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Abstract—Software maintainability is regarded as one of the most important characteristics of any software system. In today's digital world, 

the expanding significance of software maintenance is motivating the development of efficient software maintainability prediction (SMP) 

models using statistical and machine learning methods. This study proposes a hyper-parameter optimizable Software Maintainability Prediction 

(HPOSMP) model using the hybridized approach of data balancing and hyper-parameter optimization of Machine Learning (ML) approach 

using software maintainability datasets. The training dataset has been created with object-oriented software namely UIMS and QUES. To 

balance the dataset, Synthetic Minority Oversampling Technique (SMOTE) technology has been adopted. Further, Decision Tree, Gaussian 

Naïve Bayes, K-Nearest neighbour, Logistic Regression, and Support Vector Machine are adopted as Machine Learning and Statistical 

Regression Techniques for training of software maintainability dataset. Results demonstrate that the proposed HPOSMP model gives better 

performance as compared to the base SMP models. 
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I.  INTRODUCTION  

      Software systems are becoming increasingly complex with 

time, and thus, software maintenance is gaining more attention 

and importance to fulfil the increased need of high-quality 

software in the software business [1]. Software Maintainability 

Prediction (SMP) gauges ease of carrying out various software 

maintenance tasks including adding or removing code or 

modifying already-existing code [2]. The maintenance phase 

accounts for nearly 60 to 70 percent of the overall cost of the 

software development life cycle (SDLC) and therefore, SMP is 

needed to reduce this cost [3] - [4]. Many SMP models have 

been developed by the researchers using statistical and Machine 

Learning (ML) approaches [5] - [7]. 

      The potential issue with SMP is producing bias in the 

prediction models due to some infrequent and frequent extreme 

values of the instances. Also, like other machine learning 

training data, maintainability prediction dataset suffers from 

data imbalance. For example, the categorical variable can be 

treated as Low or High. Where Low refers to those object-

oriented classes which require more efforts in maintenance 

phase and High refers to those object-oriented classes which 

require lesser efforts during maintenance phase. Thus, prior 

prediction of Low maintainable class aid to researchers or 

practitioners in putting optimal effort to those classes with Low 

maintenance and hence reducing the overall maintenance cost.  

      Prior to training for software maintainability, hyper-

parameter tuning of statistical and machine learning approaches 

is recommended in order to increase the accuracy of the 

software maintainability prediction model [8]. In machine 

learning there are two types of parameters; first the model 

parameters which can be initialized and changed through the 

data learning process such as neurons in neural networks 

whereas hyper-parameters are the parameters that can be 

changed or tuned before the training process [9]. The variables 

known as hyper-parameters are parameters of machine learning 

techniques that can be tuned to calibrate more accurate software 

maintainability prediction models. This is also termed as Hyper-

parameter optimization (HPO) [10].  

      Consequently, the novelty of our current investigation in 

comparison to earlier studies is as follows: 

• Designing of Software maintainability prediction models 

using outliers’ detection and outliers’ replacements 

scheme. 
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• Forming categorical class variable of software 

maintainability parameter through the mean approach 

using the Change metric. 

• Optimizing the SMP model by selecting the best 

combination of optimizable hyper-parameters of 

classification models. 
On the basis of above proposed work, following research 

questions have been formulated and answered. 

RQ.1: What effect does data balancing have on the distribution 

of classes in the software maintainability datasets? 

RQ.2: How effective are the SMP models created using HPO 

in comparison to the models created using basic machine 

learning and logistic regression? 

RQ.3: What is the Precision, Recall, and F1-Score ratings for 

each SMP model? 

      In the current study, to achieve the objectives, first a class 

variable is formed using the Change metric, which is the total 

amount of editing of source code during the maintenance phase 

of the software development. Further, outliers are detected and 

replaced by the mean values of each object-oriented predictor 

variable followed by standardize data. Prior to training of the 

SMP model using MATLAB tool, the data balancing is 

performed using Synthetic Minority Oversampling Technique 

(SMOTE) technology and WEKA tool followed by tuning of 

hyper-parameters. Finally, performance of each SMP is 

evaluated using Accuracy, Precision, Recall, and F1-Score 

measures calculated using confusion matrix. 

