
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 1s

DOI: https://doi.org/10.17762/ijritcc.v11i1s.5994

Article Received: 20 November 2022 Revised: 28 December 2022 Accepted: 04 January 2023

57

IJRITCC | January 2023, Available @ http://www.ijritcc.org

Developing the Computational Building Blocks for

General Intelligent in SOAR

Shalini1, Dr. S. Srinivasan2, Dr. Nitin Bansal3, Dr. Piyush Prakash4
1Research Scholar, Department of Computer Science & Engineering,

PDM University, Bahadurgarh, Haryana, India.

shalinisingroha@gmail.com
2Head of Department, Department of Computer Science & Applications,

PDM University, Bahadurgarh, Haryana, India.

sunderrajan_engg@pdm.ac.in
3Associate Professor, Department of Computer Science & Applications,

PDM University, Bahadurgarh, Haryana, India.
 bansal.nitin12@gmail.com

4Associate Professor, Department of Computer Science & Applications,

PDM University, Bahadurgarh, Haryana, India.

piyush19sept@gmail.com

Abstract

Cognitive architecture's purpose is to generate artificial agents with capacities similar to the human mind. Soar Cognitive Architecture is to

produce the fixed computational building blocks needed for generally intelligent agents— agents that can outright a variety of tasks and encode,

use, and learn all types of knowledge to realize the broad cognitive abilities present in humans. This paper introduced an arithmetic agent that

does multicolumn, two-digit addition in SOAR. Here, we show the entire calculating procedure, including all of its operators. We are using

episodic memory assistance to enhance the set of cognitive abilities that let the agent learn and reason.

Keywords Cognitive Architecture, Agents, Episodic Memory, Semantic Memory, Working Memory Element.

INTRODUCTION

A cognitive architecture is a software implementation of a

broad theory of intelligence; it is not a single algorithm or

approach to deal with a particular problem. Rather, it is the

task-independent infrastructure that learns, encodes, and

applies an agent's knowledge to produce behavior [1]. A

cognitive architecture is made up of memory systems for

storing knowledge. We have several different cognitive

architectures, including ACT-R, Theo, Prodigy, SOAR,

ATLANTIS, HOMER, and others [3].

An agent is a free-moving item that can exist in any setting.

Multiagent systems are systems that assemble various

software agents that can speak to one another directly or

indirectly. There are three categories of agent architecture.

1 Classic architecture, centered on the physical symbol

system theory, uses symbolic representation for

reasoning and is referred to as symbol-based

architecture.

2 Cognitive architecture is to use of artificial agents with

properties similar to those of the human mind.

3 In Semantic web architecture, advocacy agents can

better understand preferences and make decisions [9].

Soar Cognitive architecture includes knowledge-reactive

implementation, structured thinking, intense reasoning,

modeling, and many types of learning[4] Soar is well-known

for its capacity to solve issues and the performance of this

sector by utilizing a wide range of types and knowledge levels

[5][6]. Soar activities include probabilistic reasoning,

mathematical ability, computer configuration, algorithms

creation, clinical diagnosis, robotics controls, imitating pilots

for military experience, and a variety of computerized games

[8].

SOAR ARITHMETIC AGENT

To clarify the fundamental working of Soar for users, we are

demonstrating the example of an Arithmetic agent. This soar

agent performs two-digit addition with carry and it is not

using any math function. Soar is made up of cooperating,

task-independent units. There are processing units, learning

mechanisms, short- and long-term memories, and

interconnections between them. It includes procedural

memory (skills and "how-to" knowledge), semantic memory

(facts about the world and the agent), and episodic memory

(memories of past experiences) [1] [11]. An agent's

situational awareness is maintained through working

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 1s

DOI: https://doi.org/10.17762/ijritcc.v11i1s.5994

Article Received: 20 November 2022 Revised: 28 December 2022 Accepted: 04 January 2023

58

IJRITCC | January 2023, Available @ http://www.ijritcc.org

memory. In Soar facts are represented in a symbolic

representation of words [7] [12].

We store all the rules of addition (called facts for this agent)

in an operator (named generate-facts). Here, facts are stored

for single-digit addition in the symbolic form as a production

rule. Such as

These facts can be converted to Semantic memory access (in

the application of compute-result).We set the value of ^count

to execute the computation, count number of times in

initialize-arithmetic. So that it will execute the agent

according to the count value. It frames the problem in three-

columns that is created in operator generate-problem. This

agent checks that all answers are calculated correctly with the

help of Soar’s math functions that are computed in Verify and

Finish problem. If the answer is not computed correctly, the

answer will be printed out, and then Soar halts. But this case

should never happen. All the key computation rules for this

are present in process-column/compute-result Soar [1][6].

