
International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 2s 

DOI: https://doi.org/10.17762/ijritcc.v11i2s.6142 

Article Received: 25 November 2022 Revised: 28 December 2022 Accepted: 10 January 2023 

___________________________________________________________________________________________________________________ 

 

237 

IJRITCC | January 2023, Available @ http://www.ijritcc.org 

Assessment of Seismic Hazards in Underground Mine 

Operations using Machine Learning 
 

Priti Shende1, Wankhede Vishal Ashok2, Suresh Limkar3, Mahadeo D. Kokate4, Santosh Lavate5, Ganesh Khedkar6 
1Department of Electronics & Telecommunication Engineering,  DYPIT, Pimpri, Pune, Maharastra, India 

priti.jawale@dypvp.edu.in 
2Department of  Electronics and Telecommunication Engineering, S.H.H.J.B. Polytechnic, Chandwad, Nashik 

Maharastra, India 

wankhedeva@gmail.com 
3Department of Artificial Intelligence & Data Science ,  

AISSMS Institute of Information Technology, Pune 

Maharastra, India 

sureshlimkar@gmail.com 
4Department of Electronics and Telecommunication Engineering, SNJBs K B Jain College of Engineering, Chandwad, Nashik 

Maharastra, India 

mdkokate66@gmail.com 
5Department of Electronics & Telecommunication,  

AISSMS College of Engineering, Pune 

Maharastra, India 

lavate.santosh@gmail.com  
6Senior Solution Architect, Fossgen Technologies Pvt. Ltd: Pune, Maharastra, India 

ganesh.khedkar@gmail.com 

 

Abstract 

The most common causes of coal mining accidents are seismic hazard, fires, explosions, and landslips. These accidents are usually caused by 

various factors such as mechanical and technical failures, as well as social and economic factors. An analysis of these accidents can help identify 

the exact causes of these accidents and prevent them from happening in the future. There are also various seismic events that can occur in 

underground mines. These include rock bumps and tremors. These have been reported in different countries such as Australia, China, France, 

Germany, India, Russia, and Poland. Through the use of advanced seismological and seismic monitoring systems, we can now better understand 

the rock mass processes that can cause a seismic hazard. Unfortunately, despite the advancements, the accuracy of these methods is still not perfect. 

One of the main factors that prevent the development of effective seismic hazard prediction techniques is the complexity of the seismic processes. 

In order to carry out effective seismic risk assessment in mines, it is important that the discrimination of seismicity in different regions is carried 

out. The widespread use of machine learning in analyzing seismic data, it provides reliability and feasibility for preventing major mishaps. This 

paper provides uses various machine learning classifiers to predict seismic hazards.  
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I. INTRODUCTION 

Besides being hazardous, mining has always been one of the 

most dangerous occupations. With the increasing demand for 

minerals and coal, safety in mines has become even more 

important. Some of these include accidents, roof fall, seismic 

hazards, dust, toxic gases, and high temperature[1]. The 

process of coal mining can cause severe risks to the mine's 

personnel and production. This is why it is important that the 

various hazards that are involved in the mining industry are 

studied and analyzed. Aside from these, other risks such as 

black lung and rock-bursts are also known to occur in coal 

mines[2]. These are very real issues that mining companies 

have to consider when it comes to providing safe working 

conditions for their employees. One of these is a seismic 

hazard that occurs in underground mines[3]. This type of 

natural hazard is incredibly difficult to detect and predictable, 

making it one of the most common threats in the mining 

industry. Most challenging factors that mining companies 

have to consider when it comes to identifying and preventing 

these hazards is the presence of a seismic hazard[4]. Seismic 

monitoring and prediction [5]are the process that can be used 

to identify hidden risks and improve the safety of mines. This 

method is commonly used to prevent fatalities. Due to the 

complexity of the task, predicting the various hazards 

associated with coal mining has become a well-documented 

issue in the field of machine learning[6]. A repository created 

by UCI's machine learning department provides a collection 

of seismic bumps, which can be used to analyze and visualize 
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data. The process of coal mining can cause severe risks to the 

mine's personnel and production. Through seismic 

monitoring[7], we can analyze the effects of the mining on 

the rock mass and identify the potential hazards. The main 

goal of the seismic hazard prediction technique is to predict 

the likelihood of a rock burst and seismic bumps[8] occurring 

due to increased seismic activity. The analysis is carried out 

by analyzing the data set generated by the seismic monitoring 

system. 

