
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 1

DOI: https://doi.org/10.17762/ijritcc.v11i1.6054

Article Received: 14 November 2022 Revised: 16 December 2022 Accepted: 30 December 2022

88

IJRITCC | January 2023, Available @ http://www.ijritcc.org

XDLX: A Memory-Efficient Solution for

Backtracking Applications in Big Data Environment

using XOR-based Dancing Links

1*Varalakshmi M, 2Peer Mohideen P U, 3Thilagavathi M, 4Daphne Lopez
1Asst. Prof. Sr., SCOPE

VIT, Vellore

email: mvaralakshmi@vit.ac.in
2Senior Director

eTouch Systems Corp

email: pupeer@gmail.com
3Asst. Prof. Sr., SITE

VIT, Vellore

email: mthilagavathi@vit.ac.in
4Professor, SITE

VIT, Vellore

email: daphnelopez.vit.ac.in

Abstract — Interactive and Backtracking applications often require undoing certain recent operations and updates made to the underlying

data structures. The concept of dancing links has made such reverting operations easier and efficient by repeatedly performing unlinking and

re-linking of pointers in complex data structures involving circular multiply linked lists. This paper extends the idea of dancing links to XOR

linked lists, the memory efficient counterpart of doubly linked lists to develop XDLX, a more space efficient algorithm than DLX to solve

exact cover problems without compromising the timing efficiency. Owing to the NP-Complete nature of the exact cover problem, any NP-

complete problem can be reduced to it and solved using the proposed memory-efficient dancing links based algorithm, XDLX. The algorithm

can be effectively used to solve any backtracking application and will prove to be a significant contribution towards the programming of

memory-constrained environments such as embedded systems.

Keywords – Backtracking; Dancing links; DLX; Exact Cover; NP-Complete; Space Efficiency; XOR linked lists.

I. INTRODUCTION

Interactive and Backtracking applications often require

undoing certain recent operations and updates made to the

underlying data structures. Any technique that can efficiently

perform such revert operations has been a topic of interest for

researchers. An exact cover problem is a right choice for those

intended to address such issues in backtracking applications. An

exact cover problem is a decision problem that determines if

there exists a subcollection of the subsets of a Universal set such

that each element in the Universal set appears in exactly one

subset of the subcollection. It is NP-Complete [1] and hence

any NP-Complete problem can be reduced to exact cover

problem [2] and solved using the same techniques used for

solving exact cover problem.

Efficiency of an algorithm to solve a backtracking problem

depends on how the search space is narrowed down and how

the decision controlling data is maintained internally [3].

Maintaining a stack to store the state information for every call,

is time consuming as it requires copying the entire state at each

stage.

Hence it is better to employ global data structures that are

updated for every recursive call and restored to a former state

after returning from the corresponding recursive call. This paper

focuses on developing a more efficient strategy than what is

available till date, to employ and update such global data

structures to solve exact cover problem. A new algorithm

XDLX has been devised which is an enhancement of the

renowned algorithm DLX that applies the concept of dancing

links to solve exact cover problem. The rest of the paper is

organized as follows. Section 2 discusses related works in this

area. Section 3 expounds the implementation of proposed

algorithm, XDLX and presents the experimental results. Section

4 draws conclusions.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 1

DOI: https://doi.org/10.17762/ijritcc.v11i1.6054

Article Received: 14 November 2022 Revised: 16 December 2022 Accepted: 30 December 2022

89

IJRITCC | January 2023, Available @ http://www.ijritcc.org

II. RELATED WORK

A. Algorithm X

Algorithm X proposed by Knuth [4] uses a matrix to

represent the exact cover problem. Elements of the Universal

set form the columns and the individual subsets constitute the

rows of the matrix. [Fig. 1] shows a matrix representation of an

exact cover problem with 6 subsets and 7 elements in the

Universal set.If a subset contains a few elements of the

Universal set, only the corresponding column entries of that row

are marked 1 and others are marked 0. The objective of the

algorithm is to find out a set of rows that contribute to exactly

one 1 in each column.

[

0 0 1 0 1 1 0
1 0 0 1 0 0 1
0 1 1 0 0 1 0
1 0 0 1 0 0 0
0 1 0 0 0 0 1
0 0 0 1 1 0 1]

Figure 1 Matrix Representation of a sample exact cover problem

Algorithm X includes the following steps.

