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Abstract—The process of creating and selecting features from raw data to enhance the accuracy of machine learning models is referred to as 

feature engineering. In the context of real-time data streams, feature engineering becomes particularly important because the data is constantly 

changing and the model must be able to adapt quickly. A case study of using feature engineering in a flight information system is described in 

this paper. We used feature engineering to improve the performance of machine learning classifiers for predicting flight delays and describe 

various techniques for extracting and constructing features from the raw data, including time-based features, trend-based features, and error-

based features. Before applying these techniques, we applied feature pre-processing techniques, including the CTAO algorithm for feature pre-

processing, followed by the SCSO (Sand cat swarm optimization) algorithm for feature extraction and the Enhanced harmony search for feature 

optimization. The resultant feature set contained the 9 most relevant features for deciding whether a flight would be delayed or not. Additionally, 

we evaluate the performance of various classifiers using these engineered features and contrast the results with those obtained using raw 

features. The results show that feature engineering significantly improves the performance of the classifiers and allows for more accurate 

prediction of flight delays in real-time. 
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I.  INTRODUCTION 

Creating new features from raw data is a vital aspect in the 

machine learning workflow, by this way the performance of the 

models can be optimized. In the context of real-time data 

streams, where the data is constantly changing and the model 

must be able to adapt quickly, feature engineering becomes 

especially important. Recent research has focused on various 

techniques for extracting and constructing features from raw 

data, including time-based features, trend-based features, and 

error-based features [1] [2] [3]. These techniques have been 

applied to a variety of real-time data streams, including flight 

information systems, financial markets, and social media 

networks [4] [5] [6]. 

The use of feature engineering in machine learning 

classifiers for real-time data streams has been shown to 

significantly improve the performance of the classifiers and 

enable more accurate prediction of events such as flight delays 

and stock price movements [4] [5]. For example, in a study of a 

flight information system, the authors used feature engineering 

to improve the performance of machine learning classifiers for 

predicting flight delays [4].  

Feature engineering is a critical step in machine learning, it 

is the process of creating new information from raw data that 

can be used to train a model [7]. A variety of techniques can be 

used for feature engineering, such as time-based, trend-based 

and error-based. In [8] it was demonstrated that by using 

engineered features, the performance of classifiers was 

significantly improved and the prediction of flight delays in 

real-time was more accurate when compared to results obtained 

from raw features only. 

It is common practice in streaming data to first optimize and 

engineer features before utilizing data mining algorithms as it 

can lead to better performance. In the context of flight data, 

selecting relevant features is a crucial method in machine 

learning and data mining. By reducing the dataset through 
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feature selection, important information can be obtained and the 

performance of the classifier model can be enhanced. Feature 

selection algorithms can be divided into two types: filter models 

and wrapper models. Filter models use general characteristics 

of the data to choose features without the involvement of a 

learning algorithm. On the other hand, wrapper models use the 

performance of a pre-determined learning algorithm to evaluate 

and decide which features to select. Wrapper models tend to 

identify features that are better suited to the pre-determined 

algorithm and result in better learning performance, but they 

also tend to be more computationally expensive than filter 

models. In situations where the number of features is very high, 

filter models are often preferred due to their computational 

efficiency. 

In summary, feature engineering plays a crucial role in 

machine learning for real-time data streams. Using appropriate 

feature engineering techniques can significantly enhance the 

performance of machine learning models and increase the 

accuracy of event prediction. 

II. RELATED WORKS 

Khan and Byun [11] proposed a method for predicting 

energy consumption that combines feature engineering, using a 

genetic algorithm to optimize feature selection, and hybrid 

machine learning. The approach is evaluated on a dataset of 

energy consumption data from a building and shown to 

significantly improve prediction accuracy compared to using 

raw features and a single machine learning model. Potential 

research gaps include the need for further investigation of 

hybrid machine learning models and the adaptation of the 

approach to other types of energy consumption data. 

A study by Chia et al. [12] found that the combination of 

machine learning and feature engineering is effective in 

classifying sarcasm and irony in social media texts and 

detecting cyberbullying. The research process involves creating 

new features from raw data and using machine learning 

algorithms to classify the texts. The results showed that the 

approach was successful in classifying sarcasm and irony and 

had high precision and recall rates for detecting cyberbullying. 

However, there is potential for further research to explore other 

machine learning algorithms, and to apply the approach to other 

languages and domains. 

