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Abstract—Balancing load in cloud based is an important aspect that plays a vital role in order to achieve sharing of load between different 

types of resources such as virtual machines that lay on servers, storage in the form of hard drives and servers. Reinforcement learning 

approaches can be adopted with cloud computing to achieve quality of service factors such as minimized cost and response time, increased 

throughput, fault tolerance and utilization of all available resources in the network, thus increasing system performance. Reinforcement Learning 

based approaches result in making effective resource utilization by selecting the best suitable processor for task execution with minimum 

makespan. Since in the earlier related work done on sharing of load, there are limited reinforcement learning based approaches. However this 

paper, focuses on the importance of RL based approaches for achieving balanced load in the area of distributed cloud computing. A 

Reinforcement Learning framework is proposed and implemented for execution of tasks in heterogeneous environments, particularly, Least Load 

Balancing (LLB) and Booster Reinforcement Controller (BRC) Load Balancing. With the help of reinforcement learning approaches an optimal 

result is achieved for load sharing and task allocation. In this RL based framework processor workload is taken as an input. In this paper, the 

results of proposed RL based approaches have been evaluated for cost and makespan and are compared with existing load balancing techniques 

for task execution and resource utilization.. 

Keywords- Cloud Computing, Reinforcement Learning, Load Balancing, Heterogeneous System, Resource Allocation, Task Scheduling. 

 

I. INTRODUCTION 

Cloud computing relies on a well-oiled resource 

management system, the heart of which is scheduling 

resources. This term refers to the process of assigning available 

cloud resources to specific applications. Improved response 

time and reduced costs are the outcomes of this procedure, 

which seeks for the optimum resource and maps it with cloud 

workload depending on consumer requirements. The allocation 

of resources is a four-stage process. First, workloads are 

categorized by their needs and requirements. In the second 

stage, we choose out the precise collection of assets we need 

from our stockpile. The third phase involves assigning the 

proper cloud resources to user-specified cloud workloads in 

terms of quality of service. Finally, schedule the available 

resources to carry out the workloads, further ensuring that the 

QoS requirements will be met as closely as possible to ideal. 

Reinforcement learning based existing approaches face few 

problems such as complexity that occurs because of the huge 

memory space of state and activity. However, to resolve the 

problem, reinforcement learning has been combined with 

techniques such as deep learning in deep reinforcement 

learning. [2]. 

 Load balancing is a very vital factor in the cloud 

environment, as the users have variety in their requirements. 

This leads to access use of resources like RAM and CPU usage 

leading to less performance. This application adds extra load to 

cloud servers and indirectly is responsible for lots of resource 

consumption. There are lots of algorithms that mainly deal with 

time for allocating connections. Some considering performance 

factors are load from the task on the server, waiting time, 
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response time, etc. [1]. To achieve reliable resource utilization, 

a load balancing method is proposed for allocating dynamically 

arriving customer requests that is to allocate connections to the 

cloud server regarding load as a parameter over time. 

In distributed cloud computing, it is important to consider 

various factors of load balancing such as existing load of 

processors, memory utilization, resource utilization, etc. Some 

heuristic algorithms have been presented to optimize system 

performance in the cloud based networks. Since, few existing 

heuristics algorithms show deficiency in global and local 

search optimization [3]. In a distributed cloud network, a 

suitable processor is selected for upcoming tasks and necessary 

resources are allocated for its execution in minimum time. 

However, congestion in cloud networks can increase when the 

server is heavily loaded or tasks are too large and time 

consuming and also if required or necessary resources are 

unavailable on the server, this may result in increased 

makespan. Such problems can cause more energy to be 

consumed by the server if it is heavily loaded. To overcome 

this problem, in this paper a reinforcement load balancing 

method is presented which is based on task scheduling and 

resource utilization named as Booster Reinforcement 

Controller Load Balancing (BRC). Here we make use of 

reinforcement learning and load balancing methods to achieve 

optimal results. 

However, Least load balancing (LLB) and Booster 

Reinforcement Learning (BRC) load balancing, both these 

approaches, are used to make a quick process of allocating 

available resources in the network to incoming tasks in order to 

reduce makespan and achieve maximum system throughput. 

