
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

DOI: https://doi.org/10.17762/ijritcc.v11i2.6110

Article Received: 14 December 2022 Revised: 14 January 2023 Accepted: 22 January 2023

57

IJRITCC | February 2023, Available @ http://www.ijritcc.org

Novel Load Balancing Optimization Algorithm to

Improve Quality-of-Service in Cloud Environment

Mr. Rupesh Mahajan1, Dr. Purushottam R. Patil2, Dr. Amol Potgantwar3, Dr. P. R. Bhaladhare4
1Research Scholar,

School of Computer Sciences and Engineering, Sandip university,

Nashik, Maharashtra, India

e-mail: mhjn.rpsh@gmail.com
2Associate Professor,

School of Computer Sciences and Engineering, Sandip university,

Nashik, Maharashtra, India

e-mail: mhjn.rpsh@gmail.com
3Professor,

Sandip Institute of Technology and Research Centre,

Nashik, Maharashtra, India

e-mail: mhjn.rpsh@gmail.com
4Professor & Head,

School of Computer Sciences and Engineering, Sandip university,

Nashik, Maharashtra, India

e-mail: mhjn.rpsh@gmail.com

Abstract— Scheduling cloud resources calls for allocating cloud assets to cloud tasks. It is possible to improve scheduling outcomes by

treating Quality of Service (QoS) factors as essential constraints. However, efficient scheduling calls for improved optimization of QoS

parameters, and only a few resource scheduling algorithms in the available literature do so. The primary objective of this paper is to provide an

effective method for deploying workloads to cloud infrastructure. To ensure that workloads are executed efficiently on available resources, a

resource scheduling method based on particle swarm optimization was developed. The proposed method's performance has been measured in

the cloud. The experimental results prove the efficiency of the proposed approach in reducing the aforementioned QoS parameters. Several

metrics of algorithm performance are used to gauge how well the algorithm performs.

Keywords- load balancing, QoS, PSO, algorithm, cloud computing

I. INTRODUCTION

In cloud computing, clients have access to shared computing

resources over the Internet using methods from parallel and

distributed computing. As a result of the "pay as you go" pricing

model, cloud computing is quickly approaching widespread

accessibility. Participants in this stage of software deployment

include cloud providers, service providers, and end users.

Businesses may hire the computing power of the cloud, thanks

to service providers (VMs). These virtual machines are used by

service providers to provide application-level client services.

Algorithms for scheduling tasks are used by service providers

to distribute work from their clients among multiple virtual

machines in order to speed up responses, guarantee a high level

of service quality, and make the most efficient use of available

resources [1]. Job scheduling algorithms are thus an essential

component of any cloud infrastructure. The numerous

scheduling methods currently used in different computing

environments need to be modified to accommodate cloud

computing. It's possible that a scheduling approach that works

well on a cluster won't fare as well in the cloud. The steps of the

procedure must be introduced into the issue space before the

algorithm can handle the cloud environment's structure. The

number of possible task configurations grows in proportion to

the number of different virtual machines and the total amount

of the workloads being managed. One of the hardest issues in

computer science is determining the shortest path among all

possible combinations. This work has developed a novel load-

balancing variant of the original PSO approach for cloud

scheduling, though metaheuristic algorithms have been used

previously to aid cloud scheduling.

Our Contribution

• We need better load balancing to ensure that requests

are spread evenly between machines. Significantly

more time was saved because to better VM load

balancing than was shown in earlier studies.

• An efficient fitness function that makes more efficient

use of resources is necessary in order to keep both the

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

DOI: https://doi.org/10.17762/ijritcc.v11i2.6110

Article Received: 14 December 2022 Revised: 14 January 2023 Accepted: 22 January 2023

58

IJRITCC | February 2023, Available @ http://www.ijritcc.org

service provider and the customers happy.

• Improved PSO algorithm tested using Cloudsim by

using varying load, and result shows algorithm

improved various performance parameters.

