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Abstract — Interactive and Backtracking applications often require undoing certain recent operations and updates made to the underlying 

data structures. The concept of dancing links has made such reverting operations easier and efficient by repeatedly performing unlinking and 

re-linking of pointers in complex data structures involving circular multiply linked lists. This paper extends the idea of dancing links to XOR 

linked lists, the memory efficient counterpart of doubly linked lists to develop XDLX, a more space efficient algorithm than DLX to solve 

exact cover problems without compromising the timing efficiency. Owing to the NP-Complete nature of the exact cover problem, any NP-

complete problem can be reduced to it and solved using the proposed memory-efficient dancing links based algorithm, XDLX. The algorithm 

can be effectively used to solve any backtracking application and will prove to be a significant contribution towards the programming of 

memory-constrained environments such as embedded systems. 
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I.  INTRODUCTION 

Interactive and Backtracking applications often require 

undoing certain recent operations and updates made to the 

underlying data structures. Any technique that can efficiently 

perform such revert operations has been a topic of interest for 

researchers. An exact cover problem is a right choice for those 

intended to address such issues in backtracking applications. An 

exact cover problem is a decision problem that determines if 

there exists a subcollection of the subsets of a Universal set such 

that each element in the Universal set appears in exactly one 

subset of the subcollection.  It is NP-Complete [1] and hence 

any NP-Complete problem can be reduced to exact cover 

problem [2] and solved using the same techniques used for 

solving exact cover problem.   

Efficiency of an algorithm to solve a backtracking problem 

depends on how the search space is narrowed down and how 

the decision controlling data is maintained internally [3].  

 

Maintaining a stack to store the state information for every call, 

is time consuming as it requires copying the entire state at each 

stage.  

Hence it is better to employ global data structures that are 

updated for every recursive call and restored to a former state 

after returning from the corresponding recursive call. This paper 

focuses on developing a more efficient strategy than what is 

available till date, to employ and update such global data 

structures to solve exact cover problem.  A new algorithm 

XDLX has been devised which is an enhancement of the 

renowned algorithm DLX that applies the concept of dancing 

links to solve exact cover problem. The rest of the paper is 

organized as follows. Section 2 discusses related works in this 

area. Section 3 expounds the implementation of proposed 

algorithm, XDLX and presents the experimental results. Section 

4 draws conclusions. 
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II. RELATED WORK 

A. Algorithm X 

Algorithm X proposed by Knuth [4] uses a matrix to 

represent the exact cover problem. Elements of the Universal 

set form the columns and the individual subsets constitute the 

rows of the matrix. [Fig. 1] shows a matrix representation of an 

exact cover problem with 6 subsets and 7 elements in the 

Universal set.If a subset contains a few elements of the 

Universal set, only the corresponding column entries of that row 

are marked 1 and others are marked 0.  The objective of the 

algorithm is to find out a set of rows that contribute to exactly 

one 1 in each column.  

[
 
 
 
 
 
0 0 1 0 1 1 0
1 0 0 1 0 0 1
0 1 1 0 0 1 0
1 0 0 1 0 0 0
0 1 0 0 0 0 1
0 0 0 1 1 0 1]

 
 
 
 
 

 

Figure 1  Matrix Representation of a sample exact cover problem 

 

Algorithm X includes the following steps.  

1. If the matrix A has no more columns, the current 

partial solution is the valid  solution and hence 

terminate  

2. Else select a column, c (deterministically). 

3. Select a row, r, such that A[r, c] = 1 

(nondeterministically). 

4. Include r in the partial solution. 

5. for each column j where A[r, j] = 1,  

for each i where  A[i, j] = 1, 

delete row i from matrix A.  

delete column j from matrix A;  

6. Recursively repeat this algorithm on the reduced 

matrix A. 

 

It is clear that the algorithm performs deletion of rows and 

columns upon choosing a particular row for its inclusion in the 

partial solution. All these deletion operations should be reverted 

or backtracked, if the choice is found to be a wrong guess and 

the matrix has to be brought back to its previous state. 

B. Dancing Links 

As linked lists are a better choice for frequent insertions and 

deletions as opposed to arrays, a linked representation, with as 

many number of nodes as there are 1s in the matrix, is more 

efficient than an array representation in terms of both space and 

time complexity, for exact cover problems which are usually 

sparse. Hence Knuth employs circular multiply linked lists to 

implement the algorithm and calls it DLX. In his algorithm, he 

uses dancing links to efficiently solve exact cover problem.  