Since, it also maintains the backup of existing load of server or 

processor before it is allocated with incoming tasks for 

execution so that if the task is executed on another processor 

with minimum load then the previous processor will be 

restored with its earlier load through this backup variable. 

Since, this allocation of tasks must be done in a way that no 

processor should get overloaded and nor should remain idle. To 

achieve optimal results for task allocation LLB and BRC load 

balancing techniques schedule the task execution on processor 

or server by considering few factors such as utilization of 

resources, reduced makespan and cost [3]. 

Few hybrid heuristics face challenges for balancing load in 

the cloud networks as it allows servers more prone to overload 

and so the QoS is not achieved [5]. However for smoother task 

execution and to improve the system performance, an optimal 

load balancing must be achieved. Thus, in this paper, we focus 

on achieving optimal results in allocating best suitable 

processors and necessary resources available in the network for 

task execution that maximizes throughput such that no 

processor should remain idle or overloaded and each processor 

is allocated a task with balanced load. However, in this paper 

we have implemented Least Load Balancing (LLB) and 

Booster Reinforcement Controller (BRC) load balancer 

approaches that help in evenly distributing load to processors 

across the networks. Both of these methods focus on achieving 

optimal throughput and system performance. Task Reallocation 

takes place by computing more resources and required time for 

task execution whenever server is heavily loaded and whenever 

server is lightly loaded with incoming tasks few computations 

of resources and required time for task execution are processed 

at a distinct time period. [6]. However when there is an increase 

in the number of incoming client requests may result in rapid 

increase in traffic congestion and also when servers are 

overloaded they require more energy. So, managing the 

network congestion is challenging in distributed cloud 

computing. When there is heavy load during peak hours, the 

network congestion not only harms intersections but also it 

harms upstream traffic. So, an effective Load Balancing (LB) is 

needed which distributes the task evenly among the available 

servers. This paper presents reinforcement learning with load 

balancing strategies that are more effective to achieve optimal 

results by maximizing the computational capacity that 

improves both the factors system performance and system 

feasibility. [8]. Because of variations in computation of 

heterogeneous cloud resources and time required for task 

execution in distributed cloud networks, the server load is 

extremely time dependent. Resource utilization status can be 

known in advance by using least load balancing reinforcement 

learning approaches to allocate the best suitable processor for 

task execution. 

Scheduling cloud resources calls for allocating cloud assets 

to cloud tasks. It is possible to improve scheduling outcomes by 

treating Quality of Service (QoS) factors as essential 

constraints. However, efficient scheduling calls for improved 

optimization of QoS parameters, and only a few resource 

scheduling algorithms in the available literature do so. The 

primary objective of this paper is to provide an effective 

method for deploying workloads to cloud infrastructure. To 

ensure that workloads are executed efficiently on available 

resources, a load balancing method based on reinforcement 

learning was developed. The proposed method performance has 

been measured in the cloud. The experimental 

outcomes demonstrate the effectiveness of the suggested 

method in lowering the aforementioned QoS parameters along 

with the execution cost, time, and energy consumption. 

The main contributions of this paper are summarized as 

follows: 

● We have proposed RL based dynamic load 

balancing for data intensive networks. The 

BRCLB has been designed not only to improve 

both users satisfaction and fairness but also to 
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maximize the long-term average network 

throughput 

● The LLB Method is proposed to evenly distribute 

the task among servers to reduce network traffic 

congestion and also to maintain the backup of 

load that is present before task allocation of each 

server. So that if the server is not allocated with 

incoming requests its earlier load value will be 

replaced as a current load value of that server. 

● The experimental results show that the proposed 

solution can achieve much better performance 

than existing solutions. 

The remaining sections of the paper are organized as 

follows. Section II represents the scope of related work. Section 

III presents the proposed framework for task &amp; resource 

allocation. Section IV describes the RL based booster 

reinforcement controller load balancer approach. Section V 

shows the experimental results. And section VI concludes the 

paper. 