Scheduling methods for tasks in the cloud have the potential to

increase processing times and slow down the system as a whole.

To this end, cloud computing seeks to optimise the utilisation

of computing resources in a distributed network of devices so

as to boost overall performance. Multiple methods of task

scheduling are used in cloud computing, including ACO, PSO,

and GA.

II. LOAD BALANCING ALGORITHMS

1. Ant Colony Optimization Technique: In this rule, the ant

moves forward in a linear fashion whenever a call for

participation is made, stopping at each node in turn to record

whether or not the node is overloaded. As soon as the ant

discovers a full node, it begins to crawl backward to the

previous underneath-loaded node in order to transfer its newly

acquired knowledge [1].

2. Honey Bee Foraging Algorithm: It's a method for balancing

the load across the different nodes of the cloud that's inspired

by the way nature does it. This formula determines if a node is

overloaded [2], underloaded, or balanced by its initial current

load. Priority-based job migration involves relocating a task

from a node that is currently overburdened to one that is

currently underutilized.

3. Biased Random Sampling Algorithm: This regulation

envisions the network as a digital graph. When thinking of

servers, think of them as nodes; the available resources at any

given node correspond to their in-degree. The load balancer

distributes jobs to the nodes based on the principle of in-degree.

The in-degree is reduced when a job is assigned and increased

when it is completed.

4. Resource Allocation Scheduling Algorithm (RASA): An

initial step of this algorithm is to create a network of fictitious

nodes. All of the virtual nodes' estimated response times are

determined. If we look for the least occupied node as a metric,

we can zero down on a highly effective virtual node. If the

number of available resources is divisible by 3, then MinMin is

used; otherwise, MaxMin.

III. RELATED WORK

In order to boost performance in an HPC setting, the literature

has extensively studied the load balancing problem. The

dynamic mapping problem has been studied by experts from

several fields, such as job scheduling and distributed systems.

In their study [3], YuAng Chen and Yeh-Ching Chung

examined Cache-aware Reorder (Corder), a lightweight task

reordering solution that makes use of the cache hierarchy of

multi cores computers. It improves cache performance by using

more nuanced approach to the vertex order in the local region

and supports uniform distribution of computational loads across

several cores on the shared-memory level. Corder's efficiency

is thoroughly tested using a wide range of graph applications

and datasets. Corder is only applicable to vertices that have been

labelled by their outgoing edges, despite its remarkable benefits

in portability across platforms and reordering overhead.

A CA Model, dynamic load balancing strategy for the

concurrent execution of spatially-related applications has been

proposed by Andrea Giordano et al. [4]. Through the use of a

CA model developed for the express purpose of graphically

displaying the development of the system and the consistent

load distribution across the nodes throughout the execution, it

demonstrates how the LB operates from a qualitative

perspective. This study's parallel execution was achieved

through a variety of parallel execution settings determined by

starting MPI processes locally and across multiple nodes.

Applications can be dynamically optimised for time, energy,

communications, or their combinations using the multi-

Objective technique proposed by Alberto Cabrera et al. [5].

Using a flexible objective function that can evolve over time, it

takes the approach that maximises resource utilisation in the

present. Where workload is consistent between iterations,

energy measures have been shown to be very helpful; where

workload is inconsistent, they have been shown to be less so. It

can be reduced using a multi-goal strategy.

For data-parallel clusters, Yinghao Yu et al. [6] created SP-

Cache, a load-balanced, redundancy-free cluster caching

system. To distribute the read requests for popular files more

fairly over various servers, it divides them into multiple

divisions based on their size and popularity. Short-term

popularity swings, like spikes in access to specific files, have so

far proven too much for SP-Cache to handle without resorting

to frequent load balancing.

To improve load balancing performance, Mahdi Jafari

Siavoshani et al. [7] presented and analysed a content delivery

and caching scheme that uses a secret code that outperforms the

nearest replica approach and the power of two choices baseline

techniques. Even though it may not be computationally feasible

in some practical scenarios, Design and Development of an

Efficient Approach for Task Allocation in Distributed Systems

using Heuristics Environment derives closed-form expressions

for a grid network that achieves nearly perfect load balancing

without sacrificing communication cost.

