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Abstract: When it comes to remote sensing applications, wireless sensor networks (WSN) are crucial. Because of their small size, low cost, and 

ability to communicate with one another, sensors are finding more and more applications in a wide range of wireless technologies. The sensor 

network is the result of the fusion of microelectronic and electromechanical technologies. Through the localization procedure, the precise location 

of every network node can be determined. When trying to pinpoint the precise location of a node, a mobility anchor can be used in a helpful 

method known as mobility-assisted localization. In addition to improving route optimization for location-aware mobile nodes, the mobile anchor 

can do the same for stationary ones. This system proposes a multi-objective approach to minimizing the distance between the source and target 

nodes by employing the Dijkstra algorithm while avoiding obstacles. Both the Improved Grasshopper Optimization Algorithm (IGOA) and the 

Butterfly Optimization Algorithm (BOA) have been incorporated into multi-objective models for obstacle avoidance and route planning. 

Accuracy in localization is enhanced by the proposed system. Further, it decreases both localization errors and computation time when compared 

to the existing systems. 

 

Keywords: wireless sensor networks, localization error, localization models; Grasshopper Optimization Algorithm (GOA) , Butterfly 

Optimization Algorithm (BOA), Dijkstra; path planning. 

 

I. Introduction 

There have been many proposals for localization strategies in 

recent years. Nearly all of them [1, 2] are designed for 

permanently installed sensor networks. On the other hand, 

some people believe that the sensor can detect the location of 

a mobile device. The nodes that are aware of their position, 

called anchor nodes, are distinguished from the other nodes, 

which are called regular nodes. Positional awareness among 

sensor nodes is crucial in many situations [3]. For instance, 

the sensed data combined with location information allows a 

server to instantly determine where an event has occurred. 

The sensor nodes themselves could be equipped with Global 

Positioning System (GPS) receivers to facilitate an easy and 

precise method of pinpointing sensor locations. But the cost 

of production makes it impractical for use indoors. In 

addition, most uses necessitate only a rough localization [4]. 

Some of the sensor nodes could have a global positioning 

system (GPS), and the rest could rely on an automatic 

localization scheme, but the former is the more practical 

solution. In addition, sensor nodes can move around, greatly 

increasing the area that can be monitored. Consequently, 

mobile sensor networks require a planned localization 

scheme [5]. 

Most nodes in WSNs are deployed at uncontrollable, 

unpredictable locations. To solve the localization problem in 

WSNs, one must determine where each sensor node is 

located. The localization issue can be solved by employing 

the global positioning system (GPS) to pinpoint the precise 

location of sensor nodes. However, this method is infeasible 

in WSNs due to the fact that these networks are made up of 

relatively large sensor nodes, and installing a GPS receiver 

on each of these nodes would significantly increase the 

network's overall cost, complexity, and energy consumption. 

Researchers have developed a number of localization 

strategies to address these issues. Only a subset of sensor 

nodes, called anchor nodes, needs to be equipped with a 

global positioning system. The localization methods can be 

broken down into two distinct groups: those that require a 

fixed range and those that don't. In range-based localization, 

in addition to the angle of arrival (AOA), received signal 

strength (RSS), and other similar metrics, connectivity data 

are also used. 
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 The proposed system uses the Improved Grasshopper 

Optimization Algorithm (IGOA) and the Butterfly 

Optimization Algorithm (BOA) for multi-objective 

optimization. To determine the shortest route, we use 

Dijkstra's algorithm and path planning software like 

Grasshopper's Integrated Grasshopper and Butterfly's BOPP. 

This work makes the following contributions to the field of 

study: 

1. We use the IGOA and the BOA to create a localization 

system for wireless sensor network communication, 

inspired by the efficacy of multi-objective optimization 

methods. 

2. To compare how well the improved localization model 

proposed works with the current model. 

Precisely, this paper is organized into the following sections: 

In the second part, we provide a deep summary of the 

relevant prior studies. Section 3 will provide an overview of 

WSNs that use multi-objective optimization as well as the 

two different optimization approaches that are commonly 

used. Section 4 presents the findings and analysis, and 

Section 5 conclude the paper. 