Seismic hazards in underground mine operations pose a 

significant risk to the safety of workers and the stability of 

mining operations. These hazards include rockbursts, seismic 

events caused by the stress and strain on rock masses, and 

induced seismicity, earthquakes caused by mining activities. 

Assessing these hazards is crucial for the development of 

effective mitigation strategies and the protection of workers 

and mining infrastructure. Machine learning (ML) is a 

powerful tool that can be used to assess the severity of seismic 

bumps in underground mines. The use of ML in this context 

can help to improve the accuracy and reliability of the 

predictions made about the bumps, which can in turn help to 

mitigate the risk of harm and make more informed decisions 

about how to proceed. One of the main advantages of using 

ML in this context is that it can learn from the data and 

improve its predictions over time. This is especially useful in 

the case of seismic bumps, as the data can be highly variable 

and difficult to predict. ML models can also handle large 

amounts of data and can detect patterns and relationships that 

might be difficult for humans to discern. There are a variety 

of ML models that can be used to assess seismic bumps, such 

as Support Vector Machines (SVM), Naive Bayes, Neural 

Networks, and Random Forest. These models can be trained 

on historical data of seismic bumps and the resulting ground 

vibrations, to predict the severity of future bumps. Another 

important aspect is that ML models can also be used to detect 

bumps in real-time. These models can be integrated into the 

monitoring systems of mines and can give early warnings of 

potential bumps, which can help to minimize the damage 

caused by these events.  In addition to prediction, ML models 

can also be used for anomaly detection in time series data of 

vibration and ground movement. This can help to identify 

bumps that might have been missed by traditional monitoring 

systems.  

ML is an important tool for assessing seismic bumps in 

underground mines. Its ability to learn from data and detect 

patterns can help to improve the accuracy and reliability of 

predictions, which can in turn help to mitigate the risk of harm 

and make more informed decisions about how to proceed. 

The integration of ML models in real-time monitoring 

systems can also provide early warning of potential bumps, 

which can help to minimize the damage caused by these 

events.. One of the key advantages of using ML in the 

assessment of seismic hazards is the ability to process large 

amounts of data. This can include data from monitoring 

systems, such as seismographs and accelerometers, as well as 

data from other sources, such as geological surveys and 

drilling logs. By analyzing this data, ML algorithms can 

identify patterns and trends that may not be immediately 

apparent to human analysts. Another advantage of using ML 

in the assessment of seismic hazards is the ability to make 

predictions about future seismic activity. This can include 

predicting the likelihood of future rock bursts or induced 

seismicity events, as well as predicting the magnitude and 

location of these events. This information can be used to 

develop effective mitigation strategies and protect workers 

and mining infrastructure. The use of machine learning in the 

assessment of seismic hazards in underground mine 

operations can provide valuable insights that can help to 

improve the safety and stability of mining operations. By 

analyzing large amounts of data and making predictions 

about future seismic activity, machine learning can help to 

identify potential risks and develop effective mitigation 

strategies. 

II. SEISMIC HAZARD 

A seismic hazard is the likelihood that an earthquake will 

occur within a certain geographic area within a given time 

frame fig-1 represent global seismic hazard map. It can be 

considered as a risk factor that affects various aspects of a 

project, such as land use planning and building codes. Having 

an estimate of the hazard can help in identifying areas of 

potential risk and developing effective strategies to minimize 

the impact of an earthquake. The increasing risk of mining 

induced seismicity is a major concern for deep underground 

mines[9]. The mining process is known to cause seismicity in 

underground mines. In normal conditions, the rock is stable 

underground, and there are no seismic events. However, in 

areas where there is mining, the rock can be unstable[10]. The 

characteristics of the mine's rock are known to affect its 

stability. These factors can be determined by the site's 

geological features, such as the depth of mining, the rate of 

advance, and the sequence of excavations[11]. Although rock 

failures can occur in areas with high ground stresses, they can 

also be controlled by implementing the proper ground support 

system[12]. 