[Fig.2a] represents a node x in a doubly linked list with L(x) 

and R(x) as its predecessor and successor respectively.  Deletion 

of the node x can be done using the following two steps. 

R(L(x))R(x) and L(R(x))L(x)                     (1) 

 
Figure 2a   Node x, in a Doubly Linked List with its Predecessor L(x) 

and Successor R(x) 

 

 
 

 
Figure 2b   Retainment of address of node x’s predecessor and 

successor, even after its deletion 

 

From [Fig. 2b], it is clear that the node x even after getting 

detached from the list retains the address of its predecessor and 

successor nodes, unless it is made to change explicitly. This 

property helps to reinsert a deleted node in its original position 

in the list using the operations mentioned in (2).  

R(L(x))x and L(R(x))x                 (2) 

 

For this to happen, only the value of x should be kept in track 

and backtracking applications do this with no additional efforts. 

Steps 1 and 2 can be applied repeatedly to backtrack until a state 

is reached from where the algorithm can proceed forward again 

in another path. This kind of repeated unlinking and relinking 

of the nodes gives a feel as though the links in the global data 

structure are dancing gracefully; hence the two steps are 

identified as the technique of dancing links. The same technique 

was followed [5] to solve Dijkstra’s algorithm [6] for N-Queens 
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problem which was twice faster than when solved with previous 

techniques. 

C. Algorithm DLX 

Algorithm Knuth names the algorithm X implemented using 

dancing links as algorithm DLX [4]. An individual node x is 

created for each 1 in the matrix and consists of five members – 

L(x), R(x), U(x), D(x) and C(x). L(x) and R(x) point to the row 

wise predecessor and successor of the node x; U(x) and D(x) 

point to the column wise predecessor and successor of x. Such 

an interlinking makes the rows and columns appear to be 

individual circular multiply linked lists forming a torus. Apart 

from these data nodes, each column wise multiply linked list 

also contains another node called the column node, y with the 

following four members similar to a data node – L(y), R(y), 

U(y), D(y) and C(y) and two additional members – S(y) (“size” 

storing the number of 1s in that column) and N(y) (“Name” for 

identifying the individual columns). The member C of each 

node points to the column node of the corresponding column. A 

special node namely the head node serves as the root node for 

the entire structure and using its L(h) and R(h) it is linked to 

multiply linked list containing the column nodes. Other 

members of head node are not used. 

Algorithm DLX is designed as a recursive function 

search(k), which is called initially by passing 0 for k. 

If R[h] = h, print the current solution and return. 

Otherwise choose a column node, c. 

Cover column c 

For each r ← D(c), D( D(c)) , . . . , while r ≠ c, 

set O[k] ← r; 

for each j ← R(r), R(R(r)) , . . . , while j ≠ r, 

cover column j ; 

search(k + 1); 

set r ← O[k] and c ← C(r); 

for each j ← L(r), L (L(r)) , . . . , while j ≠r, 

uncover column j . 

Uncover column c and return 

 

Only those refinements to the algorithm that bring notable 

improvement in speed are worth the effort [7]. Hence at each 

stage of the recursive function, a column node c, with the least 

number of 1s is chosen as it may lead to the fewest branches for 

exploration. This is according to the suggestion by Golomb and 

Baumert [8] to select a subproblem that results in the least 

number of branches, at every stage of the recursive call.  

Final solution is displayed by printing the rows stored in 

O[0], O[1], . . . , O[k−1], where for each row O, N(C(O)) , 

N(C(R(O))) , N(C(R(R(O)))) ,….. are also printed. 

Module:  Cover(c) 

It first unlinks c from the column header list and then 

unlinks all the rows of c from the other column wise lists they 

are in.  

Set L (R(c)) ← L(c) and R (L(c)) ← R(c). 

for each i ← D(c), D( D(c)) , . . . , while i ≠ c, 

for each j ← R(i), R(R(i)) , . . . , while j ≠ i,  

set U(D(j)) ← U(j), D(U(j)) ← D(j),  

and 

set S(C(j)) ← S(C(j)) − 1 

 

Module: UnCover(c) 

Uncovering should take place in the reverse order of the  

cover operation. 

for each i = U(c), U(U(c)) , . . . , while i ≠ c, 

for each j ← L(i), L(L(i)), . . . , while j ≠ i,  

set S(C(j)) ← S(C(j)) + 1, and  

set U(D(j)) ← j, D(U(j))← j. 

set L(R(c)) ← c and R(L(c)) ← c 

 

