributes) +

Memory Cost (Dynamic attributes) + Memory Cost

(Timestamps))* frequency

 = (K+D+T)*f

There will be two cases for calculating the memory

cost, if the dynamic attributes are homogeneous in nature

then, the cost relates to only homogeneous dynamic attributes(

say m attributes out of total n attributes) and if the changes

comes to heterogeneous dynamic attributes, then it will affect

only the (n-m) attributes and cost accordingly.

Table III: Memory cost (MC)

Q

No

Frequency

MC in (TTSR

Bytes)

MC of update for

varying frequency in

TTSR (Bytes)

MC in proposed Model

TTHHR (Bytes)

MC of update for varying

frequency in Proposed Data

Model TTHHR (Bytes)

Q1 5 26 130 14 70

Q2
10

26 260 14 140

Q3
15

26 390 14 210

Q4
20

26 520 10 200

Q5
25

26 650 20 500

Q6
30

26 780 20 600

Q7
35

26 910 10 350

Q8 40 26 1040 10 400

Q9
45

26 1170 20 900

Q10 50 26 1300 20 1000

The comparative analysis of the proposed data model with

respect to single relation data model in terms of memory cost:

Memory Cost of TTSR with frequency (f) =

(K+S+D+T) * f

Memory Cost of TTHHR with frequency (f) = (K +Di

+T) * f;

Either Case-I: when i= “m” for “m” homogeneous

attributes

OR

Case-II: when i= “n-m” for “n-m” heterogeneous

attributes

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

DOI: https://doi.org/10.17762/ijritcc.v11i3.6193

Article Received: 18 December 2022 Revised: 26 January 2023 Accepted: 15 February 2023

8

IJRITCC | March 2023, Available @ http://www.ijritcc.org

 Improvement in memory cost in TTHHR data model with

respect to TTSR data model is given by equation

= (Memory Cost (TTSR) – Memory Cost

(TTHHR))/Memory Cost (TTSR).

Figure 6 Memory Cost Comparison of TTSR and Proposed TTHHR

Model

Figure 6 shows the Memory Cost Comparison of

TTSR and Proposed TTHHR model, which clearly reveals

lower memory requirements for the proposed model as

compare to conventional single relational data model. Results

obtained shows that proposed (TTHHR) model saves

approximately 30% memory as compared to TTSR (Tuple

Timestamp Single Relational Model).

Table IV Reduction in Net Cost of Proposed TTHHR w.r.t. TTSR

Query

ID Frequency

Mean Query

Execution

time TTSR

Memory

Cost of

TTSR

Net

Cost of

TTSR

Mean Query

Execution time

Proposed Model

TTHHR

Memory Cost

of Proposed

Model TTHHR

Net Cost

of Model

TTHHR

Reduction in Net

Cost of Proposed

model TTHHR

w.r.t. TTSR

(%save)

Q1 5 0.587 26 76.31 0.467 14 32.69 57.161578

Q2 10 0.486 26 126.36 0.398 14 55.72 55.903767

Q3 15 0.553 26 215.67 0.627 14 131.67 38.948393

Q4 20 0.918 26 477.36 0.794 10 158.8 66.733702

Q5 25 0.935 26 607.75 0.813 20 406.5 33.113945

Q6 30 0.994 26 775.32 0.788 20 472.8 39.018728

Q7 35 0.815 26 741.65 0.756 10 264.6 64.322794

Q8 40 0.885 26 920.4 0.796 10 318.4 65.406345

Q9 45 0.983 26 1150.11 0.812 20 730.8 36.458252

Q10 50 0.978 26 1271.4 0.829 20 829 34.796288

(iii) NET COST

Table IV represents the Net Cost of both models. Net cost can

be calculated using formula as

Net Cost = (Mean Query Execution Time * Memory

Cost MC)

The Net cost of TTSR and TTHHR estimated at various

frequencies is shown in the table. The net cost of the TTSR

model is derived by multiplying the mean query execution

time at different frequencies by the memory cost. The

proposed model's net cost is calculated using the same

methodology. The reduction in net cost and percentage save is

calculated using the formula as -

= (Net cost (TTSR) - Net Cost (TTHHR)) /Net Cost (TTHHR)

*100

The findings indicate that the total net cost has been

significantly reduced. The proposed tuple timestamp hybrid

historical model acts as generic and robust model which offers

the same functionality as older versions while significantly

improving query execution speed and using less memory. The

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

DOI: https://doi.org/10.17762/ijritcc.v11i3.6193

Article Received: 18 December 2022 Revised: 26 January 2023 Accepted: 15 February 2023

9

IJRITCC | March 2023, Available @ http://www.ijritcc.org

TTHHR behaves like the tuple timestamp history relation

(TTHR) model if all of the dynamic attributes of the relation

are temporally homogeneous and that too with more

efficiency. If the attributes of the relation are temporally

heterogeneous, the model behaves like a tuple timestamp

multiple historical relational (TTMHR) model. Evidently, the

filter layer separates the homogeneous and heterogeneous

temporal features. When heterogeneous and homogeneous

attributes are blended together in database, both types of

attributes are handled through hybridization. TTHHR reduces

the amount of memory needed effectively and improves query

performance.