 

II. Related Work 

Several strategies for boosting node localization precision 

have been discussed here. There have been many attempts to 

find ways to enhance localization precision by employing AI 

methods. A Bayesian algorithm for WSN node localizations 

was first presented by Morelande et al. [6]. The proposed 

algorithm is an improved version of "progressive correction" 

[7], which was published previously. The two approaches are 

contrasted using the Cramér-Rao bound (CRB) as a standard 

across a range of circumstances. There was a noticeable 

improvement in accuracy with the new algorithm. In 

addition, Ghargan et al. [8] proposed a method in which one 

ANN is hybridized independently with the three optimization 

algorithms of particle swarm optimization (PSO), 

backtracking search algorithm (BSA), and gravitational 

search algorithm (GSO) (GSA). The GSA-ANN hybrid 

achieved the best results, with a mean absolute distance 

estimation error of 0.02 m for outdoor scenarios and 0.2 m 

for indoor scenarios. A recent study compiled various 

cutting-edge machine learning techniques for WSN node 

localization [29].Methods like artificial neural networks 

(ANN), support vector machines (SVM), decision trees (DT), 

and the naive Bayes (NB) approach had their error 

distribution curves for localization compared. According to 

the cumulative localization error distributions reported in this 

study, NB performed better than all of the other machine 

learning methods. Using a number of supervised, 

unsupervised, and ensemble machine learning techniques, the 

authors of [10] created an outlier detection algorithm for an 

indoor localization setting called iF Ensemble. K-nearest-

neighbor, random forest, and support vector machines are the 

supervised methods, while isolation forest is the 

unsupervised method (iForest). As part of stacking, an 

ensemble learning strategy, these methods are implemented. 

The model's results are compared to those of the individual 

machine learning algorithms used to create it, including the 

results of any stacking that may have been done. When using 

the suggested techniques for detecting outliers, the stacking 

model achieves a remarkable degree of localization 

accuracy—97.8 percent. Recently, [11] presented a Hop-

Count quantization-based node localization algorithm called 

Kernel Extreme Learning Machines (KELM-HQ). Unknown 

node locations are calculated by the trained KELM. Results 

show that the proposed algorithm reduces localization error 

by 34.6% compared to fast-SVM, 19.2% compared to 

GADV-Hop, and 11.9% compared to DV-Hop-ELM. 

If nodes don't know where they are, localization can't tell 

them where they should be looking, and that could be a waste 

of time. GPS is used to easily pinpoint the location of the 

node, but this becomes more expensive when a large number 

of sensor nodes are deployed in a single area. Many 

algorithms have been proposed [12] to address localization 

difficulties. Overall, this research hopes to improve upon the 

localization accuracy of prior studies by employing a 

machine learning technique based on regression. 

If nodes don't know where they are, localization can't tell 

them where they should be looking, and that could be a waste 

of time. Even though the Global Positioning System (GPS) 

can be used to easily localise the node, doing so for a large 

number of sensor nodes deployed in a single area can 

become quite expensive [13]. In order to address the 

localization problems, numerous algorithms have been 

proposed [14]. 

 
Figure 1. Localization in WSN 
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III. Methodology  

3.1 Multi-objective localization using swarm intelligence 

The localization algorithm, which is based on a distance 

routing protocol, is, in essence, a range-free localization 

algorithm. In WSNs, hop count and average hop distance are 

calculated by estimating the distance between beacon nodes 

and dumb nodes. Given the random nature of the connections 

between wireless sensor nodes, the network topology asserts 

various paths, some of which are not straight, between 

beacon nodes and dumb nodes. In this way, the algorithm's 

execution time during the node localization process can be 

used to visually represent certain errors. Wireless sensor 

networks (WSN) rely heavily on location data, and many of 

these networks' applications would be severely hindered 

without it. One example of a path-dependency algorithm, 

distance vector-hop (DV-Hop) [15], relies on connectivity 

and multi-hop transmission to derive an approximate 

position. Its simple and rough estimation method, however, 

leads to a significant positioning error. 

  

3.2 Improved grasshopper optimization algorithm 

(IGOA) 

The theoretical underpinnings of GOA are straightforward, 

and the approach is straightforward to implement. However, 

there are drawbacks that prevent the algorithm from 

generating optimal results. Unfortunately, the original GOA 

was unable to make the most of each iteration due to its 

linearly diminishing comfort zone. Due to the lack of random 

factors, the original algorithm has low variability. The 

algorithm quickly settles on a suboptimal solution. A 

nonlinear comfort zone parameter, a local search mechanism 

based on Levy's flight, and a random jumping strategy were 

introduced to address the drawbacks. The specifics of the 

aforementioned three enhancements are laid out here. 

 

Nonlinear comfort zone parameter: 

In the original GOA, changing the radius of the safety zone 

causes the search agents to iteratively approach the global 

optimum solution. When conducting a GOA [16], the search 

space is narrowed by means of the convenience zone 

parameter. The search agents need time to find an 

approximate optimum, so it's best if the comfort zone 

parameter is large enough so they have some breathing room 

during the exploration phase. To prevent the search agents 

from speeding past the local optimum during exploitation, 

the restrictive factor should be kept low. However, the search 

ability could not be made to coincide with the exploration 

and exploitation phases during the search iterations due to 

the linearly decreasing factor. The sigmoid function was 

implemented to improve the algorithm's search performance 

by harmonizing its two separate phases of investigation. A 

nonlinear threshold function that sees frequent use is the 

sigmoid function. The field of information science makes 

extensive use of it. The sigmoid function formula is as 

follows: 

1
( )

1 x
f x

e−
=

+                                                            (1) 

Using a modification of the sigmoid function, the following 

approach is made for a nonlinear safety-zone parameter: 

0.5

1 x
m u

e−

−
= +

+                                                               (2) 

where u  is the adjustment parameter and its value should be 

in the interval [0, 1].  