One load balancing strategy, called Computing load Aware and

Long-View, has been examined by Guoxin Liu et al. [8]. If a

server is overloaded at one point in time, CALV will select the

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

DOI: https://doi.org/10.17762/ijritcc.v11i2.6110

Article Received: 14 December 2022 Revised: 14 January 2023 Accepted: 22 January 2023

59

IJRITCC | February 2023, Available @ http://www.ijritcc.org

blocks that provide the most work at that time, and the blocks

that contribute the least work at that time will be selected

instead. CALV employs a sluggish data block transfer

technique to enhance the load balancing functionality. To avoid

burdening the receiving servers too much, and to free up

bandwidth during network peaks, it strategically schedules all

data transfers. CALV is superior than competing approaches

because it increases data locality and decreases task delay,

network burden, and reallocation overhead.

Extreme workload variability is a common problem in large-

scale multi-server distributed queuing systems, Jonatha

Anselmi and Josu Doncel [9] have mentioned a class of size-

based routing algorithms. It demonstrates that when all servers

have the same processing speed, with infinitely increasing

system size, the size-interval task assignment policy's mean

waiting time converges., the average wait time reduced by a

Size-Interval Task Allocation policy that distributes work fairly

among all servers. However, when servers are heterogeneous,

SITA-performance E's may suffer for no apparent reason.

When it comes to dynamically balancing computing workloads,

a self-organized criticality strategy has been presented by Juan

Luis Jimenez Laredo et al. [10]. It explains how the sandpile

model might be modified to accommodate the challenge of

coordinating several, unrelated activities. The sandpile's

decentralized execution is self-organizing, thus it can adjust

amount of available assets to the unique characteristics of

incoming workloads. The system's emergent load-balancing

response is studied to determine how best to balance these two

goals—low energy consumption and high quality of service.

In their paper, Qiong Chen et al. [11] discussed task allocation

for MTL scenarios in the frontier. It demonstrates that the

problem of task allocation with task importance for MTL

(TATIM) is a special case of the NP-complete Knapsack

problem, requiring complex computations to be performed

repeatedly in different settings. To accomplish this, we employ

a Data-driven Cooperative Task Allocation (DCTA) strategy,

which is shown to be 3.24 times faster than the state-of-the-art

Design and Development of an Efficient Approach for Task

Allocation in Distributed Systems with Heuristics Environment,

and which provides a useful and effective mechanism for

decreasing the necessary resource for MTL to be performed on

the edge.

Soft real-time task fault-tolerant allocation (FTAOA) in WSNs

was developed by Wenzhong Guo et al. [12] Using the principle

of "earliest deadline first," FTAOA prioritizes the tasks in order

of their respective priority levels, giving more precedence to

those with earlier due dates. The job allocation problem is

addressed, and a utilization function is developed, both of which

are utilized to assess the overall performance of the nodes in this

study.

TCHAP, proposed by Ashraf Suyyagh et al. [13], is a

partitioning method that minimises energy consumption while

still accounting for the inherent heterogeneity of the cluster and

the inherent performance/energy variance of the underlying

hardware. An example of a software-level strategy where the

allocation of tasks to heterogeneous clusters affects overall

system energy consumption is discussed; this strategy is called

energy-efficient partitioning. The power consumption of the

platforms is increased as a result of the coupling of the task-

aware scheduling for energy-efficient partitioning on single-

ISA heterogeneous platforms.

PathGraph is a path-centric technique to doing efficient iterative

graph calculations on enormously large graphs, and it was

recently presented by Pingpeng Yuan et al. [14]. Both the

storage and compute levels exhibit the path-centric abstraction.

The idea of a task queue with various "stealing points" that can

be utilized to steal work is explored in this paper. It shows that

for a range of iterative graph algorithms, PathGraph beats X-

Stream and GraphChi on real-world graphs of varied sizes,

achieving both superior balance and speedup.