1. If the matrix A has no more columns, the current

partial solution is the valid solution and hence

terminate

2. Else select a column, c (deterministically).

3. Select a row, r, such that A[r, c] = 1

(nondeterministically).

4. Include r in the partial solution.

5. for each column j where A[r, j] = 1,

for each i where A[i, j] = 1,

delete row i from matrix A.

delete column j from matrix A;

6. Recursively repeat this algorithm on the reduced

matrix A.

It is clear that the algorithm performs deletion of rows and

columns upon choosing a particular row for its inclusion in the

partial solution. All these deletion operations should be reverted

or backtracked, if the choice is found to be a wrong guess and

the matrix has to be brought back to its previous state.

B. Dancing Links

As linked lists are a better choice for frequent insertions and

deletions as opposed to arrays, a linked representation, with as

many number of nodes as there are 1s in the matrix, is more

efficient than an array representation in terms of both space and

time complexity, for exact cover problems which are usually

sparse. Hence Knuth employs circular multiply linked lists to

implement the algorithm and calls it DLX. In his algorithm, he

uses dancing links to efficiently solve exact cover problem.

[Fig.2a] represents a node x in a doubly linked list with L(x)

and R(x) as its predecessor and successor respectively. Deletion

of the node x can be done using the following two steps.

R(L(x))R(x) and L(R(x))L(x) (1)

Figure 2a Node x, in a Doubly Linked List with its Predecessor L(x)

and Successor R(x)

Figure 2b Retainment of address of node x’s predecessor and

successor, even after its deletion

From [Fig. 2b], it is clear that the node x even after getting

detached from the list retains the address of its predecessor and

successor nodes, unless it is made to change explicitly. This

property helps to reinsert a deleted node in its original position

in the list using the operations mentioned in (2).

R(L(x))x and L(R(x))x (2)

For this to happen, only the value of x should be kept in track

and backtracking applications do this with no additional efforts.

Steps 1 and 2 can be applied repeatedly to backtrack until a state

is reached from where the algorithm can proceed forward again

in another path. This kind of repeated unlinking and relinking

of the nodes gives a feel as though the links in the global data

structure are dancing gracefully; hence the two steps are

identified as the technique of dancing links. The same technique

was followed [5] to solve Dijkstra’s algorithm [6] for N-Queens

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 1

DOI: https://doi.org/10.17762/ijritcc.v11i1.6054

Article Received: 14 November 2022 Revised: 16 December 2022 Accepted: 30 December 2022

90

IJRITCC | January 2023, Available @ http://www.ijritcc.org

problem which was twice faster than when solved with previous

techniques.

C. Algorithm DLX

Algorithm Knuth names the algorithm X implemented using

dancing links as algorithm DLX [4]. An individual node x is

created for each 1 in the matrix and consists of five members –

L(x), R(x), U(x), D(x) and C(x). L(x) and R(x) point to the row

wise predecessor and successor of the node x; U(x) and D(x)

point to the column wise predecessor and successor of x. Such

an interlinking makes the rows and columns appear to be

individual circular multiply linked lists forming a torus. Apart

from these data nodes, each column wise multiply linked list

also contains another node called the column node, y with the

following four members similar to a data node – L(y), R(y),

U(y), D(y) and C(y) and two additional members – S(y) (“size”

storing the number of 1s in that column) and N(y) (“Name” for

identifying the individual columns). The member C of each

node points to the column node of the corresponding column. A

special node namely the head node serves as the root node for

the entire structure and using its L(h) and R(h) it is linked to

multiply linked list containing the column nodes. Other

members of head node are not used.

Algorithm DLX is designed as a recursive function

search(k), which is called initially by passing 0 for k.

If R[h] = h, print the current solution and return.

Otherwise choose a column node, c.

Cover column c

For each r ← D(c), D(D(c)) , . . . , while r ≠ c,

set O[k] ← r;

for each j ← R(r), R(R(r)) , . . . , while j ≠ r,

cover column j ;

search(k + 1);

set r ← O[k] and c ← C(r);

for each j ← L(r), L (L(r)) , . . . , while j ≠r,

uncover column j .

Uncover column c and return

Only those refinements to the algorithm that bring notable

improvement in speed are worth the effort [7]. Hence at each

stage of the recursive function, a column node c, with the least

number of 1s is chosen as it may lead to the fewest branches for

exploration. This is according to the suggestion by Golomb and

Baumert [8] to select a subproblem that results in the least

number of branches, at every stage of the recursive call.