 

II. RELATED WORK 

Existing load balancing policies can be roughly classified as 

static or dynamic, and as single-, bi-, or multi-objective. These 

regulations have centered on ensuring that machines aren’t 

overloaded while also considering other load balancing 

considerations such make span time, energy usage, and 

resource utilisation. [4]. In order to solve this issue, scientists 

have created a number of load balancing algorithms for the 

cloud that are based on machine learning and RL. algorithms 

for optimizing cloud-based scheduling infrastructure. A Deep 

Q-network (DQN) is proposed to maximize long-term system 

performance by capitalizing on network latency, load 

balancing, and system stability; this is part of a Markov 

Decision Process (MDP) formulation that is designed to 

increase service quality while reducing costs. The results of this 

study contrast the optimization that takes into account only the 

current system performance when making mapping decisions 

for switch controllers with those that generate mapping 

decisions based solely on latency or load balancing separately, 

demonstrating that the DQN-based algorithm provides the best 

stability results while maintaining moderate switch controller 

latency and system equilibrium performance [10]. 

Based on their research in [7], Yu-Chieh Chuang and Wei-

Yu Chiu propose a deep reinforcement learning based pricing 

strategy of an aggregator for profit maximization that takes into 

account the energy balance and can account for the actions of 

competitors as well as the variability of renewable and the 

varying bounds of charging and discharging events in a non 

stationary environment. 

According to the proposal by Eunji Hwang et al. [11], while 

dividing up a system’s limited resources among several users, 

it’s crucial to keep in mind three factors: user fairness, system 

efficiency in terms of throughput, and user satisfaction in terms 

of reaction time. To complete the job in the allotted time, a 

heterogeneous computing system employs resource allocation 

policies tailored to multi-user and multi-application workloads. 

There are three distinct policies to choose from here: fairness, 

greedy efficiency, and fair efficiency. Based on the simulation 

findings, it is clear that the fair efficiency strategy is the 

optimal choice for allocating resources since it strikes a good 

compromise between justice and customer pleasure. 

Weichao Ding et al. [9] introduced a workload predictor 

method based on the modified Weighted Moving Average 

(WMA) algorithm, which supports dynamic resource 

allocation; a cluster controller is proposed based on 

reinforcement learning for exploring the optimal matching 

relationship between resource requests and host at various PPR 

levels; a resource allocator is designed based on a greedy 

strategy for achieving the trade-off between energy 

consumption and application performance. 

Computing load Aware and Long-View load balancing was 

proposed by Guoxin Liu et al. [6]. CALV selects the blocks 

that add the most workload during the server’s busiest times 

and the least during the server’;s least busy times. CALVuses a 

slow data block transfer mechanism to boost load balancing 

performance. It schedules data transfers to avoid taxing 

destination servers and make use of off-peak network 

bandwidth for reallocation. In comparison to other approaches, 

CALV is superior at increasing data locality and decreasing 

task delay, network load, and reallocation overhead. 

To zero in on the network dynamics, the authors of [12] 

presented a deep reinforcement learning technique. To optimize 

the total payoff for automobiles, selfishness, a distributed 

coalition-based algorithm and an incentive system based on 

deep reinforcement learning are presented. To further lessen the 

computational load, a tailored transmit power adjustment 

approach is implemented. However, a feedback control 

mechanism driven by reinforcement learning (RL) is proposed 

for cooperative load balancing, which can help with a few job 

allocation issues (RF-CLB). To begin, by using RL and 

machine learning algorithms together, each edge can plan jobs 

and distribute them among neighboring edges based on its own 

local knowledge. The objective multiedge load balancing 

strategy for the Industrial Internet of Things can be launched 

with the help of feedback control and multiedge collaboration. 

[13]. 

To queue computational data packets that are being 

processed in chunks at one of the IoT nodes, and therefore 

distribute the data while making advantage of the unused 

bandwidth of local network links. While the ordered packets 

are being carried out one by one on the intended IoT device, the 
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remaining packets that are not being processed at the moment 

are dispersed and kept looping across the network links [17] 

Transferring and re-using data packets, is handled via a 

time- synchronized packet deflection system on each node. 