Ledezma et al. [13] proposed a method for detecting 

ischemia using ECG data. The method involves generating 

synthetic ECG data using a mathematical model and applying 

machine learning algorithms to classify the real and synthetic 

data as normal or abnormal. The authors extract features from 

the ECG data using statistical and frequency domain analysis 

techniques and evaluate the performance of their method using 

a dataset of ECG data from patients with and without ischemia. 

The combination of modeling and machine learning is found to 

be effective for detecting ischemia and potential research gaps 

include further investigation of the use of synthetic ECG data 

and the application of the method to other cardiovascular 

diseases. 

Chen et al. [14] presented a software platform called 

"iLearn" for analyzing DNA, RNA, and protein sequence data 

using machine learning. The platform includes tools for feature 

engineering and a meta-learner that can automatically select 

machine learning algorithms. The authors apply iLearn to 

various sequence datasets and find it performs well in terms of 

accuracy and efficiency, and is able to automatically select the 

best algorithms for the datasets. Potential research gaps include 

further investigation of iLearn on larger and more complex 

datasets and the extension of the platform to other types of 

biological data. 

Kasongo and Sun [15] presented a method for detecting 

intrusions in wireless networks using deep learning and filter-

based feature engineering. The method involves extracting 

relevant features from raw data using statistical analysis and 

using the filtered features as input to a deep learning model. The 

combination of filter-based feature engineering and deep 

learning is found to outperform other methods in terms of 

accuracy and speed on a dataset of network data from a real-

world wireless network. Potential research gaps include further 

investigation of the use of deep learning for intrusion detection 

in other types of networks and the adaptation of the approach to 

other types of cyber-attacks. 

Fan et al. [16] presented an overview of how deep learning 

can be used to improve building energy prediction. The authors 

review several feature engineering methods based on deep 

learning and compare their performance in predicting building 

energy consumption. The results show that these methods can 

significantly improve prediction accuracy compared to 

traditional methods. However, the authors also point out some 

limitations and areas for further research, including the need for 

more diverse and representative datasets, the development of 

more robust and adaptive models, and the integration of these 

models with other building systems and controls. 

In a study by Ullah et al. [17], a deep learning approach for 

recognizing actions in surveillance data streams from non-

constant environments was proposed. The authors introduced a 

hybrid model that merges an optimized deep autoencoder with 

a convolutional neural network (CNN) to extract features from 

the data and classify actions. They used an evolutionary 

algorithm to find the best architecture and hyperparameters for 

the autoencoder. The proposed model was evaluated on several 

action recognition datasets and compared to other state-of-the-

art methods. The results showed that the hybrid model 

performed well and was able to handle non-constant 

environments, where the distribution of actions may change 

over time. However, the authors also pointed out some 
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limitations of the current approach and suggested directions for 

future work, such as improving the robustness of the model to 

variations in camera views and lighting conditions and 

integrating the model with other sensors and modalities. 

Demir et al. [18] examined the use of technical indicators as 

supplementary features for electricity price forecasting using 

machine learning models. They compared the performance of 

linear, ensemble, and deep learning models with and without 

technical indicators. The research was conducted on a real-

world dataset of electricity prices, and the results indicate that 

incorporating technical indicators can improve the accuracy of 

the forecasts for all three types of models. However, the authors 

also emphasized that the results are influenced by the specific 

indicators used and how they are combined, and more research 

is required to identify the most useful indicators and how to 

properly include them in the models. In addition, the authors 

suggest that future research should investigate the use of more 

advanced machine learning techniques, such as deep learning, 

for this application. 

Li et al. [19] developed a new approach for creating features 

from surface electromyography (sEMG) data for machine 

learning. They proposed a hybrid method that combines wavelet 

transformation and empirical mode decomposition (EMD) to 

divide the sEMG signals into different frequency bands and 

extract the intrinsic mode functions (IMFs). The IMFs were 

then used as features for classification using support vector 

machines (SVMs). The proposed method was evaluated on a 

dataset of sEMG signals collected from the brains of healthy 

subjects, and the results indicated that it outperforms other 

feature extraction methods in terms of classification accuracy. 

The authors also acknowledged some limitations of the current 

approach and suggested directions for future work, such as 

applying the method to other sEMG applications and using deep 

learning techniques to enhance the performance of the 

classifier. 