Final solution is displayed by printing the rows stored in

O[0], O[1], . . . , O[k−1], where for each row O, N(C(O)) ,

N(C(R(O))) , N(C(R(R(O)))) ,….. are also printed.

Module: Cover(c)

It first unlinks c from the column header list and then

unlinks all the rows of c from the other column wise lists they

are in.

Set L (R(c)) ← L(c) and R (L(c)) ← R(c).

for each i ← D(c), D(D(c)) , . . . , while i ≠ c,

for each j ← R(i), R(R(i)) , . . . , while j ≠ i,

set U(D(j)) ← U(j), D(U(j)) ← D(j),

and

set S(C(j)) ← S(C(j)) − 1

Module: UnCover(c)

Uncovering should take place in the reverse order of the

cover operation.

for each i = U(c), U(U(c)) , . . . , while i ≠ c,

for each j ← L(i), L(L(i)), . . . , while j ≠ i,

set S(C(j)) ← S(C(j)) + 1, and

set U(D(j)) ← j, D(U(j))← j.

set L(R(c)) ← c and R(L(c)) ← c

The concept of dancing links can also be applied to obtain

all possible solutions for a wide range of backtracking

applications including Sudoku [9], N-Queens problem,

Pentomino puzzle solving and so on. Application of dancing

links to N-Queens problem has been visualized to promote its

widespread usage [10]. Moreover the algorithm runs much

faster for large problems. But the drawback of algorithm DLX

is that it uses circular multiply linked lists throughout in which

every node stores 2 addresses each (of predecessor and

successor) for the horizontal and vertical directions. A new data

structure tailored to suit the problem to be solved will increase

computational speed [11]. Building on this idea, DLX algorithm

can be made more space efficient if the number of addresses

(pointers) stored for each node is reduced.

III. PROPOSED ALGORITHM

As a step towards formulating a memory-efficient solution,

an XOR list is used in which each node x, instead of storing the

four pointers L(x), R(x), U(x) and D(x), stores only 2 pointers

namely H(x) and V(x), the pointer difference of its predecessor

and successor addresses in the horizontal and vertical directions

respectively, where the pointer difference is calculated using

XOR operator.

A. Algorithm XDLX

1) Revisiting the concept of Xor Linked Lists

Properties of an exclusive-OR (in short, XOR) operator [12]

denoted by ‘^’ are as follows.

i) A^A=0

ii) A^0=A

iii) A^B=B^A

iv) (A^B)^C=A^(B^C)

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 1

DOI: https://doi.org/10.17762/ijritcc.v11i1.6054

Article Received: 14 November 2022 Revised: 16 December 2022 Accepted: 30 December 2022

91

IJRITCC | January 2023, Available @ http://www.ijritcc.org

This paper focuses on constructing dancing links using XOR

lists and as specified each node x, stores only two pointers, H(x)

and V(x) in additionto the usual members C(x), N(x), S(x), and

an extra member ‘num’ to hold the row number of the node.

H(x)=ptr to predecessor ^ ptr to successor in the horizontal

direction

 V(x)=ptr to predecessor ^ ptr to successor in the vertical

direction

With this, the space requirement of each node is reduced to

half of what is required for a node defined in DLX algorithm. A

sample representation of XOR list with nodes connected both

vertically and horizontally is given in [Fig. 3]. Consider node

B2. It stores the XOR result of B1 and B3 in V(B2) and that of A2

and C2 in H(B2). If the list traversal should start from node B2,

movement in all four directions is as follows.

Upward:

 B3 ^ V(B2) = B3 ^ (B1 ^ B3) = B1

Downward:

B1 ^ V(B2) = B1 ^ (B1 ^ B3) = B3

Rightward:

A2 ^ H(B2) = A2 ^ (A2 ^ C2) = C2

Leftward:

C2 ^ H(B2) = C2 ^ (A2 ^ C2) = A2

Similarly if node B2 is deleted, the H and V pointers of its

4 neighbouring nodes B1, B3, A2 and C2 are modified

accordingly.

Figure 3 A sample XOR Linked List with nodes connected both

vertically and horizontally

It is apparent that these operations require the addresses of

the predecessor nodes also to be kept in track along with the

XOR results stored in H and V pointers. This will make the

space requirement of the XOR list to be equivalent to that of a

multiply linked list and hence there will not be any additional

benefit by employing an XOR list. Hence the proposed

algorithm aims to retrieve, for any node, its predecessor’s

address but without having to store it.