This method ensures scalability of the temporary storage 

capacity of the connected IoT devices, necessitating data rates 

of 6 Mbps, while using only 45 Kb of primary storage systems 

even for big data. 

Load balancing algorithms [18–21], reinforcement learning 

algorithms [22–25], and other methods have all been proposed 

to fix the scheduling and load issues plaguing cloud computing. 

Hypergraph Partition-based Scheduling was extended using a 

novel resource allocation technique provided by Laiping Zhao 

et al. HPS+ is an enhanced hypergraph partition technique to 

reduce WAN traffic by modeling the interdependencies 

between tasks and data as well as between data centers. To 

further reduce the makespan, it employs a coordinating system 

to distribute network resources in accordance with the 

principles of job needs. When compared to other algorithms, 

HPS+ speeds up production by up to 39% and reduces data 

transfer times by up to 53%, according to an evaluation 

conducted across the genuine China-Astronomy-Cloud model 

and the Google data center model. 

Both the layered batch allocation by Jiuchuan Jiang et al. 

[27] and the core-based batch allocation by selecting core tasks 

to form batches can achieve suboptimal performance with 

lower complexity and significantly reduced computational cost. 

The former approach primarily uses the hierarchy pattern to 

form all possible batches, which can achieve better 

performance but may require higher computational cost since 

all possible batches are formed and observed. Better results can 

be achieved with these methods, both in terms of the overall 

amount paid by requesters and the average amount earned by 

employees, and in terms of the success rate at which tasks are 

completed and the amount of time spent allocating them. 

Researchers Yinghao Yu et al. [28] have proposed creating 

chunks with storage codes and making several clones of hot 

files, also called hotspots, are examples of selective partitioning 

strategies that can be used to manage load imbalance. This 

method is inefficient because of the extra space it requires in 

memory to store the redundant data or the complexity of the 

encoding and decoding processes. SP-Cache is a cluster 

caching system for data-parallel clusters that uses load 

balancing and no redundancy. By carefully dividing popular 

files into numerous divisions, their read requests can be 

distributed among multiple servers. SP-Cache is able to 

efficiently reduce hotspots while minimizing the effects of 

laggards thanks to its periodic load balancing, but it is unable to 

respond quickly enough to short-term changes in popularity, 

such as sudden spikes in the number of requests for specific 

files. 

It was determined that in dispersed cloud computing 

settings, it is crucial to build efficient load balancing algorithms 

for picking the correct resources and task scheduling. 

Scheduling approaches including single objective, bi-objective, 

and multi-objective scheduling have been the subject of 

extensive study because of their potential to improve resource 

allocation and job organization. 

Since prior research has mostly concentrated on the 

objectives of processing time and cost or makespan, this work 

proposes the Least Load Balancing and (RL) Reinforcement 

learning approach for the task scheduling problem. However, in 

order to function in decentralized cloud computing, it is 

necessary to take into account a number of goals or 

requirements. Load balancing and reinforcement learning in a 

cloud-based distributed environment also needs to be taken into 

account. Improved cloud system performance can be achieved 

with the use of the Booster Reinforcement Controller method. 

While many algorithms excel in global search optimization, 

several of them struggle when it comes to local search. 

Since the LLB method exhibits exploratory behavior, it has 

been shown in related research to be particularly useful in 

figuring out the task allocation problem. Booster RL can aid in 

this situation since learning can lead to better solutions. 

Therefore, we propose a method that can solve the task 

scheduling problem by employing the BRCLB algorithm and 

the LLB least load balancing algorithm to determine the tasks 

order for right resources that are available in environments and 

to find the most appropriate task or resource allocation 

solution. Since neither of these approaches leaves any CPU in 

the cloud system idle or overworked, throughput is maximized. 

III. PROPOSED FRAMEWORK FOR TASK AND 

RESOURCE ALLOCATION 

First, A crucial part of extending the life of a network is 

load balancing [18]. When nodes are overworked due to an 

ineffective task allocation strategy, the networks suffer. 