      The rest of the paper is organized as follows: Section 2 

describes the "related work," Section 3 covers the "research 

methodology," Section 4 covers the "results and 

discussion," and finally the "conclusion" part is covered in 

Section 5. 

II. RELATED WORK 

      To accomplish our research, several works pertaining to the 

prediction of software maintainability are explored. It is 

discovered that Change metric is used as the maintainability of 

object-oriented software for the training of SMP models. An 

analysis of the techniques and maintainability metrics is 

summarized in Table I. 

 

TABLE I. Maintainability and Techniques 

Year Technique Maintainability Reference 

2014 SMPLearner 

Code change 

history 

Average. 

maintenance 

Effort. 

Zhang et al. [11] 

2016 
Support Vector 

Machine 

Web services 

description 

language 

Kumar et al. [12] 

2017 

Search based 

techniques and 

Hybridized 

techniques 

Change 

proneness 

Malhotra and Khanna 

[13] 

2019 

M5P regression 

tree, multilayer 

perceptron, multi 

linear regression, 

and support 

vector regression  

Maintainability 

Index (MI) 
Reddy and Ojha [14] 

2020 

14 Machine 

Learning 

Techniques 

Change Metric Malhotra and Lata [15] 

2020 
Least Square 

SVM 
Change Metric Gupta and Chug [16] 

2020 Random Forest Change Metric Gupta and Chug [17] 

 

      According to Agrawal et al. 2021 [18] finding great settings, 

by which fine-tuning parameters that can significantly boost the 

accuracy of software analytics prediction, is always 

advantageous in terms of hyper-parameter optimization. They 

utilized the "DODGE" approach for hyper-parameter 

optimization of 120 Software Engineering data sets for defect 

prediction, often avoiding configurations that result in the same 

findings. They found that the basic DODGE works best for data 

sets with low intrinsic dimensionality. 

      Shen et al. [19] in 2020 found that the majority of 

developers are reluctant to invest time in looking for better 

design solutions because of the demand of their programming 

employment leading to design flaws known as "code smells" 

that will increase maintenance costs in the future. Developers 

need to be quick to spot code smells and re-factor as necessary 

in order to improve software quality and lower maintenance 

costs. They also found, based on empirical findings, that hyper-

parameter adjustment can significantly increase code smell 

detection effectively. 

      In 2017, Sara et al. [20] proposed the Grid search method 

for tuning hyper-parameters, SMOTE technique for balancing 

datasets and conducted an experimental study involving five 

ML techniques: K-Nearest Neighbor (KNN), SVM, Decision 

Trees (DT), Multilayer Perceptron (MLP), and Nave Bayes 

(NB). The experimental results suggest that balanced data and 

hyper-parameter tuning are crucial for the best performance of 

ML algorithms. 

      From the literature survey, it is clear that a very few 

researches are published on application of SMOTE data 

balancing and Hyper-parameter optimization in the area of 

software maintainability prediction. 

III. RESEARCH METHODOLOGY 

      Here, we proposed an algorithm for SMP which includes the 

formation of response variable prior to the training of SMP 

model. The proposed SMP algorithm is as follows: 
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Algorithm:  

Input: RD[i][j] = raw dataset; Change = vector dependent metric; i = 

index for instance; j = index for predictor variable; T = function of 

SMP; T’ = function of HPOSMP; x = total machine learning methods 

applied;  

Begin 

Step 1: Formation of Dependent variable “Class”: 

            for each instance of Dataset set class value: 

            if change value of the instance is greater than mean value of 

Change vector, then set class as Low  

            else High 

            end loop 

Step 2: Formation of Dataset: 

             Removal of Change vector and addition of the Class vector 

found in step 1. 

Step 3: Training of dataset using basic ML  

             Modelx=Tx (ND[i][j]); 

Step 4: Outlier Detection and replacement 

Step 5: Standardize the datasets using Z-score value. 

Step 6: Data balancing using SMOTE technology 

Step 7: Training of dataset using Hyperparameter optimized HPOSMP  

            For each ML methods 

• Selection of hyperparameters to optimize or tune.  

• Selection of optimizer function and number of iterations 

to train the model. 