Load balancing algorithms fall into one of three types

depending on who started the process:

• Sender Initiated: If the load-balancing algorithm is

started up by the sender

• Receiver Initiated: If the receiver starts the load-

sharing routine

• Symmetric: It's a hybrid between "sent" and "received"

messages.

Load balancing algorithms can be broken down into two

groups, depending on the system's current configuration:

• Static: This is independent of the system's current

condition. The system requires prior knowledge.

• Dynamic: The present state of the system is taken into

account while making load balancing decisions. In

other words, no prior knowledge is required.

Therefore, it's preferable to a purely static method.

In a distributed system, load balancing can be performed either

statically, before any tasks are executed, or dynamically, while

the tasks are being executed. Static load balancing has the

advantage of requiring less resources to complete due to its

reliance on the system's typical behaviour when making load

decisions. Policy decisions made by static load balancers don't

change as needed to accommodate for variations in the amount

of work being done. In contrast, dynamic load balancing makes

an effort to balance loads in real time, taking into account the

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

DOI: https://doi.org/10.17762/ijritcc.v11i2.6110

Article Received: 14 December 2022 Revised: 14 January 2023 Accepted: 22 January 2023

60

IJRITCC | February 2023, Available @ http://www.ijritcc.org

present state of the system and factors that are believed to

enhance performance.

As a result of its adaptability, dynamic load balancing is well

suited to applications with variable processing needs and

irregular communication patterns. During execution, Dynamic

Load-Balancing redistributes the workload across the

computers such that each one is doing roughly the same amount

of work as the others. With the goal of decreasing the reaction

time of the task, dynamic load balancing shifts work from

overworked computers to those with less on their plates through

the use of a dedicated network.

Taking into account the loads as real numbers that can be split

arbitrarily, numerous writers in the literature have presented

iterative load balancing techniques. While jobs in fine-grained

applications can be divided indefinitely, those in medium and

coarse grains cannot. Even after the load balancing method has

finished running, the resulting load distribution will not be

globally balanced if it was developed for a discrete load model.

The challenges faced by a dynamic load balancing method

include determining when to initiate a load balancing operation,

which computer makes the load balancing decision, collecting

relevant data, and moving the load between computers. An

involved computer will balance loads by taking into account the

following four criteria:

• Load Evaluation: A computer's load index will be

used as the foundation for locating a discrepancy in the

system. Every machine's utilization was included in to

the overall load when calculating the severity of the

imbalance. Those with a low load index value indicate

a lightly loaded computer, while those with a high load

index value indicate an overworked machine. A few

tasks from the overloaded computer were transferred

to the lightly laden computer in order to even out the

load index of the machines in the system.

• Load balancing profitability determination: When

there is a discrepancy between the load on each

computer, the load balancing mechanism shifts work

from the busier machines to the less busy ones. The

financial viability of load balancing is evaluated by

considering factors such as communication lag and

migration expense while allocating work to faraway

computers.

• Task migration strategy: With the task migration

approach, the overcrowded computer is selected by the

load balancing algorithm to have its queued tasks

removed and moved to the queue of a less busy

computer. The communication overhead of load

balancing is kept to a minimum by carefully selecting

the source and destination computers.

• Task selection strategy: The source computer must

exercise caution while choosing which jobs to offload.

Load balancing should be taken into account while

choosing which jobs to perform.

Distributed methods, on the other hand, require fewer

computers, therefore they incur less overhead when making

load balancing decisions. The load evaluation instant is the

time at which the load index of each computer is measured.

It is important to strike a balance between how often load

data is collected and how old it is when using computerized

load data. The following three conditions for collecting

load information will prevent the load balancing algorithm

from using out-of-date values:

• On-demand When a load balancing procedure is about

to begin or is launched, computers exchange load

information with one another.

• Load information is shared between computers on a

regular basis. The other computers in the system may

or may not find this data useful.