Furthermore, in a dispersed cloud network, each processor will 

work independently without an appropriate job allocation 

technique, which prevents all processors from cooperating in an 

energy-efficient manner. More vulnerabilities and uncertainties 

exist for real-time applications in cloud networks due to 

demanding features and constraints, such as environmental 

limits, the dynamic topology, and the instability of wireless 

link. The basic framework of cloud reinforcement learning is 

shown in Fig. 1, which contains three layers. These layers store 

the data related to load on each processor and give server 

statistics accordingly. The ability to send packets per minute to 

the same server known as per connection consistency. If not 

done, can lead packets to go to the wrong server that may lead 

to reset and timeout. However, our objective is to reduce fault 

tolerance and maximize resource utilization throughput. We 
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need to ensure that servers get more, less or the same load, to 

implement uniform load balancing, as load balancing may 

receive millions of requests. However, the load balancer must 

be able to do end corrections on the server, and add additional 

servers if required. (Efficiency & Dynamicity). Based on each 

objective we found the proposed BRC load balancing algorithm 

helps us to achieve best optimization and throughput of the 

system. 

The bottom layer represents the clients and the server 

clusters. Client generates a tcp packet to establish a connection, 

so the request goes to BRC load balancer, wherein proposed 

load balancer algorithm is used to allocate the task and 

resources. At the top layer, Once the server is selected, the 

packet is forwarded to the selected server, the response packet 

is sent and the data is encoded into a temp file that is done at 

the middle layer. Further, the temp file is sent to the client so 

when the client generates a new packet, a temp file is received 

through which, server id is extracted. This temp file contains 

server id as represented in (1). 

                      temp=id xor hash(4 tuple)                                 (1) 

The server id details are essential to identify server status so 

once the temp file is set with server id, this id is extracted from 

the file as represented in (2). 

id=temp xor hash(4 tuple)              (2) 

 

Once the id details are stored in a file it can be directly 

connected to the server, which allows packets not proceed 

through load balancer; so that task will be allocated to the same 

server for further processing, that is known as direct server 

return process. This entire concept is stateless, that can be made 

stateful (keep per connection on load balancer) and is 

applicable for developing NAT on load balancer, statistics, rate 

limiter. 

 
Figure 1.  Cloud Reinforcement Learning Framework. 

The main challenge in distributed cloud computing is 

balancing load equally among the available processors. Less 

response time, high throughput, improved fault tolerance, 

scalability, high user satisfaction, less heat generation, 

optimum power consumption and less operational cost can be 

achieved by optimal utilization of resources. [1]. Terms and 

meanings used in the proposed algorithm are shown in Table 1. 

TABLE I.  TEARMS AND ITS MEANING 

Terms Meaning 

𝜙𝑐𝑎𝑝 Capacity of Processor 

𝜙𝑏 Bandwidth of Processor 

𝜙𝑝𝑟 Rate of Processing 

𝜙𝑙 Load of Processor 

𝜙𝑡𝑙 Total load of Processor 

𝜙𝑎𝑣𝑔𝑙 Average load of Processor 

𝑇𝑛 Number of task incoming 

𝑇𝑙 Length of task 

𝑇𝑠 Size of task 

𝐿𝐵𝑐𝑝𝑢 Load Balancer Processor 

𝑇𝑚𝑖𝑛 Minimum Threshold 

𝑇𝑚𝑎𝑥 Maximum Threshold 

𝜙𝑐𝑢𝑟𝑟 Current Processor 

𝑏𝑘𝑛 Backup load variable 

𝜙𝑎𝑚 Allocated Processor 

𝐿𝑡 Total Load 

𝑆𝑏 Bandwidth of server 

𝐿𝑢 Memory in use 

T[] Array of task 

𝑡𝑙 Tasl load 

𝑇𝑒𝑠𝑡  Estimated Time 

 

A. Changeover Mecahanism of Load Balancer 

Static load balancing algorithms and dynamic load 

balancing algorithms are the two primary classifications of load 

balancing algorithms. Static Load Balancing allocates work to 
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processing elements ahead of time, while dynamic Load 

Balancing allocates work as needed when an algorithm is 

running [8]. It is possible that a static mapping is the best 

option if the task’s computing requirements are known in 

advance and do not vary during the computation. However, a 

static mapping might lead to a significant imbalance, making 

dynamic load balancing more effective [8] if the computing 

requirements are unknown before execution and can alter at 

run-time. The parallel with dynamic load balancing is simple: 

just as avalanches disperse sand across a lattice, so too may 

they balance the workload of queued activities in a distributed 

system. [29]. Static scheduling techniques are non-preemptive. 