• Model’x=T’x (ND[i][j]); 

              End loop 

Step 8: Performance evaluation: 

            Calculation and Comparison of performance measures of Tx 

and T’x built in Step 3 and Step 7. 

end 

A. Dataset 

      User Interface System (UIMS) and Quality Evaluation 

System (QUES) are two object oriented commercial software 

that we utilized to conduct the research work. Both UIMS and 

QUES software are written in Classic-Ada programming 

language [21]. 

B. Predictor Variable 

      For the training of proposed SMP models, different metrics 

of OO software like Depth of Inheritance tree (DIT), Lack of 

cohesion of methods (LCOM), Number of Children (NOC), 

Response for class (RFC), Data Abstraction Coupling (DAC), 

Message Passing Coupling (MPC), Weighted Methods per 

Class (WMC), Number of Methods (NOM), and two other size 

related metrics namely SIZE1 and SIZE2bare used as input 

variables in this study. The description of these object-oriented 

based predictor variables is given in Table II. These selected 

predictor metrics explain several elements such as cohesion, 

coupling, inheritance, size, encapsulation, and composition of 

OO systems. 

 

 

 

TABLE II. Description of Input Variables 

Metric 

Name 
Abbreviation 

Metric 

Suit 
Description 

DIT 
Depth in the 

Inheritance Tree 

C
h
id

am
b

er
 a

n
d

 K
em

er
er

 [
2

2
] 

Determines the level of a class 

in the hierarchy of the 

inheritance.  

LCOM 
Lack of Cohesion 

of Methods 

Count of independent local 

methods of a class. 

NOC 
Number of 

Children 

Total number of immediate 

subclasses of a class 

RFC 
Response for 

Class 

Count of local methods and the 

methods called by local 

methods 

WMC 
Weighted method 

complexity 

Summation of all local 

method’s McCabe’s 

cyclomatic complexities 

DAC 
Data Abstraction 

Coupling  

L
i 

an
d

 H
en

ry
 [

2
1

] 

The metric that measures the 

coupling complexity 

caused by Abstract data types 

MPC 
Message-Passing 

Coupling 

Count of statements sent by a 

class 

NOM 
Number of 

Methods 

Total number methods defined 

in a class 

SIZE1 - 
Number of Semicolons Per 

Class 

SIZE2 - 
Number of Attributes + 

Number of Methods   

C. Response variable 

      We have considered the change metric for the formation of 

dependent or response variable. Change metric describes the 

total number of changes made during the maintenance phase of 

the software development life cycle. Change metric is the count 

of total number of source code added, deleted and modified 

[11]-[17]. Class is a binary variable whose values can be either 

High or Low. “High” label of class variable represents the high 

maintainability class which requires less effort in maintenance 

whereas “Low” label of class variable represents the low 

maintainable class which requires more effort in maintenance 

phase. Classes for which the values of independent variables are 

not found were discarded.  

D. Data Preprocessing 

      Since the model approach depends on the performance of 

the prediction model per dataset and response variable, this 

research may involve data pre-processing to detect outliers in 

all datasets and then replace each outlier instance with the mean 

value. Further, data are standardized using z-scores and data 

balancing is applied as per (1).   

 

                           Z − score =
D– mean(D)

std(D)
                              (1) 

 

      Here in (1), D represents the instance, mean () determines 

the mean value of the data vector and std is the standard 

deviation.  
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      SMOTE: Malhotra and Lata [23] affirmed that in case of 

oversampling, minority class sample is increased in such a 

manner that it matches with the majority class sample and 

resolves the issue of data imbalance in the software 

maintainability prediction dataset. In the current study, SMOTE 

technique is used to perform the oversampling of software 

maintainability dataset. In SMOTE, artificial sample of 

minority classes from software maintainability prediction 

dataset is produced. For example, if the minority class instances 

are 100 as compared to the 1000 majority class instances, the 

training of the SMP model may get biased towards majority 

class and predict the instance as High maintainable most of the 

time. To overcome this problem SMOTE uses nearest neighbor 

approach. It first finds the minority class instances or data point 

and then uses the K-nearest neighbor approach to join the data 

points of minority class sample. To increase the minority class 

SMOTE creates new artificial data points at the middle of the 

line joining two minority class data points. This process goes on 

for the set number of iterations. Here, SMOTE has been applied 

to both the dataset QUES and UIMS using the WEKA tool.   