• On-state-change-driven When the amount of work

being done on a computer reaches a certain threshold,

the system notifies the other machines of the increased

load.

On-demand collection of load information from computers in a

system reduces communication overhead but can lengthen task

processing times. In a bidding system, lightly burdened

computers request load information from other computers in the

system and then select the most suitable computer for balancing

the load.

IV. PROBLEM STATEMENT AND DESCRIPTION

The goal of any scheduling method should be to find the best

method of distributing resources among tasks in order to boost

as many variables as possible. Each user, R = {user1, user2, user3

… userR}, submits n requests, each of length l(£), to be carried

out on a single physical host, M = PH1, PH2 , PH3 … PHM}, in

a cloud datacenter. For a given time interval t, the total number

of requests (TR) made by all users is equal to R*n. In order to

meet the needs of its users by the deadline set by those users I

each PH is made up of m virtual machines (q1, q2, q3,..., qm).

Our goal is to optimize QoS parameters by determining how

best to map each task/application to the available cloud

resources. As shown in Figure 1, a controller node component

maps all incoming application requests to available cloud

resources based on resource requirement data like memory

MMmem, storage sc, processing speed ps, and CPU g, and then

schedules the application to run on the best possible virtual

machine (VM). Minimizing the time and cost of application

execution simultaneously is a multi-objective scheduling

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

DOI: https://doi.org/10.17762/ijritcc.v11i2.6110

Article Received: 14 December 2022 Revised: 14 January 2023 Accepted: 22 January 2023

61

IJRITCC | February 2023, Available @ http://www.ijritcc.org

problem due to their inherent incompatibility. Therefore, we've

devised a novel method for solving multi-objective problems

using the fitness function and a meta-heuristic algorithm.

Fitness Function

The purpose of a fitness function is to identify an optimal

solution to a problem with multiple criteria. Here, we have

considered two goals: The first goal is to shorten the amount of

time it takes for applications to finish processing, and the

second goal is to cut down on the amount of money spent on

cloud resources during a given time period.

V. PROPOSED APPRAOCH

A. Motivation

Based on load balancer techniques that can be applied for task

distribution to maintain the equal load on each processing

element such that all processing elements becomes neither

overloaded nor remains idle, we can achieve the benefits of

resource pooling, openness, concurrency, scalability, fault

tolerance, and transparency. Based on the literature review it is

studied that there is a need to develop such a system. It is

estimated that the proposed system will provide a generic

framework. The problem statement is subdivided into the

following objectives to achieve the research goal:

• We need better load balancing to ensure that requests

are spread evenly between machines. Significantly

more time was saved because to better VM load

balancing than was shown in earlier studies.

• An efficient fitness function that makes more efficient

use of resources is necessary in order to keep both the

service provider and the customers happy.

• Improved PSO algorithm tested using Cloudsim by

using varying load, and result shows algorithm

improved various performance parameters.

B. Novel PSO Model

The scheduling of available resources is the backbone of any

cloud computing RMS. It essentially denotes the process of

assigning a cloud's workloads to the best resources available.

Based on user needs, this procedure finds the most appropriate

cloud workload and resources to run them. There are four stages

to the scheduling process. Workloads are first categorized by

their needs and then analyzed. The next stage involves selecting

the necessary resources from the available pool. In the third

stage, cloud workloads are mapped to suitable resources

according to user-specified Quality of Service requirements.

Finally, plan the use of available resources to carry out tasks,

thereby doubling down on your assurance that all of your QoS

needs will be met to an almost perfect degree. The proposed

method satisfies the requirement for optimized resource

scheduling in the cloud. Consider a grocery store: if a customer

comes in looking to make a purchase, the salesperson there will

first find out what kind of restrictions the customer has in terms

of price range and other criteria before deciding what to put on

display. Choose the right product from among those shown

based on your budget, needs, and other considerations.

Resource Provisioning

Specifically, the following components make up the resource

provisioning method:

1. Bulk of Workloads: The majority of pending tasks, known as

BoW, have arrived and are currently being sorted and queued

up for execution.