The current level of machine learning for streaming data 

was reviewed by Gomes et al. [20] with an emphasis on the 

opportunities and challenges present in this area. The authors 

review the different types of machine learning algorithms that 

have been applied to streaming data, as well as the various 

architectures and systems that have been developed to support 

their execution. They also discuss the main challenges that arise 

when working with streaming data, such as the need for 

efficient and scalable algorithms, the handling of concept drift 

and non-stationarity, and the integration of streaming data with 

other sources of information. The authors conclude by 

identifying several directions for future research, including the 

development of new algorithms and systems that can better 

exploit the properties of streaming data, the investigation of new 

applications and domains where machine learning can be used 

with streaming data, and the exploration of novel techniques for 

assessing how well machine learning models perform on 

streaming data. 

Zheng et al. [21] presented an ensemble learning method 

that combined the results of multiple feature selection methods 

using the Dempster-Shafer theory of evidence to improve 

feature selection performance. The authors proposed this 

approach to tackle the challenge of high dimensionality of the 

feature space and presence of noisy and irrelevant features, 

which are common issues in many machine learning 

applications. The approach was evaluated on several 

benchmark datasets and was found to have outperformed other 

feature selection approaches regards of classification accuracy. 

Overall, this was a good contribution to the field of feature 

selection as it demonstrated how ensemble learning can be used 

to improve feature selection by integrating multiple feature 

subsets obtained from different feature selection algorithms. 

Yuan et al. [22] introduced a technique to handle feature 

drift in data streams, which happens when the characteristics of 

the data change over time. They suggested an iterative subset 

selection method that uses a sliding window to select a subset 

of features that are most relevant to the current concept in the 

data stream, this way it can update the feature subset in real-

time as the concept changes. The method was tested on several 

datasets and was found to be better than other state-of-the-art 

methods in terms of classification accuracy and adaptability to 

changes in the concept. The study made a significant 

contribution to the field by addressing the issue of feature drift 

in data streams and proposing a method that uses a sliding 

window to select a subset of features that are most relevant to 

the current concept in the data stream. 

III. PROBLEM STATEMENT 

Accurate prediction of flight delays is important for 

optimizing the operation of a flight information system and 

minimizing the impact on passengers. However, real-time data 

streams, such as flight information data, are constantly 

changing and traditional machine learning models may not be 

able to adapt quickly enough to accurately predict flight delays. 

The process of creating new features from raw data, known as 

feature engineering, can potentially enhance the accuracy of 

predicting flight delays in real-time data streams. The objective 

of this case study is to examine the impact of feature 

engineering on machine learning classifiers for real-time data 

streams, by using a flight information system as a case in point. 

IV. RESEARCH OBJECTIVE 

1. To investigate the potential of reducing computational 

power and memory requirements in data stream 

processing by using selective features through the 

implementation of feature selection techniques. 
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2. The objective of this study is to investigate the effect of 

specific features on the time needed for learning in real-

time data streams, and to evaluate the possibility of 

feature selection techniques to accelerate decision-

making in data stream analytics. 

V. PROPOSED SYSTEM ARCHITECTURE 

The proposed system architecture involves a pipeline that 

processes streaming data, starting with the original feature set. 

The first step involves applying a CTAO (Clustering, Tracking, 

and Online Learning) algorithm to the original feature set. The 

model is updated as new data is received using this approach, 

which is also used to find patterns and relationships in the data. 

The second step involves cleaning and preparing the data for 

feature engineering. This includes removing outliers, 

normalizing the data, and filling in missing values. The next 

step is Context Extraction for Extended information retrieval. 

This step involves extracting additional information from the 

data, such as context or metadata, that is used to optimize the 

accuracy of the model or to offer additional insights. Final step 

in the pipeline is to keep Data ready, where the processed data 

would be ready for feature engineering. 

 
Figure 1. Making Features ready to work on for streaming data 

 

 
Figure 2: The Feature Engineering process for streaming data 

 

This Feature Engineering process for streaming data 

involves following steps to extract the most relevant and useful 

features from the streaming data as shown in the above figure 

2.  

• The process starts with streaming data after feature pre-

processing, where the data has been cleaned and 

prepared for further analysis. 

• Features relevancy Check (by using SCSO - Sand Cat 

Swarm Optimization): This step includes using an 

algorithm such as Sand Cat Swarm Optimization (SCSO) 

to determine the relevance of each feature in the dataset. 

This can help identify which features are most crucial for 

the specific task or problem being addressed. 

• Most relevant subset of features (by using EHS - 

Extended Harmony Search): This step includes using an 

algorithm such as Extended Harmony Search (EHS) to 

select the most important subset of features from the 

dataset. This can help identify the optimal subset of 

features that will provide the best performance for the 

specific task or problem. 