 As the mine's development progresses, the number of active 

faces and excavations increases, which can cause stress 

changes in the rock. High stresses can cause structural 

damage to the existing openings[11]. Also, due to the varying 

rock strengths in contact zones, brittle rocks can cause more 

seismicity. Although large earthquakes are known to cause 
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damage, they are relatively rare. Most of the time, mine 

workers experience small groundfall and strain-bursts 

triggered by the changes in the rock[13]. To minimize the 

effects of seismicity, employees should regularly monitor and 

communicate the changes in the rock. They can also learn 

how to recognize the signs of change in the ground. Machine 

learning plays an important role to assess the seismic hazard 

to save lives[14].  Seismic hazards refer to the potential 

damage or destruction that can occur as a result of 

earthquakes or other ground vibrations. These hazards can 

have a significant impact on both human populations and the 

built environment. Some common effects of seismic hazards 

include building collapses, landslides, ground failure, and 

tsunamis. One example of a mine incident caused by seismic 

hazards is the 2010 Copiapó mining accident in Chile. A 

magnitude 8.8 earthquake triggered a cave-in at the mine, 

trapping 33 workers underground for 69 days. The seismic 

event caused significant damage to the mine infrastructure, 

making it difficult to rescue the trapped workers.  

 

Fig.  1 Global Seismic Hazard Map (Source-Global  Seismic Hazard program) 

Another example is the 2014 Mount Polley mine disaster in 

British Columbia, Canada. A dam containing tailings from 

the copper and gold mine failed, releasing 24 million cubic 

meters of mining waste into nearby waterways. The failure 

was later found to have been caused by a combination of poor 

design and increased water pressure from heavy rainfall, 

which likely was made worse by the recent seismic activity 

in the area.  

Seismic bumps or precursors are the subtle changes in the 

earth's surface, in the form of increased micro-seismic 

activity or ground vibrations, that occur before a larger 

seismic event. Identifying these bumps in advance can help 

to mitigate the effects of a seismic event by allowing for the 

evacuation of at-risk areas and the implementation of 

emergency response plans. Machine learning (ML) can be 

used to identify seismic bumps by analyzing patterns in large 

sets of seismic data. ML algorithms can be trained to 

recognize patterns in the frequency, amplitude, and duration 

of micro-seismic activity that are indicative of an impending 

seismic event. This can help to improve the accuracy and 

timeliness of seismic hazard warnings, allowing for more 

effective emergency response planning. 

III. MACHINE LEARNING CLASSIFIER 

A. Random Forest  

The number of decision trees is a critical parameter to 

consider in order to perform well in classification. It 

contributes to the computational efficiency and 

performance of the system. Increasing the number of 

decision trees can also introduce more random features. 

The number of decision trees can also provide a 

representation of the importance of a feature. This 

parameter is used in the development of feature-based 

classification techniques. In this study, we introduce a 

method that aims to optimize the performance of the 

system by increasing the number of decision trees. 

Random forest outperforms as compared to another 

classifier with 93.5% accuracy. 

 

B. Support Vector Machine (SVM) 

The SVM framework was originally developed to solve 

multi-class problems in binary classification. It takes into 

http://www.ijritcc.org/
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account the various feature points and constructs a 

hyperplane that can be used to separate classes. In a non-

linear problem, it takes advantage of a kernel technique to 

transform the input space into a higher dimensional space. 

There are four kinds of commonly used kernel types, namely, 

the linear kernel, the polynomial kernel, the sigmoid kernel, 

and the Gaussian radial basis function.  

𝐾( 𝑋𝑖 , 𝑋𝑗) = exp (−
𝑋𝑖−𝑋𝑗

2

2𝜎2 )    …….. i 

𝛾 =  
1

2𝜎2 ----ii  

𝑋𝑖 , 𝑋𝑗 denote two feature vectors. The square distance 

between these two features is known as the square Euclidean 

distance 𝑋𝑖 − 𝑋𝑗
2. 

C. Neural Network  

 A neural network is an artificial system that learns to perform 

a task by exposing itself to various datasets. It then generates 

its own set of characteristics using the data it has been 

collected. This method is similar to how biological neural 

networks learn to perform tasks. A neural network is a type 

of computational model that can be used to study and develop 

artificial intelligence. It is based on the combination of 

mathematics and algorithms. This work has led to 

improvements in the field of finite automata theory. 