We use various key data structures (in symbolic

representation) of the Arithmetic agent.

• Add-10 facts: This is used for all facts for adding 10

to 0-9 digits

• Digit 1: It includes 0-9 digits.

• Digit-10: It calculates digit+10.

• Facts: It includes all of the facts about single-digit

arithmetic i.e. Digit1 and Digit2.

• Sum: It represents the single-digit result (0-9).

• Carry- It carries 0/1 if the result is 10 or greater.

• Operation: Addition

• Addition-facts: All facts for adding a digit from 0-9

same structure as the facts

• Arithmetic problem: It holds the whole definition of

the problem

• One-column: It represents the right-most columns

wherever the ones are held linked-list to the rest-of-

columns.

• Column t: It is used to check if a column occurs- it

makes chunking happy.

• Digit1: It holds the value from 0-9.

• Digit2: It holds the value from 0-9.

• Carry: It carries the value of either 0 or 1. Its value

is based on the calculation in the prior column.

• Next-column: It represents the column to the left of

the current (It represents nil value if no next-column

exit).

• Result: It denotes the result of the digits and carries

value.

• Count: It calculates the number of problems to solve.

• Digits: It contains all digits 0-9.

SELECTING AND USING OPERATORS WITH

INTENTION

The operators in Soar are a way to categorize knowledge

about conditional action and reasoning. An operator could be

an internal process like combining numbers or obtaining data

for episodic or semantic memory. An operator can also be an

external activity, such as starting a mobile robot's forward

motion or turning it [1] [10]. Soar divides the understanding

of an operator into three tasks: proposing potential operators,

evaluating proposed operators, and applying the operator

[11].

Whole “knowledge stored in the Soar agent is illustrated as

if-then rules. Here rules are stated as “productions”. Rules are

used to choose and apply things” defined as “operators”. Soar

tests by testing the ‘if’ part of the rules. These ‘if’ parts are

defined as conditions. If each condition of a rule is true in the

present scenario, ‘then’ or ‘action’ parts are executed.

Executing the actions of a rule is defined as ‘firing the rule’

[10].” Here, in the next section, we are explaining the various

operators as if-then rules.

 2-digit Arithmetic Addition Agent includes the

following operators:

A. Initialize-arithmetic: It includes the name of the

problem i.e. ^name arithmetic, which generates the

digits 0-9 that utilize in generating problems. Also,

initialize the count for the number of problems to

resolve. It can also define a specific problem to

solve, if a particular problem is defined, it will be

resolved 20 times.

B. Generate-facts: This operator preloads working

memory with complete arithmetic facts. This fact

should not be essentially connected with semantic

memory.

sp {arithmetic*apply*generate-facts*add

 (state <s> ^operator.name generate-facts)

-->

 (<s> ^arithmetic.facts

<a01> <a19> <a92>)

(<a01> ^digit1 0 ^digit2 1 ^sum 1 ^carry 0)

 (<a19> ^digit1 1 ^digit2 9 ^sum 0 ^carry 1)

 (<a92> ^digit1 9 ^digit2 2 ^sum 1 ^carry 1)

If no task is selected

 Then propose the initialize –arithmetic operator.

If the initialize-arithmetic operator is selected

 Then create and resolve arithmetic problem 20 times.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 1s

DOI: https://doi.org/10.17762/ijritcc.v11i1s.5994

Article Received: 20 November 2022 Revised: 28 December 2022 Accepted: 04 January 2023

59

IJRITCC | January 2023, Available @ http://www.ijritcc.org

C. Generate-problem: This operator generates the

arithmetic problem “<s> ^arithmetic-problem”. It

creates individual digits (digit1 & digit2), the

operation (finish-problem-generation and generate-

operation), and column by column (next-column).

It does add problems.

D. Process-column: This operator calculates the result

for a column.

E. get-digit1 and write-digit1: This operator retrieve

digit1 from column and transfer it on to the state. If

there is a carry then it recursively add it to column

digit1 to calculate final digit1. Write-digit1

operator return the newly calculated digit1 and

possibly carry.

F. get-digit2: It retrieves the digit2 value and transfer

it on to the state.

G. compute-result: It calculate result and carry from

digit1 and digit2 by using the facts. This will

exchange with semantic memory lookup.

H. Carry: It transfer the carry to next-column.

I. new-column: It generates a new column if there is

a carry at the left most column for an additional

problem.