E. Machine Learning 

      For statistics and machine learning total five techniques, 

whose compatibility is provided in the systematic literature 

review by Alsoli and Roper [24], have been used. A brief 

description of these machine learning techniques is given 

below: 

      Decision Tree (DT): A decision tree is a tree structured 

classifier that has two types of nodes namely decision nodes and 

leaf nodes. A decision node performs the test on the basis of 

which the next branches are formed. Thus, decision nodes are 

responsible for giving the direction to go from. Leaf nodes of 

the decision tree are categorical classes or the final result. The 

Gini Index is a metric that quantifies how precisely a split exists 

between categorized groups. The Gini index assesses a score 

between 0 and 1. 

      Logistic Regression (LR): Logistic regression is mainly 

used for classification problems. It works as linear regression 

and performs binary classification or multi class classification 

of continuous data. Logistic regression uses sigmoid function 

and fits an S-shaped curve with the range of the curve from 0 to 

1. The likelihood of an event occurrence is determined through 

logistic regression using a set of independent variables in the 

data. 

      Gaussian Naïve Bayes (GNB): A Gaussian naïve bayes 

model is based on continuous variables that are assumed to have 

a Gaussian (or normal) distribution. Since the variables or 

features are independent hence the name “naïve”. For software 

maintainability prediction, if it has to predict High or Low 

maintainable classes, it assumes all OO metrics as independent 

i.e., RFC does not depend on NOC. 

      Support Vector machine (SVM): Support vector machines 

are classifiers that locate a hyper-plane classifying the data 

points in an N-dimensional space (where N is the number of 

characteristics). The two groups of data points may be divided 

using a variety of different hyper-planes. It finds a plane with 

the maximum distance between data points from both classes. 

Support vector machines maximize the margin distance, which 

boosts the accuracy of class value predictions. 

      k-nearest neighbors (KNN): The k-nearest neighbors’ 

algorithm is a supervised learning classifier that makes 

predictions or classifications about how a single data point will 

be grouped. Although it can be used to solve classification or 

regression problems, it is frequently used as a classification 

technique as it is predicated on the notion that similar points can 

be found nearby. 

F. Hyperparameter Tunning 

      Hyper-parameter optimization can produce substantial 

results [25]. This study employs tuning of hyper-parameters to 

maximize the performance of SMP system in terms of 

Accuracy, Precision, Recall, and F1-Score. Hyper-parameter is 

used in cross-validation of SMP models because basic machine 

learning models are created using training data whereas their 

performance is evaluated using test data. Model parameters are 

the intrinsic configuration to the software maintainability 

prediction model where the values of these parameters can be 

determined by the dataset. For example, Gaussian naïve bayes 

is based on the parameters mean and standard deviation, K-

Nearest Neighbor uses K as number of neighbors and weight 

values, Support vector machine uses support vector and 

standard deviations as model parameters, and in logistic 

regression coefficients are the model parameters. In contrast the 

hyper-parameter is the configuration external to the SMP model 

where the values of hyper-parameters cannot be determined by 

the dataset used for training of the model. Hyper-parameters 

deal with three aspects: they are set by the practitioner or data 

analysts, utilized to derive the model parameter, and can be 

derived from heuristic approach which is self-discovery of the 

value. In other words, the model parameters act as hyper-

parameter when set by data analyst or practitioner manually. 

IV. PERFORMANCE EVALUATION 

      In this investigation, confusion matrix [26] is used for the 

performance evaluation of proposed SMP models as depicted in 

Figure 1.  
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Figure 1. Confusion Matrix 

 

      Form Figure 1, it is clear that the components of a confusion 

matrix are True Positive (TP), False Positive (FP), True 

Negative (TN), and False Negative (FN). For performance 

evaluation this study utilizes Accuracy, Precision, Recall and 

F1-score to compare the performance of built SMP models. The 

accuracy of SMP models can be calculated using (2), Precision 

can be calculated using (3), Recall can be calculated using (4), 

and F1score can be calculated using precision and recall as 

described in (5).  