The concept of dancing links can also be applied to obtain 

all possible solutions for a wide range of backtracking 

applications including Sudoku [9], N-Queens problem, 

Pentomino puzzle solving and so on.  Application of dancing 

links to N-Queens problem has been visualized to promote its 

widespread usage [10]. Moreover the algorithm runs much 

faster for large problems. But the drawback of algorithm DLX 

is that it uses circular multiply linked lists throughout in which 

every node stores 2 addresses each (of predecessor and 

successor) for the horizontal and vertical directions. A new data 

structure tailored to suit the problem to be solved will increase 

computational speed [11]. Building on this idea, DLX algorithm 

can be made more space efficient if the number of addresses 

(pointers) stored for each node is reduced. 

III. PROPOSED ALGORITHM 

As a step towards formulating a memory-efficient solution, 

an XOR list is used in which each node x, instead of storing the 

four pointers L(x), R(x), U(x) and D(x), stores only 2 pointers 

namely H(x) and V(x), the pointer difference of its predecessor 

and successor addresses in the horizontal and vertical directions 

respectively, where the pointer difference is calculated using 

XOR operator. 

A. Algorithm XDLX 

1) Revisiting the concept of Xor Linked Lists 

Properties of an exclusive-OR (in short, XOR) operator [12] 

denoted by ‘^’ are as follows. 

i) A^A=0 

ii) A^0=A 

iii) A^B=B^A 

iv) (A^B)^C=A^(B^C) 

http://www.ijritcc.org/
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This paper focuses on constructing dancing links using XOR 

lists and as specified each node x, stores only two pointers, H(x) 

and V(x) in additionto the usual members C(x), N(x), S(x), and 

an extra member ‘num’ to hold the row number of the node.  

H(x)=ptr to predecessor ^ ptr to successor in the horizontal 

direction 

   V(x)=ptr to predecessor ^ ptr to successor in the vertical 

direction  

With this, the space requirement of each node is reduced to 

half of what is required for a node defined in DLX algorithm. A 

sample representation of XOR list with nodes connected both 

vertically and horizontally is given in [Fig. 3]. Consider node 

B2. It stores the XOR result of B1 and B3 in V(B2) and that of A2 

and C2 in H(B2). If the list traversal should start from node B2, 

movement in all four directions is as follows. 

Upward: 

      B3 ^ V(B2) = B3 ^ (B1 ^ B3) = B1 

Downward: 

B1 ^ V(B2) = B1 ^ (B1 ^ B3) = B3 

Rightward: 

A2 ^ H(B2) = A2 ^ (A2 ^ C2) = C2 

Leftward: 

C2 ^ H(B2) = C2 ^ (A2 ^ C2) = A2 

 

Similarly if node B2 is deleted, the H and V pointers of its 

4 neighbouring nodes B1, B3, A2 and C2 are modified 

accordingly. 

 

 
Figure 3 A sample XOR Linked List with nodes connected both 

vertically and horizontally 

 

It is apparent that these operations require the addresses of 

the predecessor nodes also to be kept in track along with the 

XOR results stored in H and V pointers. This will make the 

space requirement of the XOR list to be equivalent to that of a 

multiply linked list and hence there will not be any additional 

benefit by employing an XOR list. Hence the proposed 

algorithm aims to retrieve, for any node, its predecessor’s 

address but without having to store it. 

2) Modules Description 

The idea is to use the following pointers in addition to the 2 

XOR differences stored at each node - a pointer named ‘last’ 

that points to the last column node; 3 arrays of pointers namely 

rows[ ]  pointing to the first node of each row, last_in_row[ ] 

pointing to the last data node of each row and vlast[ ] pointing 

to the last data node of each column. [Fig. 4] depicts the 

resulting data structure for the sample matrix given in [Fig. 1]. 

With such a data structure, the DLX Algorithm has to be 

redefined to what can be called as XDLX (Algorithm X 

implemented using XOR-based dancing links) and its various 

modules are as follows. 

 

Traverse nodes in the Horizontal direction  

If current points to the node where we are at present and 

prevpoints to the node to its left, then prev and current can be 

made to move one step ahead in the horizontal direction as 

follows. 

Module:  move_horizontal(prev,current)  

                next=H(current) ^ prev 

                prev=current 

                current=next 

 

 
Figure 4 XOR Representation of the matrix given in Figure 1 
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Traverse nodes in the Vertical direction  

If current points to the node where we are at present and 

prevpoints to the node above it, then prev and current can be 

made to move one step ahead in the vertical direction as follows. 