The changeover mechanism for Load Balancer (LB) is 

shown in Fig. 2. It shows that when a LB performs any action, 

it may switch to a different state. Now the states may vary 

depending on the possible outcomes. If LB receives any user 

request in the form of task for allocating it to server, then in the 

form of response LB calculates the current load of server in 

order to check the server status whether it is overutilized, 

underutilized so that task execution can be done faster within 

minimum time and also available resource will get fully 

utilized. Once the server load is calculated, LB sends load 

transfer instructions such as by which processor which task 

should be executed. However, if any request is not received by 

LB, it will go into a sleeping state triggering timeout. This 

mechanism explains the working of LB in order to check load 

status of different servers in distributed cloud networks. The 

changeover mechanism for load balancing where the 

applications can be dynamically tuned according to several 

objectives such as time, energy, communications, or their 

combinations. It adopts the method to the objective that 

provides a better use of the resources at any moment through a 

dynamic objective function, which can change over time [30]. It 

discusses where the workload is regular in between iterations; 

energy metrics are proven to be very useful and where the 

workload is irregular in between iterations. 

B. Capacity and Load of Processor 

In distributed cloud computing, all the incoming requests in 

the form of tasks are assigned to a suitable Processor for 

execution within a short time period. Our proposed approach 

BRC Load balancer selects the best processor to execute the 

incoming request, that is dependent on the task length, 

processor capacity, and previous load of the processor. The 

bandwidth, CPU, memory and processing speed of a processor 

represents its capacity in (3). The load of the processor (𝜙) is 

determined by the task length and total number of tasks that 

processor already holds with respect to its capacity. The 

processor load is calculated in (4). The average load of all 

processors on a server is represented in (5) and (6), 

respectively. 

                          𝜙𝑐𝑎𝑝 =  𝜙𝑏 +  𝜙𝑝𝑟                                   (3) 

 

                            𝜙𝑙 =  𝑇𝑛 ×  𝑇𝑙  ×  𝑇𝑠
𝜙𝑐𝑎𝑝

                                     (4) 

 

 

Figure 2.  Changeover Mechanism of Load Balancer 

                              𝜙𝑡𝑙 =   ∑   𝜙𝑙
0
𝑝=1                                   (5) 

                                  𝜙𝑎𝑣𝑔𝑙  =   𝜙𝑡𝑙
𝜙𝑝

                                    (6) 

C. Finding Over-Utilized, Normal - Utilized And Under-

Utilized LB 

The cloud computing environment is a network of 

distributed datacenters, wherein it consists of hundreds of 

servers. So, when a user submits a task, the datacenter 

controller handles it and makes use of load balancer. Further 

load balancer determines which machine should be allocated to 

the next upcoming request for processing [1]. The pseudo code 

of Over-Utilized, Normal - Utilized and Under-Utilized LB is 

described in Algorithm 1. It is used for balancing and 

distributing load equally among the available servers in 

distributed cloud networks. The LB Controller uses this 

algorithm to gather the data related to current load status of 

CPU before and after allocation of tasks for achieving better 

system throughput and response time. Total CPU Utilization 

can be calculated based on comparing it with minimum 

Threshold and maximum threshold values. Nonetheless, in 

order to decentralize the data and make use of the unused 

bandwidth of local network lines, packets of computational 

data that are being processed in chunks at one of the IoT nodes 

must be queued sequentially. While the ordered packets are 

being carried out one by one on the intended IoT device, the 

remaining packets that are not being processed now are 

dispersed and kept looping across the network links [17]. 
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Algorithm 1.  Over-Utilized, Normal-Utilized And Under-Utilized 

LB 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. LOAD BALANCING ALGORITHMS 

In the Least Load Balancer algorithm, every processor 

reports its current status of load to the load balancer. Each 

processor gives current load details that are utilized at the time 

of allocating requests to the best selected processor. If any 

processor fails then that task is allocated to the next suitable 

processor for processing so again changes in the task 

distribution process occurs.  