2. Workload Resource Manager: The Workload Resource

Manager (WRM) keeps track of resource data, quality of service

metrics, and service level agreements (SLAs) in order to

provision resources for the execution of workloads based on the

cloud consumer's described QoS requirements.

3. SLA Measure: With the help of the appropriate Service Level

Agreement, WRM is able to obtain the necessary data (SLA).

WRM verifies availability of resources after analysing and

validating the many QoS constraints imposed by the workload.

4. QoS Metric Data: The document details the quality of service

metrics that are used to assign relative importance when

grouping tasks.

5. Workload Analyzer: Workload Analyzer's purpose is to

examine various aspects of a cloud workload in order to

ascertain whether or not it is possible to port the application to

the cloud. In the cloud, QoS requirements and characteristics

vary widely across workloads. The Quality of Service (QoS)

requirements of all submitted workloads are analysed by WRM.

To ensure quality of service is met, it is necessary to first

determine which workload patterns are needed for workload

clustering, and then to determine which metrics are needed to

assign weights based on the level of measurement described in

the QoS requirements specified in the SLA. The workloads are

re-clustering for execution on a different set of resources using

a K-Means based clustering algorithm.

6. Resource Information: Specs on how many processors are

being used, how much memory is available, how much

everything costs, what kinds of resources are available, and how

many there are in total are all part of the resource breakdown.

The resource pool is where we keep all of the shared resources.

Resource Provisioner

When the necessary resources are available in the resource pool,

it makes them available to the workload so that it can be run in

the cloud. The WRM will request that the workload be

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

DOI: https://doi.org/10.17762/ijritcc.v11i2.6110

Article Received: 14 December 2022 Revised: 14 January 2023 Accepted: 22 January 2023

62

IJRITCC | February 2023, Available @ http://www.ijritcc.org

resubmitted with the need for an SLA-based Quality of Service

guarantee fails if the requisite means are unavailable. The

resource scheduler receives requests for work after resources

have been provisioned. The resource scheduler will then request

the workload be submitted in exchange for the allocated

resources. After the resource scheduler sends the results back to

the WRM, the cloud workload will already have the necessary

resource information. Eighth, a Resource Planner All workloads

will be run on the allocated resources. A cloud workload is a

type of application submitted by a cloud user that abstracts the

work that instance or set of instances would do if they had

access to the necessary resources and could then execute. This

research takes into account a wide range of workloads,

including websites, technological computing, venture software,

performance testing, online transaction processing, e-

commerce, central financial services, storage and backup

services, production applications, software/project

development and testing, graphics oriented, critical internet

applications, and mobile computing services.

Clustering of Workloads

Previous research work describes in detail the workloads in the

Cloud are grouped together based on their shared characteristics

and usage patterns. The end result of grouping work by similar

patterns. Furthermore, the process of clustering using a K-

means based clustering algorithm has been described in detail

in previous research work, and is used to re-cluster the

workloads before they are executed on a new set of resources.

Analysis

In the area of resource scheduling, we have developed a particle

swarm optimization (PSO) based algorithm while taking into

account a variety of quality of service (QoS) factors. The

following are some key features that should be included in any

effective algorithm for allocating resources: Efficiency QoS-

based efficient resource management is essential for the cloud's

cost-cutting resource provisioning feature. Minimizing

Wasteful Use of Materials Less time and materials should be

wasted thanks to well-planned scheduling. Waiting cloud

workloads should be carried out in a manner that makes the

most efficient use of available resources and optimizes quality

of service (QoS) settings (execution time and cost). Equal

Timetables Each user should receive the same total amount of

resources in the cloud regardless of how many cloud workloads

they submit. Capacity for Change and Expansion A resource-

aware scheduler can change its behaviour in response to

incoming or outgoing resources, allowing for more effective

management of both resources and workloads.