• Redundancy removal: This step includes removing any 

redundant or highly correlated features from the dataset. 

This can help to reduce noise and improve the 

performance of the model.  

• Final selected pruned feature subset: The final step is to 

choose a pruned feature subset, which is a subset of the 

most important and non-redundant features. This subset 

of features is expected to be most informative and useful 

for the task or problem being addressed. 

VI. ALGORITHM USED 

Algorithm 1: 

function SCSO (population_size, max_iterations)  

// Initialization cats = 

initialize_population(population_size) 

• Initialization: A population of sand cats is randomly 

generated and each cat is assigned a position in the search 

space. 

• Evaluation: The fitness of each cat is evaluated by 

evaluating the objective function at its current position. 

• Movement: Each cat in the population moves to a new 

position in the search space. 

• Selection: The cats with the highest fitness values are 

selected as parents to generate the next generation of cats. 

• Crossover: The parents are combined to generate new 

offspring. 

• Mutation: A small random perturbation is applied to the 

position of each offspring. 

• Replacement: The worst cats in the population are 

replaced with the offspring 

• Return the best solution: The final step is to return the best 

solution, which is the cat with the highest fitness value. 

end function 
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Algorithm 2: 

function EHS (population_size, max_iterations, 

harmony_memory_size) 

    // Initialization 

    harmony_memory = 

initialize_harmony_memory(harmony_memory_size) 

• Initialization: A harmony memory is initialized with a 

set of randomly generated harmonies. 

• Harmony Memory Updating: A new harmony is 

generated by using the harmonies already in the 

memory. 

• Evaluation: The fitness of the new harmony is 

evaluated. 

• Harmony Memory Updating: If the harmony memory 

is full, the worst harmony is removed and the new 

harmony is added to the memory. 

• Repeat from step 2: A defined number of iterations or 

until a stopping criterion is satisfied determines how 

many times a new harmony is created, evaluated for 

fitness, and added to the harmony memory. 

• Return the best solution: The final step is to return the 

best solution, which is the harmony with the highest 

fitness value. The subset of features in this solution 

that are the most pertinent to the data set as a whole. 

end function 

VII. DATASET DESCRIPTION 

This research used a real-time flight data collected from 

opensky.org. It contains data for 583987 flights, with each flight 

represented by a row in the dataset. The dataset originally had 

17 features, which include information such as flight number, 

origin and destination airport, and flight status. In order to 

extract more context-sensitive information, we have generated 

some hierarchical features from the baseline features. This 

means that we have used the original features to create new 

features that provide additional insights or context. These new 

features are called extended features. As a result, the dataset 

used here are 27 features in total, 17 original features and 10 

extended features. The extended features are hierarchical 

features, which means that they are built on top of the original 

features. These additional features can provide more context-

sensitive information and can be useful for feature engineering 

tasks such as feature selection, feature reduction or feature 

extraction. It's important to remember that feature engineering 

is the act of developing features that improve the performance 

of machine learning algorithms by utilising domain knowledge 

of the data. So, in order to make the dataset more informative 

and relevant for the specific task or problem being solved, the 

extended features in this dataset were produced based on 

domain knowledge of the data.  

VIII. IMPLEMENTATION 

All the experiments were run on the system that has enough 

computational power and memory 11th generation Intel Core 

i5-11300H processor with a clock speed of 3.10GHz and 16GB 

of memory has been used. MOA and SKlearn are the software 

frameworks used to perform the experiments, with MOA being 

used for stream learning classifiers.  

The problem being described is a binary classification 

problem in which the goal is to classify flights as either delayed 

(class 1) or not delayed (class 0) based on real-time flight data. 

The challenge in this problem is the need to train classifiers that 

can effectively deal with the dynamic and unpredictable nature 

of the flight data, which may be affected by a variety of factors 

such as weather, air traffic, and mechanical issues. 