A. LLB Algorithm 

If all servers are running a given client IP address will 

always go to the same processor [1]. Through communication 

among active resource agents the load balancing is 

accomplished. Given that the set of processors ϕ, if no tasks are 

waiting in queue to be executed then processor Load ϕld is by 

default set to null. However, when no tasks are running, it 

needs to calculate the load on the servers for further task 

allocation processes. [1]. The pseudo code for LLB Algorithm 

is described in Algorithm 2. However, if a task is allocated to n 

th processor then Processor load will be summation of current 

load and average load of that task, and if load condition is 

satisfied the best suitable processor will be selected and 

assigned for processing of task. But if the same task is allocated 

to another processor with minimum load as compared to the 

previous processor, then, this task Tm is assigned to that new 

processor. And, the previous processor will be restored with its 

earlier load that was there before calculation which is stored in 

backup variable bkn , thus allowing task allocation to be done 

efficiently. 

B. BRC Load Balancer Algorithm 

To process the tasks, it is necessary to select the relevant 

processor to maximize the throughput of the system that is the 

primary goal of finding the optimal policy in distributed cloud 

computing. 

 

Algorithm 2.  LLB Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The load value depends on the selection of action in the 

state. Given the load value of each processor and available 

processors in the network for task execution, the algorithm is 

expected to select the best suitable processor and achieve 

maximum throughput. For every new request state of load will 

be initialized with a new value, as task processing is done 

continuously on each server. However simply doing this is not 

sufficient, to achieve the best throughput we need to do task 

allocation efficiently with reduced makespan and energy 

consumption, this is achieved by our proposed Boost 

Reinforcement Controller Load Balancer algorithm. The 

pseudo code for BRC Load Balancer Algorithm is described in 

Algorithm 3. To ensure that workloads are executed efficiently 

on available resources, a load balancing method based on 

reinforcement learning was developed. The proposed method 

performance has been measured in the cloud. The experimental 

outcomes demonstrate the effectiveness of the suggested 

method in lowering the aforementioned QoS parameters along 

with the execution cost, time, and energy consumption.  

The first objective proposed algorithm is to identify the 

time required to execute the task that is makespan. The task 

execution time is the time that the CPU needs to complete the 

decided set of tasks. Another objective includes to reduce the 

task completion time by selecting the most configured and 

optimized fastest processor for the task. In Algorithm 3, we 

represent the processor controller as LB, and the environment 

under which servers are running is termed as environment. LB 

1. Begin 

2. For each Load Balancer LB do 

3. get LBcpu utilization 

4. initialize Tmin 

5. initialize Tmax 

6. if LBcpu < Tmin then 

7. LBcpu under-utilized 

8. else 

9. LBcpu rejected 

10. End if 

11. if Tmin < LBcpu < Tmax then 

12. LBcpu normal-utilized 

13. End if 

14. if LBcpu > Tmax then 

15. LBcpu is over-utilized 

16. End if 

17. End For 

18. Return new LB 

19. End 

 

1. Begin 

2. For each task Tm do 
3. min = ∞ 

4. For each Processor 𝛟 do 
5. Initialize Backup load bkn 

6. if 𝛟ldn + Tm < min then 

7. 𝛟ldn = 𝛟ldn + Tm 

8. min = 𝛟ldn 

9. 𝛟am = n 
10. Else 

11. current processor 𝛟curr do 

12. 𝛟curr = bkn 
13. End if 

14. End For 

15. End For 

16. Return Current load status 

17. End 
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performs task allocation and depending on the condition the 

best selected processor is assigned with further task processing. 