   Accuracy =  (
TP+TN

TP+FP+TN+FN
) ∗ 100                     (2) 

 

                                       Precision =
TP

TP+FP
                           (3) 

 

                                  Recall =
TP

TP+FN
            (4) 

 

                    F1 − score =  2 ∗
Precision∗recall

(Precision + Recall)
          (5) 

 

V.  RESULT AND DISSCUSSION 

      Based on the proposed algorithm, we performed an 

empirical investigation and developed and analyzed a total of 

20 SMP models.  Three research questions formed to achieve 

the objectives of our study have been responded in the following 

part of this section.   

RQ1. What effect does data balancing have on the distribution 

of classes in the software maintainability datasets? 

      If the binary class distribution is not evenly distributed in 

many of the dataset, the trained SMP models can go biased 

towards majority class and accuracy may be degraded. We used 

SMOTE data balancing technique to balance the datasets. The 

impact of SMOTE data balancing technique is represented in 

Figure 2 and Figure 3 for the QUES and UIMS datasets 

respectively. To achieve this objective WEKA tool is utilized. 

      From Figure 2(a) it is evident that before data balancing the 

QUES dataset suffered from uneven class distribution problem. 

The total number of instances in QUES dataset is 71 out of 

which 30 and 41 classes belong to Low-class and High-class 

maintainability classes respectively. Figure 2(b) shows that data 

imbalance is removed by using SMOTE techniques whereby 

low majority class variables in QUES is increased to 60 

resulting into a total 101 instances.  

 

 
Figure 2. Class distribution before and after SMOTE on QUES 

 
Figure 3. Class distribution before and after SMOTE on UIMS 

 

      Similarly, from Fig. 3(a) it is evident that before data 

balancing the UIMS dataset suffered from uneven class 

distribution problem. The total number of instances in UIMS 

dataset is 39 out of which 30 and 9 classes belong to Low and 

High maintainability classes respectively. Fig. 3(b) shows that 

data imbalance is removed by using SMOTE techniques 

whereby low majority class variables in QUES is increased to 

18 resulting into a total 48 instances.   

 

RQ.2: How effective are the SMP models created using HPO 

in comparison to the models created using basic machine 

learning and logistic regression? 
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      To evaluate the SMP models, we use the confusion matrix. 

Table 3 gives the details of the confusion matrix obtained for all 

the base ML techniques used for QUES and UIMS datasets. 

Whereas Table 4 shows the details of confusion matrix of 5 

machine learning techniques after applying the hyper-parameter 

tuning for UIMS and QUES datasets respectively. 

 

TABLE III. Confusion Matrix of base SMP models 

 

Machine Learning 

QUES UIMS 

TP FN FP TN TP FN FP TN 

Decision Tree 32 9 5 25 24 6 3 6 

Logistic Regression 36 5 6 24 23 7 5 4 

Gaussian Naïve Bayes 36 5 17 13 26 4 4 5 

SVM 35 6 14 16 26 4 5 4 

KNN 39 2 4 26 26 4 4 5 

 

TABLE IV. Confusion Matrix of HPOSMP models 

 

Machine Learning 

QUES UIMS 

TP FN FP TN TP FN FP TN 

Decision Tree 35 6 6 24 27 3 5 4 

Logistic Regression 36 5 6 24 23 7 5 4 

Gaussian Naïve Bayes 34 7 12 18 27 3 4 5 

SVM 39 2 7 23 30 0 6 3 

KNN 39 2 4 26 29 1 6 3 

       

      Table 5 shows the accuracy measure of each SMP models 

including base ML models as well as HPOSMP models 

calculated using the equation (2). From the Table 5, it is evident 

that, in case of both the dataset i.e., QUES and UIMS, accuracy 

of the SMP models is substantially increased by using the 

proposed approach which includes a combination of SMOTE 

and HPO.   

   

TABLE V.  Comparison of Accuracy Measure 

 

RQ.3: What is the Precision, Recall, and F1-Score ratings for 

each SMP model? 

      The number of positive class forecasts that really fall within 

the positive class is measured by precision. Recall measures 

how many correct class predictions were produced using all of 

the successful cases in the dataset. Precision and recall issues 

are balanced in a single number by F-single Measure's score. 