VI. EXPERIMENTAL EVALUATION

A. Platform and Tools Used

• Operating systems starting with Windows 7, with

Windows 10 being the preferred option.

• Since the Cloudsim simulation toolkit is a Java class

library, the latest version of Java (JDK) should be

installed on your machine; this can be done by

downloading it from Oracle's Java portal. Oracle

provides extensive documentation and installation

instructions for those who need help setting up the

software.

• For Java programmers, there is the Eclipse Integrated

Development Environment. In accordance with the

Linux/Windows distribution that you have currently

installed. It is important to determine whether a 32-bit

or 64-bit version is needed before initiating a

download. The following link will take you to the

Eclipse Kepler download page.

• Obtain the CloudSim source code; to date, many

versions of CloudSim have been released; the most

recent is 5.0, which is built on a container-based

engine. To keep things simple for newcomers, we'll be

installing the most popular version, 3.0.3, which you

can get by clicking any of the following: Select

Windows or Linux by clicking the appropriate button.

• The common jar package of mathematical functions is

a third-party requirement of Cloudsim; you can get it

from the Apache website or just click here to get it

downloaded right now.

• Eclipse, Cloudsim, and the Common Math libraries

should be unzipped into the same directory.

B. Metrics of Evaluation

• Availability (A): Mean Time to Repair (MTTR) is the

ratio of the MTBF to the sum of the MTBFs of the

individual components (MTTR).

• Reliability (re): Scheduling resources requires

verifying their dependability. The fault tolerance of a

resource can be evaluated using the reliability

parameter.

• Resource Utilization (RU): It's the proportion of a

resource's uptime to the time that its workload was

actually executed.

• Latency (L): It is the disparity between the planned and

actual duration of an operation's execution.

C. Results and Discussion

The proposed Novel PSO technique's performance has been

evaluated in comparison to those of state-of-the-art existing

scheduling algorithms. Multiple cloud workloads and resource

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

DOI: https://doi.org/10.17762/ijritcc.v11i2.6110

Article Received: 14 December 2022 Revised: 14 January 2023 Accepted: 22 January 2023

63

IJRITCC | February 2023, Available @ http://www.ijritcc.org

counts have been used to evaluate the proposed PSO's

performance. QoS parameters such as availability, reliability,

latency, and resource utilization, as well as execution time, cost,

energy, and other metrics have been used to gauge the efficacy

of the proposed PSO. The time it takes to execute a workload is

an indicator of its complexity, while its cost provides a basis for

resource selection. The proposed PSO improves the efficiency

of executing workloads. Executing workloads in the cloud is

cheaper for consumers as a whole. When funding is increased,

more personnel and tools can be made available to speed up the

implementation process. The proposed novel PSO runs the with

different number workloads with the highest possible uptime

and reliability. To put it another way, the proposed novel PSO

has a lower mean energy consumption than existing methods.

VII. CONCLUSION

In this paper, various technologies and issues related to resource

allocation and scheduling has been studied and discussed. From

the literature survey, it is found out that the there are several

task distributions and sharing of resources techniques

implemented, but still load balancing optimization needs further

extensive research. The proposed novel PSO approach giving a

promising solution to this problem. The primary objective of

this paper is to provide an effective method for deploying

workloads to cloud infrastructure with load balancing

optimization. To ensure that workloads are executed efficiently

on available resources, a resource scheduling method based on

particle swarm optimization is proposed. The proposed

method's performance has been measured in the cloud. The

experimental results prove the efficiency of the proposed

approach in reducing the aforementioned QoS parameters.

Several metrics of algorithm performance are used to gauge

how well the algorithm performs.

REFERENCES

[1] D. Babu, and P. V. Krishna, “Honey bee behavior inspired load

balancing of tasks in cloud computing environments”, (Applied

Soft Computing, 2013), pp. 292-2303.

[2] Misha Goyal, and MehakA ggarwal, “Optimize Workflow

Scheduling UsingHybrid Ant Colony Optimization (ACO) &

Particle Swarm Optimization (PSO) Algorithm in Cloud

Environment”, International Journal of Advance research, Ideas

and Innovations in Technology, 2017.