Module:   move_vertical(prev,current)  

                       next = V(current) ^ prev 

                       prev = current 

                       current = next 

 

Retrieve the last node in a particular column 

Address of the last node of the column represented by 

column node c can be retrieved by traversing through the vlast[ 

] array. 

Module: get_vlast_of_c(c)                        

   i=0 

   while (N(C(vlast[i])) ≠ N(c) and i<colindex) 

          i=i+1 

return (i) 

 

Cover  

It unlinks c from the column header list and then unlinks all 

the rows of c from the other column wise lists they are in. 

Unlinking happens by modifying the XOR differences stored in 

the predecessor and successor of the node to be unlinked. Let 

prev_prev, prev, x, succ, succ_succ be few consecutive nodes 

connected horizontally in an XOR list. The XDLX algorithm 

works to manipulate addresses in H(prev) and H(succ) before 

and after deletion of x as given in (3) and (4). 

Before deletion of x: 

H(prev)=prev_prev ^ x and   

H(succ)=succ_succ ^ x                                            (3) 

After deletion of x: 

H(prev)=prev_prev ^ succand 

H(succ)=succ_succ ^ prev                                  (4) 

 

Module: Cover(c) 

begin 

prev=last, current=head  

while(current ≠ c) 

move_horizontal(prev,current) 

prev_prev=H(prev) ^ c 

succ=H(c) ^ prev 

succ_succ=H(succ) ^ c 

H(prev) = prev_prev ^ succ 

H(succ) = succ_succ ^ prev 

if c==last 

last=prev; 

     i=get_vlast_of_c(c)     

     prev1=c 

     current1 = V(prev1) ^ vlast [i] 

while (current1 ≠ c) 

begin 

rowprev=last_in_row[Num(current1)] 

rowcurrent=rows[Num(current1)] 

while(rowcurrent ≠ current1) 

move_horizontal(rowprev, rowcurrent) 

        current1right= H(rowcurrent) ^ rowprev 

while (current1right ≠ current1) 

begin 

vcurrent= C(current1right) 

            i=get_vlast_of_c(c)     

vprev=vlast[i] 

while(vcurrent ≠ current1) 

move_vertical(vprev,vcurrent) 

vsucc= vprev ^ V(current1right) 

vprevprev= V(vprev) ^ current1right 

vsuccsucc=V(vsucc) ^ current1right 

V(vprev) = vprevprev ^ vsucc 

V(vsucc)= vprev ^ vsuccsucc 

S(C(current1right)) = S(C(current1right)) - 1 

if(current1right==vlast[i]) 

vlast[i]=vprev 

move_horizontal(rowcurrent,current1right) 

end 

move_vertical(prev1,current1) 

end 

end 

 

UnCover  

The deleted node retains the XOR difference of the 

addresses of its predecessor and successor. To reinsert the node 

in its original position during the uncover operation, the list has 

to be traversed till two adjacent nodes are identified whose XOR 

difference is equal to the one stored in the deleted node. Then 

the deleted node is reinserted in between those two nodes. 

Reinsertion can be simply done by modifying the XOR 

differences stored in the predecessor and successor of node x.  

 

Module: uncover (c) 

begin 

get_vlast_of_c(c) 

current=vlast[i] 

succ=c 

while(current ≠ c) 

begin 

rowcurrent=last_in_row[Num(vlast[i])] 

rowsucc=rows[Num(vlast[i])] 

move_horizontal(rowsucc,rowcurrent) 

while(rowcurrent ≠ current) 

begin 

            i=get_vlast_of_c(c) 

colcurrent=vlast[i],colsucc=C(rowcurrent) 

http://www.ijritcc.org/
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Xor_diff= colcurrent ^ colsucc 

while(V(rowcurrent) ≠ Xor_diff) 

begin 

move_vertical (colcurrent, colsucc) 

Xor_diff=colcurrent ^ colsucc 

end 

prevprev=V(colcurrent) ^ colsucc 

succsucc= colcurrent ^ V(colsucc) 

V(colcurrent)= rowcurrent ^ prevprev 

V(colsucc)=succsucc ^ rowcurrent 

if(Num(colsucc) <Num(rowcurrent)) 

 vlast[i]=rowcurrent 

            S(C(rowcurrent))=S(C(rowcurrent))+1 

move_horizontal(rowsucc, rowcurrent) 

end 

move_vertical(succ, current) 

end 

prevheader=last,currentheader=head 

Xor_header=prevheader^currentheader 

while(H(c) ≠ Xor_header) 

begin 

move_horizontal (prevheader, currentheader) 

Xor_header= prevheader ^ currentheader 

end 

prevprevheader = H(prevheader) ^ currentheader 

succsuccheader = prevheader ^ H(currentheader) 

H(currentheader) = c ^ succsuccheader 

H(prevheader) = prevprevheader^c 

if(H(c) ^ prevheader==head)                           

last=c 

end 

 

Search  

It is a recursive procedure which repeatedly calls itself till 

the list becomes empty.  