Therefore, the performance of each SMP Model is evaluated in 

terms of these factors and described in Fig. 4 and Fig. 5 

respectively. 

 
Figure 4. comparison of performance measures of UIMS dataset 

 

      Fig. 4(a), Fig. 4(b) and Fig. 4(c) represent the comparison 

of Precision, Recall, and F1-Score measures respectively for the 

UIMS dataset. It is clearly evident from the figures that the 

performance of each HOPSMP models is better as compared to 

the base SMP machine learning models. Detailed performance 

improvement is also shown in the Table VI. 

 

TABLE VI. Increments in performance measures for proposed SMP using 

UIMS 

Machine 

Learning 

Precision Recall F1-Score 

DT same 12.50% 03.57% 

LR 01.22% 12.99% 10.13% 

GNB same 03.45% same 

SVM same 14.94% 04.71% 

KNN 04.82% 11.49% 02.30% 

 
Figure 5. Comparison of performance measures of QUES dataset 

 

Machine Learning 

UIMS QUES 

BASE 

SMP 
HPOSMP 

BASE 

SMP 
HPOSMP 

Decision Tree 76.9 79.5 80.3 83.1 

Logistic Regression 69.2 71.5 84.5 84.5 

Gaussian Naïve Bayes 79.5 82.1 69 73.2 

SVM 76.9 84.6 71.8 87.3 

KNN 79.5 82.1 91.5 91.5 
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      Similarly, Fig. 5(a), Fig. 5(b) and Fig. 5(c) represent the 

comparison of Precision, Recall, and F1-Score measures 

respectively for the QUES dataset. It is clearly evident from the 

figures that the performance of each HOPSMP models is better 

as compared to the base SMP machine learning models. 

Detailed performance improvement is also shown in the Table 

VI.  

 

TABLE VII. Increments in performance measures for proposed SMP using 

QUES 

Machine 

Learning 

Precision Recall F1-Score 

DT same 19.23% 08.54% 

LR same same same 

GNB 8.82% 06.02% 01.30% 

SVM 19.72% 11.76% 15.38% 

KNN same same same 

 

      It is also concluded that Decision tree, Support Vector 

Machine and KNN combined with SMOTE data balancing 

techniques give more substantial increase in the values of 

performance measures in terms of Accuracy, Precision, Recall, 

and F1-Score as compared to Gaussian Naive bayes and 

Logistic Regression.  

VI. CONCLUSION 

      In this research work, an algorithm (HPOSMP) for the 

development of effective SMP model using data balancing and 

hyper-parameter tuning of machine learning approach has been 

proposed. Datasets for software maintainability have been 

formed using two object-oriented software namely QUES and 

UIMS written in Ada-classic programming language. SMOTE 

technique has been used for data balancing and Decision Tree, 

Gaussian Naïve Bayes, K-Nearest neighbor, Logistic 

Regression, and Support Vector Machine are adopted as 

Machine Learning approaches. Initially, a response variable 

called Change metric is selected and then outliers are detected 

and dataset is standardized through SMOTE procedure for 

further processing. Finally, both the datasets are trained and 

tested using various machine learning techniques. Experimental 

and implementation work the research has been done using 

MATLAB and WEKA tools. A total of 20 SMP Models are 

built and analyzed.   

      Results were compared for performance evaluation in terms 

of Accuracy, Precision, Recall, and F1-Score measures for both 

UIMS and QUES datasets and it is found that the performance 

of each HOPSMP models is better as compared to the base SMP 

machine learning models. Further, KNN outperforms the other 

machine learning techniques and produces 91.5% of accuracy 

of SMP model. It is also concluded that Decision tree, Support 

Vector Machine and KNN combined with SMOTE data 

balancing techniques show better performance as compared to 

Gaussian Naive bayes and Logistic Regression techniques. 

Thus, the proposed HPOSMP algorithm is a great alternative for 

base SMP models. 

      This research is based on specific datasets of software 

written in a specific object-oriented language.  Therefore, it can 

be further extended to explore feature selection and additional 

datasets supporting other programming languages like JAVA, 

C++ etc. Additionally, HPOSMP models can be further 

modified and tested using other techniques like ensembles, 

novel re-sampling and techniques like Boosting and Bagging. 
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