J. write-result: This operator transfer the result to the

current-column

K. Next-column: This operator is use when a result

has been calculated for a column then it moves to

the upcoming column.

L. Finish-problem: It executes when there is a result

for a column with no next-column.

If the operator generate-facts selected

Then it generate-facts for add operator in

which it stores all combinations of digit 1,

digit 2, sum, and their corresponding

carrying value.

If the operator generate-problem selected

 Then generate digit 1 & digit 2

If the operator generate-operation selected

 Then generate operation addition, operation-symbol

and column c1, c2 and c3

If the operator next-column selected

 Then it shifts from current column to next-column

If the operator finish-problem generation selected

 Then it finish the operation of generate-problem

If the operator process-column selected

 Then it calculate the outcome for a column.

If the operator get-digit1 selected

 Then obtain a digit from column and send it to

state.

If the operator write-digit1 selected

 Then carry 0 and 1 repeatedly adds it to

column digit1 to determine the final digit1.

If the operator get-digit2 selected

 Then obtain a digit from column and send it to

state.

 If the operator query is selected

 Then we get a value of digit1 and digit2 through

query.

 If the semantic Memory Retrieval operator is selected,

get a value of digit1, digit2, and sum and carry using

arithmetic facts

 Then we obtain a value of carry and sum value

in query.

 If the operator use is selected

 Then it come by with the final value of result

and carry

 If the operator carry is selected

 Then it send the carry value 1 to next-

column.

If the operator new-column is selected

 Then it make a new column if there is a carry at

the leftmost column for supplementary problem.

 If the operator write-result is selected

 Then it send the result to the current-column

If the operator next-column is selected a column's

result has been determined

Then the calculation continues on to the

following column.

If the operator finish-problem is selected when a

column's result has no next-column

Then it executes.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 1s

DOI: https://doi.org/10.17762/ijritcc.v11i1s.5994

Article Received: 20 November 2022 Revised: 28 December 2022 Accepted: 04 January 2023

60

IJRITCC | January 2023, Available @ http://www.ijritcc.org

M. Stop-arithmetic: It stops the agent when the count

value becomes zero then it halts.

HIERARCHY OF OPERATORS

Figure 1 illustrates a sequential hierarchy of operators that

demonstrate how the 2-digit addition goes on

Figure 1 Graphical abstract of Arithmetic Agent

If the operator stop arithmetic is selected and count

value drops to zero

 Then it comes to a stop.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 1s

DOI: https://doi.org/10.17762/ijritcc.v11i1s.5994

Article Received: 20 November 2022 Revised: 28 December 2022 Accepted: 04 January 2023

61

IJRITCC | January 2023, Available @ http://www.ijritcc.org

SEMANTIC AND EPISODIC MEMORY

In contrast to episodic memory, which stores what an agent

"remembers," semantic memory stores information that an

agent "knows" about itself and the world [13][14]. As a result,

semantic memory acts as a knowledge base that encodes both

generic, context-free knowledge about the universe and

specific knowledge about an agent's surroundings, skills, and

long-term objectives [15].

In our Arithmetic agent as discussed above semantic memory

gathers facts about the agent and depicts it in the form of

symbolic representation. Every time when the agent needs the

facts for addition it retrieves the facts from semantic memory.

Our agent with episodic memory is able to recall the

circumstances surrounding previous experiences as well as

the order in which they occurred. All the calculated results

are saved in episodic memory. So, when in the future a

particular number whose result is already there in episodic

memory again comes for addition, it doesn’t go for the whole

procedure. It automatically gets the output from Episodic

Memory. It's called learning. Therefore, performance

increases in terms of decision-making and processing time.

THE OUTPUT OF ARITHMETIC AGENT

We execute the agent in soar Debugger. Before we execute

the agent in the Debugger, we will:

1. Excise all previous productions by pressing the

“Excise all” button that is present at the bottom bar

of the Debugger.

2. Freshly initialize your agent using the “Init-soar”

button and using Soar button.

3. Load your agent on the Debugger using the

“Source” button

4. Press the “Run” button.

Here, a total of 75 productions are sourced from the agent.

This whole agent executes 20 times. The output of the agent

is shown below figure:

Fig. 2 Running process in Arithmetic Agent

Fig. 3 First-time Output of 2-digit addition

Here, we are showing four screenshots regarding the output

of the 2-digit addition arithmetic agent. Figures 2 and 3 show

the running stage of 2-digit addition. Figure 4 shows the long-

run trace (75 productions) of 2-digit addition.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 1s

DOI: https://doi.org/10.17762/ijritcc.v11i1s.5994

Article Received: 20 November 2022 Revised: 28 December 2022 Accepted: 04 January 2023

62

IJRITCC | January 2023, Available @ http://www.ijritcc.org

Fig. 4 Long run Trace (75 productions) of 2-digit addition

PERFORMANCE ENHANCEMENT

Every time, the entire agent uses a distinct set of numbers.