 

Table 1: Performance of classifiers with evaluation parameters 

SI. No. 
Component to be 

evaluated 
Criteria Evaluation Parameters 

1 Performance of 

Classifiers 

Accuracy Train accuracy, Test 

Accuracy, Recall , Precision 

F1- score 

2 Time Taken by 

classifiers 

Computational 

Time  

Time (hh:mm:ss:ms) 

3 Storage capacity Memory  Memory consumed 

 

IX. RESULTS 

Table 2: Test and Train accuracies before and after applying feature 

Engineering 

SI. No Classifiers 

After Feature 

Engineering 

Before Feature 

Engineering 

Train 

Accuracy 

Test 

Accuracy 

Train 

Accuracy 

Test 

Accuracy 

1 Hoeffding Tree 0.776267 0.776267 0.592380 0.497055 

2 VFDT 0.762533 0.725566 0.619857 0.500055 

3 Naïve Bayes 0.666043 0.6616496 0.537857 0.498277 

4 Random Forest 0.958620 0.953488 0.509411 0.504332 

5 Adaptive Classifier 

Ensemble 

0.8239645 0.7928377 0.865619 0.499388 

 

 
Figure 3: Train and Test Accuracies for Real time Flight Data after Feature 

engineering applied 
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Figure 4: Train and Test Accuracies for Real time Flight Data without Feature 

Engineering 

 

Table 3: Recall and Precision before and after applying feature Engineering 

SI.No. Classifier 

After Feature 

Engineering 
Before Feature Engineering 

Recall Precision Recall Precision 

1 Hoeffding Tree 0.651298 0.859006 0.486438 0.500908 

2 VFDT 0.59762 0.802779 0.601984 0.502392 

3 Naïve Bayes 0.650605 0.664442 0.493274 0.502132 

4 Random Forest 0.744093 0.825469 0.492833 0.497440 

 

  
(a) 

 
(b) 

Figure 5: (a) Recall and Precision before applying feature Engineering,  

(b) Recall and Precision after applying feature Engineering 

Table 4: Time and Memory Analysis: 

SI. No. Parameter 
Before Feature 

Engineering 

After Feature 

Engineering 

1 Time (hh: mm: sec: 

ms) 

0:13:06.553095 0:03:46.055386 

2 Memory (mb) 98 mb 12 mb 

 

As per the results, the use of feature engineering 

significantly reduced the time it took to execute the process. The 

difference between the time taken before and after feature 

engineering is roughly 9 minutes and 20 seconds. Additionally, 

it is observed that feature engineering also reduced the amount 

of memory used during the process. This means that feature 

engineering was able to extract more relevant information from 

the data and/or reduce the dimensionality of the data, which in 

turn led to a more efficient execution of the process. 

X. CONCLUSION 

A case study of using feature engineering to improve the 

performance of machine learning classifiers for predicting flight 

delays in a real-time flight information system is presented in 

this paper. We described various techniques for extracting and 

constructing features from the raw data, including time-based 

features, trend-based features, and error-based features. 

Additionally, we applied feature pre-processing techniques, 

such as the CTAO algorithm, followed by the SCSO algorithm 

for feature extraction and the Enhanced harmony search for 

feature optimization. The resulting feature set contained the 9 

most relevant features for deciding whether a flight would be 

delayed or not. Furthermore, the performance of different 

classifiers using these engineered features was evaluated and 

compared to the results obtained using raw features. The results 

showed that feature engineering significantly improves the 

performance of the classifiers and allows for more accurate 

prediction of flight delays in real-time. This case study 

emphasises the significance of feature engineering for real-time 

data streams in machine learning and its potential to enhance 

the effectiveness of prediction models. 

XI. FUTURE WORKS 

By expanding the current knowledge and understanding of 

the proposed work, the overall performance of the present 

research can be improved. There are many potential future 

enhancements can be considered.  

• One potential future research direction is “seed pool of 

learners” a technique in which a set of different machine 

learning models are trained on the same dataset, and the 

best performing model is selected for further use. This 

technique can help to improve the robustness and 

accuracy of our predictions, as it allows for a comparison 

of multiple models on the same dataset.  

• Another potential direction is to use other feature 

selection and extraction techniques, such as principal 
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component analysis (PCA) and mutual information, to 

identify the most relevant features for flight delay 

prediction. By testing different feature selection 

methods, we can evaluate the effectiveness of each 

technique in terms of the performance of the classifiers.  

• Incorporating more real-time data into the system, such 

as weather data, could help to improve the accuracy of 

the predictions. By using external data sources, we can 

include more variables that may affect flight delays, such 

as wind speed and visibility.  

• Another potential way to improve accuracy is by 

incorporating more sophisticated feature engineering 

techniques such as deep learning-based feature 

extraction, and testing the performance of these features 

on the classifiers. This could be a promising approach as 

deep learning has proven to be effective in 

feature extraction. 
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