[3] YuAng Chen and Yeh-Ching Chung, “Workload Balancing via

Graph Reordering on Multicore Systems”, IEEE Transactions on

Parallel and Distributed Systems, Vol. 33, No. 5, May 2022.

[4] Andrea Giordano, Alessio De Rango, Rocco Rongo, Donato

D’Ambrosio, and William Spataro, “Dynamic Load Balancing in

Parallel Execution of Cellular Automata”, IEEE Transactions on

Parallel and Distributed Systems, Vol. 32, No. 2, February 2021.

[5] Alberto Cabrera, Alejandro Acosta, Francisco Almeida, and

Vicente Blanco, “A Dynamic Multi–Objective Approach for

Dynamic Load Balancing in Heterogeneous Systems”, IEEE

Transactions on Parallel and Distributed Systems, Vol. 31, No.

10, October 2020.

[6] YinghaoYu , Wei Wang , Renfei Huang , Jun Zhang , and Khaled

Ben Letaief, “Achieving Load-Balanced, Redundancy-Free

Cluster Caching with Selective Partition”, IEEE Transactions On

Parallel And Distributed Systems, Vol. 31, No. 2, February 2020.

[7] Mahdi Jafari Siavoshani , Farzad Parvaresh , Ali Pourmiri , and

Seyed Pooya Shariatpanahi, “Coded Load Balancing in Cache

Networks”, IEEE Transactions On Parallel And Distributed

Systems, Vol. 31, No. 2, February 2020.

[8] Guoxin Liu, Haiying Shen, and Haoyu Wang, “Towards Long-

View Computing Load Balancing in Cluster Storage Systems”,

IEEE Transactions on Parallel and Distributed Systems, Vol. 28,

No. 6, June 2017.

[9] Jonatha Anselmi and Josu Doncel, “Asymptotically Optimal

Size-Interval Task Assignments”, IEEE Transactions on Parallel

and Distributed Systems, Vol. 30, No. 11, November 2019.

[10] Juan Luis Jimenez Laredo, Frederic Guinand, Damien Olivier,

and Pascal Bouvry, “Load Balancing at the Edge of Chaos: How

Self-Organized Criticality Can Lead to Energy-Efficient

Computing”, IEEE Transactions on Parallel and Distributed

Systems, Vol. 28, No. 2, February 2017.

[11] Qiong Chen, Zimu Zheng, Chuang Hu, Dan Wang, and

Fangming Liu, “On-Edge Multi-Task Transfer Learning: Model

and Practice with Data-Driven Task Allocation”, IEEE

Transactions On Parallel And Distributed Systems, Vol. 31, No.

6, June 2020.

[12] Wenzhong Guo, Jie Li, Guolong Chen, Yuzhen Niu, and

Chengyu Chen, “A PSO-Optimized Real-Time Fault-Tolerant

Task Allocation Algorithm in Wireless Sensor Networks”, IEEE

Transactions On Parallel And Distributed Systems, Vol. 26, No.

12, December 2015.

[13] Ashraf Suyyagh and Zeljko Zilic, “Energy and Task-Aware

Partitioning on Single-ISA Clustered Heterogeneous

Processors”, IEEE Transactions on Parallel and Distributed

Systems, Vol. 31, No. 2, February 2020.

[14] Pingpeng Yuan, Changfeng Xie, Ling Liu, and Hai Jin,

“PathGraph: A Path Centric Graph Processing System”, IEEE

Transactions on Parallel and Distributed Systems, Vol. 27, No.

10, October 2016.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

DOI: https://doi.org/10.17762/ijritcc.v11i2.6110

Article Received: 14 December 2022 Revised: 14 January 2023 Accepted: 22 January 2023

64

IJRITCC | February 2023, Available @ http://www.ijritcc.org

Figure 1. Scheduling tasks using a cloud computing-based processing model

http://www.ijritcc.org/