Module: search(k) 

begin 

if(head = last) 

print the solution containing all the rows  

starting with           

          O[m]  where m=0,1,…k and return. 

choose a column object c, which is usually the  

column with minimum number of ones 

cover(c) 

      i=get_vlast_of(c) 

prev=vlast[i] 

      r = V(c) ^ vlast[i] 

prev=c 

while (r ≠ c) 

begin 

            O[k]=r; 

 rowcurrent=rows[Num(r)] 

rowprev=last_in_row[Num(r)] 

 while(rowcurrent ≠  r) 

move_horizontal(rowprev, rowcurrent) 

            j = H(rowcurrent) ^ rowprev 

 rowprev=rowcurrent 

while (j ≠ r)  

begin 

  cover(C(j)) 

move_horizontal(rowprev,j) 

end 

search(k + 1) 

         r = O[k] 

         c = C(r) 

 backcurrent = last_in_row[Num(r)] 

 backprev=rows[Num(r)] 

 while(backcurrent ≠ r) 

move_horizontal (backprev, backcurrent) 

            j= H(backcurrent) ^ backprev) 

backprev=backcurrent 

while (j ≠ r) 

begin 

 uncover(C(j)) 

 move_horizontal(backprev,j) 

end 

move_vertical(prev,r) 

end 

uncover(c) and return 

end 

IV. RESULTS AND DISCUSSION 

The proposed XDLX Algorithm has been implemented in 

C++ and compared with the performance of DLX algorithm for 

sample exact cover problems of varying sizes. For solving an 

exact cover problem with n elements in the Universal set and m 

individual subsets, DLX algorithm requires 4(mn/2)(=2mn) 

pointers assuming that each subset contains on an average n/2 

elements of the Universal set. The same problem when 

implemented with the proposed XDLX algorithm uses a single 

pointer last and the following array of pointers namely row[m], 

last_in_row[m], vlast[n] in addition to the single pointer 

needed for each node. Thus it can be observed that the total 

number of pointers required is only (2mn/2)+2m+n+1 

(=mn+2m+n+1) which has effectively reduced  the memory 

utilization by about 50% with only a slight modification in the 

program logic and with no notable  increase in processing time. 

Table 1 presents the reduction in space complexity achieved 

using XDLX as compared to DLX for different values of m and 

n and figures 5 to 7 provide graphical representation of the table 

data. It can be seen that the effect of XDLX on the memory 

requirement is more for cases with fixed values of m and 

http://www.ijritcc.org/
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varying values of n than for cases with fixed values of n and 

varying values of m. 

 

TABLE I.  SPACE COMPLEXITY OF DLX AND XDLX FOR VARIOUS 

VALUES OF m AND n 

No. of 

subset

s, m 

No. of 

element

s in the 

univers

al set, n 

Space 

complexit

y of DLX 

(2mn) 

Space 

complexit

y of XDLX 

(mn+2m+

n+1) 

DLX vs 

XDLX  

100 100 20000 10301 1.941 

100 10000 2000000 1010201 1.980 

100 100000 20000000 10100201 1.980 

10000 100 2000000 1020101 1.960 

100000 100 20000000 10200101 1.961 

 

 

 
Figure 5 Space Complexity of DLX and XDLX for fixed n and 

varying m 

 

 
Figure 6 Space Complexity of DLX and XDLX for fixed m and 

varying n 

 

 
Figure 7  Reduction in Space Complexity 

V. CONCLUSION 

XDLX Algorithm thus developed using XOR linked lists 

proves that dancing links can be used to solve backtracking 

applications such as exact cover problem with a space 

efficiency better than its DLX counterpart yet without having to 

compromise the timing efficiency. The efficacy of the algorithm 

can be well understood when applied in environments with 

limited memory capacity such as embedded systems. Any NP-

Complete problem can be reduced to exact cover problem and 

solved efficiently using XDLX. 
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