 

Local search mechanism based on Levy flight 

A sigmoid-based nonlinear comfort zone parameter is 

proposed below. When it comes to GOA, you can always 

count on a set of predetermined parameters. Every search 

agent could only look in one place, and a lack of randomness 

could dampen their inventiveness during the search 

iterations. It is common practise to add some randomness to 

a deterministic system in order to boost its efficiency. In 

order to improve the search agents' efficiency in locating 

optimal solutions, a local search mechanism based on L'evy 

flight is proposed. Upon completion of the location updating 

process, each search agent's position should be updated via 

Levy flight in accordance with a predetermined probability. 

The formula for the correction is as described below: 

( )    10       i i threshold iX X c s Levy dim X= +                                       

(3) 

where thresholds
 is the threshold parameter which controls the 

direction and the probability of the variation. thresholds
 is 

calculated as follows: 

( ) ( )    1     1threshold trans transs sign x sign x= − + +                                          

(4) 

 

Random jumping strategy. 

The theory behind GOA is simple. The algorithm gives no 

consideration to how to escape the local optimum and instead 

only considers how to converge to the global one. This meant 

that the GOA search process got stuck in a cycle of reaching 

a local optimum and never moving forward. It's possible that 

GOA's simplicity of implementation is actually a drawback, 

as it may prevent it from helping to eliminate the local 

optimum. In order to facilitate the ability to escape the local 

optimum, a random jumping strategy is introduced. When a 

search agent locates a better one, it can take the place of the 

previous target location. As soon as it stops, the equation for 

random jumping becomes effective. As explained below: 
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( )( )new    0.5    2  1  i iX rand X= −  +                          

(5) 

where iX
 is the position of the i-th search agent, and 

new

iX
 

is the new position after random jumping. If 

new

iX
 has 

better fitness, it will replace iX
  . Thus, action of jumping 

out occurs successfully. 

 

Procedure of IGOA. 

An Enhanced Grasshopper Optimization Algorithm (IGOA) 

is outlined in this paper. The IGOA process consists of the 

following steps: (1) initialization; (2) evolution (3) fitness 

updating; (4) jumping. presented as Algorithm 1, the IGOA 

pseudocode. Figure 2 presents the overarching structure of 

the IGOA process. 

 

Flowchart: Proposed IGOA 

 

 
Figure 2. Proposed Flow Chart 

 

 

 

 

 

 

 

 

 

 

 

Algorithm IGOA 

 
 

3.3 Butterfly optimization algorithm 

The intellectual Behaviour of butterflies while searching for 

a food source inspires the Butterfly Optimization Algorithm 

(BOA). Butterflies can navigate to their food source by 

analyzing scents [2]. Local searches and global searches are 

the two main types of searches. The butterfly employs a 

"global search" strategy when it senses the aroma of food and 

a "local search" strategy when it has exhausted that strategy 

and is forced to randomly choose its position in an attempt to 

locate its prey. 

BOA has three phases: the initial, the iterative, and the final. 

First, the initialization phase is carried out, followed by 

iterative searching, and finally, the termination phase, at 

which point the algorithm is terminated once the best 

solution has been determined. This sequence is processed by 

BOA [17] during each run. It has been decided upon which 

constraints will be used in BOA. As soon as the values are 

assigned, an initial population of butterflies is generated for 

optimization. There is a set amount of memory available to 

hold this data, and both the memory size and the butterfly 

shape are unchanging. The positions are generated on a 

completely arbitrary grid. In the following section, we will 

enter the iteration stage. Each iteration involves re-evaluating 

the fitness value and the positions and then relocating all of 

the solutions in the butterfly space to the new positions. 

Formulas are used by butterflies to create scents at specific 

locations (9). In BOA, there are two distinct types of 

searches: a global search and a local search. In the former, 

the butterflies flutter toward the global search space's best 

solution vector, which is shown as 
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1 2( * )t t t

i i iy y r h y fi+ = +  −                                                      

(6) 

Where 
t

iy
 Solution vector of i th−  butterfly in iteration. fi 

is referred to the fragrance of i-th butterfly and random 

number r is taken as [0, 1]. The local search algorithm is 

shown as 

1 2( )t t t t

i iy y r yj yk fi+ = +  −                                                     

(7) 

Where
tyj

and 
tyk
are butterflies from j and k in the 

solution space. If 
tyj

and 
tyk
are from the same swarm and 

random number r is [0, 1] then equation (7) converts to a 

local random search. 