2) Modules Description

The idea is to use the following pointers in addition to the 2

XOR differences stored at each node - a pointer named ‘last’

that points to the last column node; 3 arrays of pointers namely

rows[] pointing to the first node of each row, last_in_row[]

pointing to the last data node of each row and vlast[] pointing

to the last data node of each column. [Fig. 4] depicts the

resulting data structure for the sample matrix given in [Fig. 1].

With such a data structure, the DLX Algorithm has to be

redefined to what can be called as XDLX (Algorithm X

implemented using XOR-based dancing links) and its various

modules are as follows.

Traverse nodes in the Horizontal direction

If current points to the node where we are at present and

prevpoints to the node to its left, then prev and current can be

made to move one step ahead in the horizontal direction as

follows.

Module: move_horizontal(prev,current)

 next=H(current) ^ prev

 prev=current

 current=next

Figure 4 XOR Representation of the matrix given in Figure 1

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 1

DOI: https://doi.org/10.17762/ijritcc.v11i1.6054

Article Received: 14 November 2022 Revised: 16 December 2022 Accepted: 30 December 2022

92

IJRITCC | January 2023, Available @ http://www.ijritcc.org

Traverse nodes in the Vertical direction

If current points to the node where we are at present and

prevpoints to the node above it, then prev and current can be

made to move one step ahead in the vertical direction as follows.

Module: move_vertical(prev,current)

 next = V(current) ^ prev

 prev = current

 current = next

Retrieve the last node in a particular column

Address of the last node of the column represented by

column node c can be retrieved by traversing through the vlast[

] array.

Module: get_vlast_of_c(c)

 i=0

 while (N(C(vlast[i])) ≠ N(c) and i<colindex)

 i=i+1

return (i)

Cover

It unlinks c from the column header list and then unlinks all

the rows of c from the other column wise lists they are in.

Unlinking happens by modifying the XOR differences stored in

the predecessor and successor of the node to be unlinked. Let

prev_prev, prev, x, succ, succ_succ be few consecutive nodes

connected horizontally in an XOR list. The XDLX algorithm

works to manipulate addresses in H(prev) and H(succ) before

and after deletion of x as given in (3) and (4).

Before deletion of x:

H(prev)=prev_prev ^ x and

H(succ)=succ_succ ^ x (3)

After deletion of x:

H(prev)=prev_prev ^ succand

H(succ)=succ_succ ^ prev (4)

Module: Cover(c)

begin

prev=last, current=head

while(current ≠ c)

move_horizontal(prev,current)

prev_prev=H(prev) ^ c

succ=H(c) ^ prev

succ_succ=H(succ) ^ c

H(prev) = prev_prev ^ succ

H(succ) = succ_succ ^ prev

if c==last

last=prev;

 i=get_vlast_of_c(c)

 prev1=c

 current1 = V(prev1) ^ vlast [i]

while (current1 ≠ c)

begin

rowprev=last_in_row[Num(current1)]

rowcurrent=rows[Num(current1)]

while(rowcurrent ≠ current1)

move_horizontal(rowprev, rowcurrent)

 current1right= H(rowcurrent) ^ rowprev

while (current1right ≠ current1)

begin

vcurrent= C(current1right)

 i=get_vlast_of_c(c)

vprev=vlast[i]

while(vcurrent ≠ current1)

move_vertical(vprev,vcurrent)

vsucc= vprev ^ V(current1right)

vprevprev= V(vprev) ^ current1right

vsuccsucc=V(vsucc) ^ current1right

V(vprev) = vprevprev ^ vsucc

V(vsucc)= vprev ^ vsuccsucc

S(C(current1right)) = S(C(current1right)) - 1

if(current1right==vlast[i])

vlast[i]=vprev

move_horizontal(rowcurrent,current1right)

end

move_vertical(prev1,current1)

end

end

UnCover

The deleted node retains the XOR difference of the

addresses of its predecessor and successor. To reinsert the node

in its original position during the uncover operation, the list has

to be traversed till two adjacent nodes are identified whose XOR

difference is equal to the one stored in the deleted node. Then

the deleted node is reinserted in between those two nodes.