V. CONCLUSION

 The tuple time-stamped hybrid historical relation

(TTHHR) is introduced as an optimal data model capable of

organizing temporal data efficiently. The proposed model is

built on a tuple time-stamping method with valid time as the

time dimension. All temporal database operations, such as

record insertion, updating, and retrieval, are executed

efficiently. To avoid data duplication, all static attributes are

compiled into a single, unique relation. Separate temporal

relations are established for all temporal attributes with

varying valid times; for attributes with equal valid times, a

single relation is built. temporal relations are established; for

attributes with equal valid times, a single relation is built. This

process enables the database to be cleared of superfluous

redundancy. The query execution time and memory cost

parameters are used to evaluate the performance of the

proposed tuple time-stamped hybrid historical relation

(TTHHR) data model. The proposed model's performance in

terms of query execution time is compared to a single

relational, and the results show that the proposed model is

approx. 20% faster than the conventional single relational

model . Memory consumption results show that memory cost

at different frequencies for the proposed model is reduced

significantly, which is approximately 30% lower when

compared to the conventional single relational data model.

As a result, the suggested model's net cost is

significantly reduced. The tuple timestamp hybrid historical

model proposed here serves as a generic and robust model. It

provides the same functionality as previous versions, as well

as hybrid functionality of previously proposed models, with a

significant improvement in query execution speed and

memory usage. In the future, the model could be applied to a

wide range of temporal database fields, including insurance,

geographic information systems, stocks and finance, data

warehousing, scientific databases, legal case histories, and

medical records.

REFERENCES

[1] Bohlen, Michael H., Renato Busatto, and Christian S.

Jensen. "Point-versus interval-based temporal data

models." In Proceedings 14th international conference on

data engineering, pp. 192-200. IEEE, 1998. doi:

10.1109/ICDE.1998.655777.

[2] Sevilla-Lara, L., Zha S., Yan Z., Goswami V., Feiszli M.,

Torresani L. “Only Time Can Tell: Discovering

Temporal Data for Temporal Modeling” Proceedings of

the IEEE/CVF Winter Conference on Applications of

Computer Vision (WACV), 2021, pp. 535-544

[3] Snodgrass, Richard T. "A Case Study of Temporal Data."

Teradata Corporation, 2010.

[4] Kumar, Shailender, Rahul Rishi, and Rupender Duggal.

"Implementation of temporal functionality in objects with

role model (TF-ORM)." In 2016 1st India International

Conference on Information Processing (IICIP), pp. 1-5.

IEEE, 2016. 10.1109/IICIP.2016.7975368

[5] R. D. M. Galante, C. S. D. Santos, N. Edelweiss, A. F.

Moreira, "Temporal and versioning model for schema

evolution in object oriented databases," Data & Knowledge

Engineering, pp 99-128, May, 2005.

doi:10.1016/j.datak.2004.07.001

[6] Burney, Aqil, Nadeem Mahmood, and Kamran Ahsan.

"Tempr-pdm: a conceptual temporal relational model for

managing patient data." In Proc. Int. WSEAS conference

AIKED, pp. 237-243. 2010.

[7] Yang, C., Wang, X., Zhang, M., Zheng, R., Wei, W., &

Lou, Y., "Standardization on bitemporal information

representation in BCDM," IEEE International Conference

on Information and Automation, 2015, pp. 2052-2057.

doi: 10.1109/ICInfA.2015.7279627

[8] Gandhi, Lalit. "Literature survey of temporal data models."

International Journal of Latest Trends in Engineering and

Technology 8, no. 4-1 (2017): 294-300.

[9] Kunzner, F., & Petkovic, D. “A Comparison of Different

Forms of Temporal Data Management”. Springer

International Publishing International Conference: Beyond

Databases, Architectures and Structures, pp 92-106, 2015.

doi:10.1007/978-3-319-18422-7­_8.

[10] Zemke, Fred. "What’s new in SQL: 2011," ACM

SIGMOD Record 41.1, pp. 67-73, 2012.

[11] http://www.ibm.com/developerworks/data/library/techartic

le/dm-1204db2temporaldata

[12] Jensen, Christian S., Michael D. Soo, and Richard T.

Snodgrass. "Unifying temporal data models via a

conceptual model." Information Systems 19, no. 7, pp.

513-547, 1994. doi: 10.1016/0306-4379(94)90013-2.