 

3.4 Implementation of multi-objective localization 

It is a two-dimensional network with a square shape. The 

nodes, denoted by N, are all assumed to be mobile and 

movable. Since initial nodes have no information about their 

surroundings, they are all treated as if they were unknown 

nodes. This root uses nodes with local knowledge to inform 

their neighbours about their surroundings. There are several 

obstacles in the network area. The network's provided barrier 

is denoted by the letter "O" and has a circular outline. A 

mobile anchor is free to roam the network space anywhere 

except in close proximity to the obstruction. The mobile 

anchor is used to reduce the number of communication 

nodes. In this context, "M" represents the total number of 

mobile anchors (MA) [18] in the immediate vicinity of the 

network. Through its obstacle detection method, the MA can 

identify and avoid potential dangers. If MA exceeds the 

value, it stops providing the current position to the nodes. If 

the MA and UNs are not within range of one another, they 

will not be able to exchange data with one another. The UN 

contacts a reference node after learning where its members 

currently are. If QNs broadcast their current position to the 

other nodes, we can get a rough idea of where the UN is. 

 

The localization error rate is minimized by the fitness 

function, it is denoted as 

( )

1

N

total k

k

error error
=

=                                                                  

(8) 

The localization error of node i is error (k) and it is given as 

2 2( ) ( )k k k k kerror x u y v= − + −                                          

(9) 

Where ( kx , ky )  denote the location of node k and ( ku , kv

)denote the value of the same node k. Fitness values are 

calculated for each candidate node using IGOA and BOA 

techniques, and the final node is determined by maximum a 

posteriori (MA) estimation within the region. For the former, 

IGOA suggests the Grasshopper Optimization Path Planning 

(GOPP), while BOA suggests the Butterfly Optimization 

Path Planning (BOPP). 

 

IV. Result analysis 

 Models are tested and analysed to determine how effective 

they will be. As a result, the constraints that were generated 

have been tried and true. Two algorithms, IGOPP and BOPP, 

are compared for their localization accuracy, localization 

ratio, and computational time. Path planning using IGOPP 

and BOPP for avoiding obstacles is shown in Figure 3. 

 

3.2 Localization accuracy 

The future model's Behaviour can be predicted by comparing 

it to existing models. The efficiency comes from utilizing 

100 UN nodes. The implementation parameters and their 

values are listed in Table 1. Having precise localization is 

essential for effective route planning. Accuracy is enhanced 

by comparing it to other algorithms. To determine this, the 

localization error is used. Improved precision is the result of 

reduced localization errors. The localization accuracy is 

measured by calculating the average localization error across 

all nodes in a specific part of the network. 

 

Table 1. Parameters with value 

Parameter Value 

Network Size(A) 100 X100sq.m 

No of Nodes (N) 100 

Distance(dmax) 35 m, 70 m, 105 m, 

140 m, 175 m` 

Max Iteration (t) 60-300 

Resolution ® 1 

 

3.3 Computation time 

Computation time is measured in terms of how long it takes 

to run the algorithms. A computer with an X64-based 

processor and Windows 8.1 is used for this simulation. In 

both cases, 50 iterations are the maximum allowed. The 

values used come from Table 1, with the exception of R, 

which is set to 1. The parameters used are 100 UNs, dmax = 

140, and a default value of 1. Therefore, BOPP has a faster 

computational speed than IGOPP. The computation time 

grows proportionally with the value of tmax. Both the 

IGOPP and BOPP models' respective computation times are 

displayed in Figure 4. 
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Figure3 : Mean localization error versus maximum 

movement for IGOPP and BOPP 

 

3.4 Average Computation Time  

 
Figure 4. IGOPP and BOPP models' respective computation 

times 

 

V. Concussion 

The purpose of this proposed method is to enhance 

localization within a wireless sensor network. The 

localization error can be decreased by using the multi-

objective strategy presented here. Both the IGOPP and BOPP 

dynamic obstacle avoidance route planning models have 

been designed for use in mobile anchor-assisted localization. 

Dijkstra's algorithm is used for path planning to find the 

shortest route, and the suggested model optimizes the path 

based on the most up-to-date information from the area. Both 

optimization methods steer clear of the obstacle in MA's way 

while also plotting the most direct route possible between 

origin and destination. Our final results show that the IGOPP 

and BOPP models we proposed are superior to the state-of-

the-art in terms of accuracy, computation time, and 

localization ratio. On the other hand, the proposed model can 

only optimize localization with static barriers. In the future, 

we plan to investigate the system with movable obstructions, 

which will provide the MA with the ability to direct its 

movements and create complex patterns of motion across 

space. 
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