Every time an agent takes a number of decisions after

calculation. Each decision takes kernel CPU time in

microseconds, respectively. The graph in figure 5

demonstrates that the time required to execute a specific

number of decisions is at its highest, followed by a reduction

in the time required to execute the same agent repeatedly.

Fig. 5 Graph for Microsec/Decision for 2-digit addition

Multicolumn Arithmetic

CONCLUSION

In this paper, we build an Arithmetic agent that has

computational capability like humans. It performs the

addition 20 times with a different set of numbers where two

numbers of 3 digits are generated randomly and adds these

two numbers with carry forward to the next column.

All calculations are kept in the episodic memory. As a result,

when adding a certain number in the future whose result is

already stored in episodic memory, it does not go through the

entire process. The output from episodic memory is

automatically obtained. Learning is what it is. As a result,

efficiency in terms of decision-making and processing time

improves.

 We can extend this agent by increasing the number of digits

of both numbers (i.e., columns). Also, we can increase the

numbers (rows) from two to three or more.

REFERENCES

[1] Laird, J. E. , Introduction to

Soar. https://arxiv.org/abs/2205.03854,2022.

[2] Andrew M. Nuxoll, John E.Laird,“Enhancing Intelligent

agents with Episodic Memory”, ScienceDirect, Cognitive

Systems Research,34-48,2012.

[3] Langley, P., Laird, J. E., and Rogers, S., ”Cognitive

architectures: Research issues and challenges”, Cognitive

Systems Research, 10(2), pp 141-160,2019.

[4] Newell, A. :” Unified Theories of Cognition.” Harvard

University Press, 1990.

[5] Laird, J. E., Newell, A., Rosenbloom, P. S. “Soar: An

Architecture for General Intelligence” Artificial Intelligence,

33(3), 1-64,1987.

[6] Rosenbloom, P. S., Laird, J. E., & Newell, A “ The Soar

papers: Research on Integrated Intelligence” , MIT Press,

Cambridge, MA,1993.

0

0.05

0.1

0.15

0.2

0.25

912 888 894 852 880 858 878 884 928 830

M
S

ec
/D

ec
is

io
n
s

Decisions

Microsec/Decision for 2-digit addition

Multicolumn Arithmetic

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 1s

DOI: https://doi.org/10.17762/ijritcc.v11i1s.5994

Article Received: 20 November 2022 Revised: 28 December 2022 Accepted: 04 January 2023

63

IJRITCC | January 2023, Available @ http://www.ijritcc.org

[7] Laird, J. E., & Rosenbloom, P.S “The evolution of the Soar

cognitive architecture” In T. Mitchell (ed.) Mind Matters, 1-

50, 1993.

[8] Laird, J.E. , “ The Soar Cognitive Architecture” , AISB

Quarterly, #134 ,2012.

[9] Shalini, Dr. S. Srinivasan & Nitin , “A Review on SOAR

Cognitive Architecture. International Conference on

Information, Technology and Management (ICITM-2019)” ,

Laxmi Devi Institute of Engg. & Technology , Alwar,

Rajasthan, India,2019.

[10] John E. Laird , “Extending the Soar Cognitive Architecture,

Artificial General Intelligence”, 2008, Proceedings of the

First AGI Conference, AGI 2008, March 1-3, 2008,

University of Memphis, Memphis, TN, USA, 2008.

[11] Nason, S., and Laird, J. E., “ Soar-RL: Integrating

reinforcement learning with Soar. Cognitive Systems

Research” , 6(1), 51-59,2005..

[12] Derbinsky, N., Laird, J. E., and Smith, B., “Towards

Efficiently Supporting Large Symbolic Declarative

Memories”, Proceedings of the Tenth International

Conference on Cognitive Modeling, Philadelphia, PA, 2010.

[13] Tulving, E. , “ Elements of Episodic Memory”, Oxford:

Clarendon Press, 1983.

[14] . Lindes, P. Intelligence and Agency, Journal of Artificial

General Intelligence 11(2), 47-49 doi:10.2478/jagi-2020-

0003, 2020.

[15] Laird, J. E. (2020). Intelligence, Knowledge & Human-like

Intelligence, Journal of Artificial General Intelligence 11(2),

41-44. doi:10.2478/jagi-2020-0003.

http://www.ijritcc.org/