D. Naïve Bayes 

 Based on the Bayes theorem, he Nave Bayes algorithm is a 

form of supervised learning that can be used to solve 

classification issues. It is very simple to implement and can 

help in developing fast machine learning models. The Bayes 

algorithm is also known as a probabilistic classification. 

This type of classification helps in building models that can 

predict an object's probability. 

IV. DATASET 

There are 2584 instances of this dataset[15], out of which 8 

features are categorical features, and 6 are numeric. The last 

column is labeled, where 0 as non-hazardous seismic bumps 

and 1 as hazardous seismic bump. 

 

Fig.  2 Visualization of data 

A. Scatter plot   

A scatter plot is a type of mathematical diagram or plot that 

uses the coordinates of a set of points to display the values of 

two variables for different positions. It can also be used to 

display one additional variable if the points are marked with 

a color or shape. The data collected by the plot is then divided 

into points, each of which has its own value. Here in fig. 

scatter plot is plotted with energy and maxenergy as axis. The 

sample correlation coefficient (r) are 0.99 and 0.97. 

 

Fig.  3 Scatter plot between energy and maxenergy 

B. Feature statistics 

The Feature Statistics allows to quickly inspect and 

find interesting features in a data set. 

http://www.ijritcc.org/
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Table 1 Feature statistic 

Name Mean Median Min. Max. 

genergy 90242.52 25485 100 2595650 

gpuls 538.58 379 2 4518 

gdenergy 12.38 -6 -96 1245 

gdpuls 4.51 -6 -96 838 

nbumps 0.86 0 0 9 

nbumps2 0.39 0 0 8 

nbumps3 0.39 0 0 7 

nbumps4 0.07 0 0 3 

energy 4975.27 0 0 402000 

maxenergy 4278.85 0 0 400000 

 

V. RESULT 

1.1. Receiver operating characteristic (ROC) curve 

The ROC curve is a representation of the model's 

performance when it comes to distinguishing 

between negative and positive cases. It shows the 

difference between the true positive rate and the 

false positive rate at various settings. The term recall 

or sensitivity refers to the proportion of positive 

predictions in the actual cases. The term fall-out 

refers to the proportion of positive predictions that 

are not true.  

The mathematical formula for TPR is: 

TPR = True Positives / (True Positives + False 

Negatives) 

 

The mathematical formula for FPR is: 

FPR = False Positives / (False Positives + True 

Negatives) 

A ROC curve is a representation of the difference between a 

model's sensitivity and specificity when it comes to dealing 

with different threshold values. A perfect model will have 

both a TPR of 1 and an FPR of 0, which results in a ROC 

curve that's centered around the top left corner of the chart. 

The AUC, or Area Under the Curve, is a representation of the 

model's overall performance. 

 

 

Fig.  4 ROC Curve 

1.2. Confusion Matrix 

The confusion matrix is a statistical measure that shows the 

performance of a given classification model when the true 

values of the data are known. It can only be used to determine 

the model's true performance if the values are known. 

Although it can be easily understood, the related terms may 

be confusing. An error matrix is also a type of matrix that 

shows the errors in the model's performance. The matrix is 

composed of two dimensions, which are the predicted values 

and the actual values. The former is the representation of the 

model's predictions, while the latter is the true values of the 

data. 

 

Fig. 5 Confusion matrix 

1.3. Evaluation Parameters 

i. Area Under Curve (AUC) - AUC stands for "Area 

Under the Receiver Operating Characteristic Curve" 

and it is a measure of a model's ability to distinguish 

between positive and negative cases. It is a scalar 

value between 0 and 1, where a value of 1 indicates 

perfect discrimination and a value of 0.5 indicates 

that the model is no better than random guessing. 

http://www.ijritcc.org/
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The AUC is calculated by taking the area under the 

ROC curve, which is a plot of the true positive rate 

(TPR) against the false positive rate (FPR) at various 

threshold settings. The TPR, also known as 

sensitivity or recall, is defined as the proportion of 

true positive predictions among the actual positive 

cases. The FPR, also known as fall-out, is defined as 

the proportion of false positive predictions among 

the actual negative cases. The mathematical formula 

for AUC is: 