Reinsertion can be simply done by modifying the XOR

differences stored in the predecessor and successor of node x.

Module: uncover (c)

begin

get_vlast_of_c(c)

current=vlast[i]

succ=c

while(current ≠ c)

begin

rowcurrent=last_in_row[Num(vlast[i])]

rowsucc=rows[Num(vlast[i])]

move_horizontal(rowsucc,rowcurrent)

while(rowcurrent ≠ current)

begin

 i=get_vlast_of_c(c)

colcurrent=vlast[i],colsucc=C(rowcurrent)

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 1

DOI: https://doi.org/10.17762/ijritcc.v11i1.6054

Article Received: 14 November 2022 Revised: 16 December 2022 Accepted: 30 December 2022

93

IJRITCC | January 2023, Available @ http://www.ijritcc.org

Xor_diff= colcurrent ^ colsucc

while(V(rowcurrent) ≠ Xor_diff)

begin

move_vertical (colcurrent, colsucc)

Xor_diff=colcurrent ^ colsucc

end

prevprev=V(colcurrent) ^ colsucc

succsucc= colcurrent ^ V(colsucc)

V(colcurrent)= rowcurrent ^ prevprev

V(colsucc)=succsucc ^ rowcurrent

if(Num(colsucc) <Num(rowcurrent))

 vlast[i]=rowcurrent

 S(C(rowcurrent))=S(C(rowcurrent))+1

move_horizontal(rowsucc, rowcurrent)

end

move_vertical(succ, current)

end

prevheader=last,currentheader=head

Xor_header=prevheader^currentheader

while(H(c) ≠ Xor_header)

begin

move_horizontal (prevheader, currentheader)

Xor_header= prevheader ^ currentheader

end

prevprevheader = H(prevheader) ^ currentheader

succsuccheader = prevheader ^ H(currentheader)

H(currentheader) = c ^ succsuccheader

H(prevheader) = prevprevheader^c

if(H(c) ^ prevheader==head)

last=c

end

Search

It is a recursive procedure which repeatedly calls itself till

the list becomes empty.

Module: search(k)

begin

if(head = last)

print the solution containing all the rows

starting with

 O[m] where m=0,1,…k and return.

choose a column object c, which is usually the

column with minimum number of ones

cover(c)

 i=get_vlast_of(c)

prev=vlast[i]

 r = V(c) ^ vlast[i]

prev=c

while (r ≠ c)

begin

 O[k]=r;

 rowcurrent=rows[Num(r)]

rowprev=last_in_row[Num(r)]

 while(rowcurrent ≠ r)

move_horizontal(rowprev, rowcurrent)

 j = H(rowcurrent) ^ rowprev

 rowprev=rowcurrent

while (j ≠ r)

begin

 cover(C(j))

move_horizontal(rowprev,j)

end

search(k + 1)

 r = O[k]

 c = C(r)

 backcurrent = last_in_row[Num(r)]

 backprev=rows[Num(r)]

 while(backcurrent ≠ r)

move_horizontal (backprev, backcurrent)

 j= H(backcurrent) ^ backprev)

backprev=backcurrent

while (j ≠ r)

begin

 uncover(C(j))

 move_horizontal(backprev,j)

end

move_vertical(prev,r)

end

uncover(c) and return

end

IV. RESULTS AND DISCUSSION

The proposed XDLX Algorithm has been implemented in

C++ and compared with the performance of DLX algorithm for

sample exact cover problems of varying sizes. For solving an

exact cover problem with n elements in the Universal set and m

individual subsets, DLX algorithm requires 4(mn/2)(=2mn)

pointers assuming that each subset contains on an average n/2

elements of the Universal set. The same problem when

implemented with the proposed XDLX algorithm uses a single

pointer last and the following array of pointers namely row[m],

last_in_row[m], vlast[n] in addition to the single pointer

needed for each node. Thus it can be observed that the total

number of pointers required is only (2mn/2)+2m+n+1

(=mn+2m+n+1) which has effectively reduced the memory

utilization by about 50% with only a slight modification in the

program logic and with no notable increase in processing time.

Table 1 presents the reduction in space complexity achieved

using XDLX as compared to DLX for different values of m and

n and figures 5 to 7 provide graphical representation of the table

data. It can be seen that the effect of XDLX on the memory

requirement is more for cases with fixed values of m and

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 1

DOI: https://doi.org/10.17762/ijritcc.v11i1.6054

Article Received: 14 November 2022 Revised: 16 December 2022 Accepted: 30 December 2022

94

IJRITCC | January 2023, Available @ http://www.ijritcc.org

varying values of n than for cases with fixed values of n and

varying values of m.