Important parameters of the algorithm are described as: 

 

1) Server parameters Lt, Sb, Lu 

The necessary parameters of the server such 

as total load bearing memory, bandwidth, and 

memory in use. C={Lt, Sb, Lu} 

 

2) Load on CPU's Environment T[], tl, Test 

This section contains all the information about 

how many tasks the processor is handling, whether it 

is underload or overload or balance. So here task 

count, task lengths and estimated time for task is  

 

Algorithm 3.  LLB Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

maintained. The task estimation may vary with 

processors due to different processing power. 

L={T[], tl, Test} 

 

3) Changeover mechanism 

It shows that when a LB performs any action, it 

may switch to a different state. Now the states may 

vary depending on the possible outcomes. Fig. 2 

explains the states. 

 

V. EXPERIMENTAL EVALUATION 

Our new LLB and BRC Load Balancer algorithm is 

compared to four other algorithms in this section: MOCS, 

FCFS, minmin, and maxmin. Our simulation findings suggest 

that our proposed approach outperforms state-of- the-art 

alternatives. Minimizing Load Balancer settings and effectively 

managing processor load are two of its main features. The LLB 

algorithm’s outputs are fast and accurate, too, which improves 

the efficiency of our system. 

 
Figure 3.  Comparison of makespan for different task 

The result displayed in Fig. 3 is obtained by different types 

of algorithms with different numbers of tasks assigned to 

available processors. From this figure, compared to the other 

four algorithms our proposed algorithm takes less computation 

time. 

 
Figure 4.  Memory Utilization for different set of tasks 

Memory utilization is shown in Fig. 4 for different sets of 

tasks assigned to best suitable processors for execution with the 

BRC Load Balancer algorithm. Our proposed BRC Load 

Balancer algorithm makes use of minimum resources for 

processing the task execution. From the figure, when the 

number of processors increases, the processing speed also 

increases. BRC Load Balancer shows a great improvement in 

speedup as compared to other existing methods, as BRC Load 

balancer makes use of minimum resources for task execution 

so more number of task processing can be done effectively. 

This proves that BRC Load Balancer is very suitable to be 

implemented in distributed cloud computing. 

VI. CONCLUSION 

The Booster Reinforcement Controller Load Balancer task 

scheduling algorithm is a distributed cloud computing load 

1. Initialize Server parameters Lt, Sb, Lu 

2. Initialize Processor load 𝞥ld 
3. Begin 

4. For each new task Tn do 

5. Initialize load balancer state lbs 

6. For each task Tn in queue do 
7. execute LLB algorithm 

8. if 𝞥 == underload 

9. allocate task T to 𝞥 
10. End if 

11. Update Load parameters T[], tl, Test 

12. Update Server parameters Lt, Sb, Lu 

13. Change Load Balancer State 

14. Generate temporary file F 

15. End For 

16. End For 

17. Return F 

18. End 
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balancing algorithm that is presented in this paper. This 

algorithm is based on both the multiple load balancer PSO 

algorithm and the LLB algorithm. When the next task is 

assigned, the processor can be brought back to its prior state 

thanks to the LLB Backup of load, which is kept. Finding 

the Over-Utilized, Normal-Utilized, and Under-Utilized loads 

of the various processors that are available reduces the overall 

processing time needed to complete a task. In a distributed 

cloud setting, this load balancing algorithm is suggested to 

optimize various load balancing parameters with the least 

amount of time required as compared to other existing load 

balancing algorithms. The local environment aids in the 

completion of our simulation experiment. Two distinct 

experiments are run in the simulation to determine percentage, 

accuracy, and process speedup. When the multiple task set is 

distributed to different processors, the LLB &amp; BRC Load 

Balancer method enhances server settings when compared to 

other load balancing techniques now in use. This information 

leads to the conclusion that our suggested approach performs 

better even when a large number of tasks are brought into the 

datacenter. We will contrast our suggested approach with other 

meta-reinforcement learning techniques in the future. A hybrid 

approach that combines swarm optimization and machine 

learning techniques has also been presented to enhance the 

ideas of resource management and resource allocation. Real-

time analytics on the intricate and dynamic cloud network will 

be provided by this algorithm. 
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