AUC = ∫ (TPR(FPR)) dFPR = (
1

2
) ∫ [TPR(FPR) + TPR(1-

FPR)] dFPR 

ii. Classification Accuracy (CA)- Classification 

accuracy is the measure of how accurate it is when 

we use the term accuracy. It is calculated by taking 

into account all the correct predictions that were 

made by the various samples. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑜 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑚𝑎𝑑𝑒
 

iii. F1- Score- The F-score or accuracy measure is a 

combination of the precision and recall of a test. It is 

calculated by taking into account the number of 

positive results that were identified correctly and the 

number of samples that were not. This measure is 

also referred to as positive predictive value. In 

diagnostic binary classification, the recall is also 

referred to as sensitivity. 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2.
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 .  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

iv. Precision - The precision ratio is the number of 

positive samples that a scientist has correctly 

classified. It is calculated by taking the number of 

positive samples that are actually positive and 

adding those that are not.  

Precision =  
True positive

True positive+False positive
 , 

v. Recall - The recall is a statistical measure that shows 

how many positive samples the model can detect. It 

takes into account the number of samples that are 

correctly classified as Positive and the number of 

those that are not. 

Recall=  
True positive

True positive+False Negative
 

 

Table 2 Evaluation parameters 

Model AUC CA F1 Precision Recall 

SVM 51.4 76.7 81.5 87.6 76.7 

Naive 

Bayes 
77.3 80.7 84.9 91.6 80.7 

Neural 

Network 
71.3 92.8 90.6 89.4 92.8 

Random 

Forest 
69.3 93.5 91.3 91.2 93.5 

 

 

Fig. 6 Comparative graph of various ML models 

Seismic bumps in underground mines are a common 

occurrence and can cause serious damage to both the mine 

and the equipment. It is important to accurately assess the 

severity of these bumps in order to mitigate the risk of harm 

and make informed decisions about how to proceed.  A model 

assessment is a process used to evaluate the capabilities of 

various seismic models to predict the severity and frequency 

of seismic bumps. Some of these include the Support Vector 

Machine, Neural Networks, Random Forest, and Naive 

Bayes. The AUC is a measure of how well a model can 

distinguish between negative and positive cases. The higher 

the AUC, the more accurate the model is in distinguishing 

between the two types of classes. For instance, the Naive-

Bayes model has an AUC of 77.3. The percentage of correct 

predictions that the model makes is known as the CA. For 

instance, the Neural Network model is the most accurate at 

making 92.8 percent of its predictions. Other metrics that are 

used to evaluate models include recall, precision, and F1. 

Recall is the proportion of correct predictions that a model 

makes in relation to the actual cases, while precision refers to 

the accuracy of the predictions made in relation to the positive 

ones. The Neural Network model is also the most accurate at 

achieving the F1 score of 91.6. The other models that were 

evaluated in this case, namely the SVM, Naive Bayes, and 

Random Forest, had an AUC of 79.3. Different factors such 
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as the mine's requirements and decision-making process can 

determine which model is most suitable. 

VI. Conclusion 

In conclusion, the assessment of seismic bumps in 

underground mines is an important task that requires accurate 

and reliable models. The models used in this case, such as 

SVM, Naive Bayes, Neural Networks, and Random Forest, 

have different strengths and weaknesses, as shown by the 

AUC, CA, F1, Precision, and Recall metrics. The Naive 

Bayes model has the highest AUC, the Neural Network 

model has the highest CA, and the Neural Network model has 

the highest F1, Precision, and Recall. These models can be 

used to make informed decisions about how to proceed in the 

event of a seismic bump. However, there are also some 

limitations that should be considered when using these 

models. One limitation is that these models are based on a 

limited amount of data and may not be able to generalize well 

to new unseen data. Additionally, these models are based on 

certain assumptions about the data that may not hold true in 

all cases. In future, it would be interesting to consider more 

sophisticated models, such as Deep Learning based models, 

which have been shown to be very effective in other domains. 

Additionally, more data and more diverse data could be used 

to improve the performance of these models. This could 

include data from different mines, different types of 

equipment, and different types of seismic events. Overall, the 

assessment of seismic bumps in underground mines is an 

important task that requires accurate and reliable models. 

While the models used in this case have their strengths and 

weaknesses, they can be used to make informed decisions 

about how to proceed in the event of a seismic bump. 

However, there is room for improvement and further research 

in this area. 
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