[13] Gadia, Shashi K., and Chuen-Sing Yeung. "A generalized

model for a relational temporal database." In ACM

SIGMOD Record, vol. 17(3), pp. 251-259, ACM, 1988.

doi: 10.1145/971701.50233.

[14] Edelweiss, Nina, Patrícia Nogueira Hubler, Mirella Moura

Moro, and Giovani Demartini. "A temporal database

management system implemented on top of a conventional

database." In Proceedings 20th International Conference of

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

DOI: https://doi.org/10.17762/ijritcc.v11i3.6193

Article Received: 18 December 2022 Revised: 26 January 2023 Accepted: 15 February 2023

10

IJRITCC | March 2023, Available @ http://www.ijritcc.org

the Chilean Computer Science Society, pp. 58-67. IEEE,

2000. 10.1109/SCCC.2000.890392

[15] Alromema, Nashwan. "Retrieval optimization technique

for tuple timestamp historical relation temporal data

model." Journal of Computer Science 8, no. 2 (2012): 243-

250.

[16] S.Kumar, R.Rishi “A New Optimized Model to Handle

Temporal Data using Open Source Database”, Advances in

Electrical and Computer Engineering, Volume 17, Number

2, 2017

[17] C. S. Jensen, R. T. Snodgrass, “Temporal data

management,” IEEE Transactions on Knowledge and Data

Engineering,11(1):36-44, 1999. doi:10.1109/69.755613.

[18] R. Elmasri and S.Navathe, "Fundamentals of Database

Systems", Benjamin/Cummings 2012

[19] Kvet, Michal, Karol Matiaško, and Monika Vajsová.

"Sensor based transaction temporal database architecture."

In 2015 IEEE World Conference on Factory

Communication Systems (WFCS), pp. 1-8. IEEE, 2015.

DOI: 10.1109/WFCS.2015.7160547

[20] Ali, Noraida Haji, and Sumazly Sulaiman. "Managing

News Archive Using Temporal Data Modeling." Journal of

Applied Sciences 12, no. 3 (2012): 284-288.

[21] Krause, Josua, Adam Perer, and Harry Stavropoulos.

"Supporting iterative cohort construction with visual

temporal queries." IEEE Transactions on visualization and

computer graphics 22(1), pp. 91-100, 2016. doi:

10.1109/TVCG.2015.2467622.

[22] Kumar, Shailender, and Rahul Rishi. "Retrieval of

meteorological data using temporal data modeling." Indian

Journal of Science and Technology 9, no. 37 (2016). DOI:

10.17485/ijst/2016/v9i37/99875.

[23] Christy, A., and G. Meera Gandhi. "Combining bitemporal

conceptual data model with multiway join relations for

forecasting." Procedia Computer Science 57 (2015): 1104-

1114. https://doi.org/10.1016/j.procs.2015.07.396

[24] Wang W., Peng X., Qiao Y., Cheng J. “An empirical study

on temporal modeling for online action detection”

Complex & Intelligent Systems (2022) 8:1803–1817

[25] Petkovic, Dusan. "Temporal Data in Relational Database

Systems: A Comparison." New Advances in Information

Systems and Technologies. Springer International

Publishing, pp. 13-23, 2016. doi: 10.1007/978-3-319-

31232-3_2.

[26] Atay, Canan. "A comparison of attribute and tuple time

stamped bitemporal relational data models." (2010). Int

Conf on Applied Computer Science. 2010: 479-89.

[27] Anselma, L., Terenziani, P., & Snodgrass, R. T. “Valid-

time indeterminacy in temporal relational databases:

Semantics and representations”. IEEE Transactions on

Knowledge and Data Engineering, 25(12), pp. 2880-2894,

2013. doi: 10.1109/TKDE.2012.199.

[28] Terenziani, Paolo. "Irregular indeterminate repeated facts

in temporal relational databases." IEEE Transactions on

Knowledge and Data Engineering 28, no. 4 (2015): 1075-

1079. doi: 10.1109/TKDE.2015.2509976.

[29] AL-romema, Nashwan. "Memory storage issues of

temporal database applications on relational database

management systems." Journal of Computer Science 6, no.

3 (2010).

[30] Murugan, K., and T. Ravichandran. "Intelligent query

processing in temporal database using efficient context free

grammar." Indian Journal of Science and Technology 5,

no. 6 (2012): 1-6.

[31] Congdon P., “A spatio-temporal autoregressive model for

monitoring and predicting COVID infection rates” Journal

of Geographical Systems (2022)

https://doi.org/10.1007/s10109-021-00366-2

[32] Gandhi, L., Rishi R., Sharma S., Wawale S.G., Chweya R.

“Air quality data acquisition through temporal data

modeling” Hindawi Mathematical Problems in

Engineering.

http://www.ijritcc.org/
https://doi.org/10.1007/s10109-021-00366-2