TABLE I. SPACE COMPLEXITY OF DLX AND XDLX FOR VARIOUS

VALUES OF m AND n

No. of

subset

s, m

No. of

element

s in the

univers

al set, n

Space

complexit

y of DLX

(2mn)

Space

complexit

y of XDLX

(mn+2m+

n+1)

DLX vs

XDLX

100 100 20000 10301 1.941

100 10000 2000000 1010201 1.980

100 100000 20000000 10100201 1.980

10000 100 2000000 1020101 1.960

100000 100 20000000 10200101 1.961

Figure 5 Space Complexity of DLX and XDLX for fixed n and

varying m

Figure 6 Space Complexity of DLX and XDLX for fixed m and

varying n

Figure 7 Reduction in Space Complexity

V. CONCLUSION

XDLX Algorithm thus developed using XOR linked lists

proves that dancing links can be used to solve backtracking

applications such as exact cover problem with a space

efficiency better than its DLX counterpart yet without having to

compromise the timing efficiency. The efficacy of the algorithm

can be well understood when applied in environments with

limited memory capacity such as embedded systems. Any NP-

Complete problem can be reduced to exact cover problem and

solved efficiently using XDLX.

REFERENCES

[1] Garey MR., Johnson DS. Computers and Intractability: A

Guide to the Theory of NP-Completeness. W.H. Freeman.

1979; 187-285.

[2] Karp RM. Reducibility among combinatorial problems.

Complexity of Computer Computations, Springer US. 1972;

85–103.

[3] Floyd RW. Nondeterministic algorithms. Journal of the ACM

(JACM). 1967; 14(4):636–644, 1967

[4] Knuth DE. Dancing Links. arXiv preprint cs/0011047. 2000.

[5] Hitotumatu H, Noshita K. A technique for implementing

backtrack algorithms and its application. Information

Processing Letters. 1979; 8(4):174–175.

[6] Dahl OJ, Dijkstra EW, Hoare CAR. Structured Programming.

Academic Press Ltd.,. 1972.

[7] Knuth DE. Estimating the efficiency of backtrack programs.

Mathematics of Computation. 1975; 29(129):122–136.

[8] Golomb SW, Baumart LD. Backtrack programming. Journal

of the ACM. 1965; 12(4):516-524.

[9] Harrysson M, Laestander H. Solving Sudoku efficiently with

Dancing Links. Bachelor Degree Thesis, 2014.

[10] Doyle M, Rawe B, Rogers A. JDLX: visualization of dancing

links. Journal of Computing Sciences in Colleges. 2008;

24(1):9-15.

[11] Barua A, Patra A and Sinha S. PMD—An Algorithm for

Finding Determinant of a Polynomial Matrix with New Data

Structure. IETE Journal of Research. 2015; 39(1):51-53.

[12] Sinha P. A memory-efficient doubly linked list. Linux Journal.

2005; 2005(129);10.

Sp
ac

e
 C

o
m

p
le

xi
ty

 (N
o

. o
f

p
o

in
te

rs
)

Varying input sizes

Fixed 'n' and varying
'm'

DLX

XDLX

Sp
ac

e
 C

o
m

p
le

xi
ty

 (
 N

o
. o

f
p

o
in

te
rs

)

Varying input sizes

Fixed 'm' and varying
'n'

DLX

XDLX

Sp
ac

e
 C

o
m

p
le

xi
ty

(D
LX

/X
D

LX
)

Input size

Reduction in Space
Complexity for

varying 'n' and 'm'
m=100,n=100,
10000,100000

http://www.ijritcc.org/
https://en.wikipedia.org/wiki/Michael_Garey
https://en.wikipedia.org/wiki/David_S._Johnson
https://en.wikipedia.org/wiki/Computers_and_Intractability:_A_Guide_to_the_Theory_of_NP-Completeness
https://en.wikipedia.org/wiki/Computers_and_Intractability:_A_Guide_to_the_Theory_of_NP-Completeness
https://en.wikipedia.org/wiki/Richard_Karp
http://www.cs.berkeley.edu/~luca/cs172/karp.pdf

