
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 12

DOI: https://doi.org/10.17762/ijritcc.v10i12.5896

Article Received: 10 October 2022 Revised: 14 November 2022 Accepted: 16 December 2022

155

IJRITCC | December 2022, Available @ http://www.ijritcc.org

FPGA Implementation of Double Precision Floating

Point Multiplier

Mohd Abdullah1, Dr. Bharti Chourasia2
1PhD Scholar, Department of Electronics & Communication Engineering,

SRK University, Bhopal, India

mab434@gmail.com
2Associate Professor & HOD, Department of Electronics & Communication Engineering,

 SRK University, Bhopal, India

bharti.chourasia27@gmail.com

Abstract—High speed computation is the need of today’s generation of Processors. To accomplish this major task, many functions are

implemented inside the hardware of the processor rather than having software computing the same task. Majority of the operations which

the processor executes are Arithmetic operations which are widely used in many applications that require heavy mathematical operations such as

scientific calculations, image and signal processing. Especially in the field of signal processing, multiplication division operation is widely used

in many applications. The major issue with these operations in hardware is that much iteration is required which results in slow operation while

fast algorithms require complex computations within each cycle. The result of a Division operation results in a either in Quotient and

Remainder or a Floating point number which is the major reason to make it more complex than Multiplication operation.

Keywords- Floating Point Arithmetic, Multipliers, Digital Arithmetic, FPGA, DSP48E.

I. INTRODUCTION

Floating-point matrix computation is widely employed in

the disciplines of image processing, deep learning system

control, and digital signal processing. Its computational

efficiency does have a direct influence on the overall

performance of the system. Various systems for accelerating

matrix calculations have arisen in recent times, such as FPGA

CPU, GPGPU, and software libraries. (FPGAs) are perfect for

speeding matrix calculations as a co-processing basis. FPGAs

surpass general-purpose CPUs and GPGPU system in terms of

the long productivity, according to several studies. Its fully

programmable and substantial logic resources, notably the huge

number of embedded DSPs and BRAMs (Block RAMs), lay

the foundation for improved matrix computing performance.

The fundamental purpose of many algorithms and associated

hardware designs is to create a balance between resource

demands and performance. Methods for multiplication of fixed-

point matrices, for example, have been presented. The

designers created a full FPGA coprocessor for multiplications.

Similar systolic array architectures were presented due of the

large data flow and processing speed. The multiplications

structure has also been studied by several scholars. Matrix

computation still has a number of issues, despite all of the

research that has been done. Older systems had limited

processing power and could only handle fixed-point

information and small or medium-sized matrix. We intend to

create a matrix computation acceleration (MCA) unit capable

of processing large matrices with high data accuracy. Second,

dealing with matrix equations of varying sizes is difficult when

employing a fixed structure. As a result, assessing the

structure's flexibility is critical and helpful. Furthermore, most

previous work can only do a single matrix operation. A

specialized matrix operation, on the other hand, is typically

sufficient in many technological applications nowadays. It

needs a large variety of matrix processes, and also the ability to

perform a series of matrix operations with the same structure.

Now for about two decades, (Field Programmable Gate

Arrays) have been around. Since then, they've increased in

popularity and have become a standard way to build digital

circuits. Because of advancements in processing technologies,

the logic capacity of FPGAs has significantly risen, giving

them a viable implementation choice for bigger and more

complex designs. Additionally, the fully programmable of their

logic and routing resources has a massive effect on the finished

device's space, speed, and energy consumption. Because of its

programming and routing interfaces, FPGAs are much more

versatile more general-purpose that standard cell ASICs, but

they are also bigger, and consume more energy. Improvements

in processing technologies, on the other hand, have necessitated

and enabled a number of alterations to the fundamental FPGA

structure. These developments are aimed at increasing the

overall efficiency of FPGAs in order to close the gap between

them and ASICs. Programmable Logic Arrays (FPGAs) are

pre-fabricated silicone devices that may be electronically

programmable to create practically any form of digital

schematic in the field. FPGAs provide such a cheaper option &

speed to market for low and medium volume manufacturing

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 12

DOI: https://doi.org/10.17762/ijritcc.v10i12.5896

Article Received: 10 October 2022 Revised: 14 November 2022 Accepted: 16 December 2022

156

IJRITCC | December 2022, Available @ http://www.ijritcc.org

than Embedded Integrated Devices (ASICs), which frequently

require a lot of resources of time and cash to get the first

device. FPGAs, on either hand, may be set up in less than a

moment and cost anywhere between a few hundreds to a few

thousands of dollars.

II. FLOATING-POINT UNIT (FPU)

Wherever the computing unit's floating-point unit is an

IEEE-754 compliant integrated unit with double resolution.

Fixed to float conversions, float to float converting, floating-

point addition (64-bit), and floating-point multiplication is

among the four floating-point processes it can execute (64-bit).

FPU is given a 2-bit operation code to choose which operations

can be performed. The enabled signal instructs the FPU to

begin performing the needed operation.

In the Xilinx-ISE tool, IP cores are provided to solve these

essential floating-point calculations. However, because our

computing unit is aimed towards ASIC creation, IP cores are

not an option. To provide a comprehensive hardware

descriptions of these processes, all four floating-point processes

are implemented using an algorithmic state machine (ASM) in

Verilog HDL.

Each floating-point operation that the FPU performs

requires many cycles to accomplish. As a result, a handshaking

mechanism between the control module and the FPU is devised

so that the control module can track the FPU busy state through

using FPU ready signal. The floating-point multiplying is also

done using a fixed-point multiplication.

Figure: 1.1: Floating-Point Units

Figure 1.2: Double-precision Floating-point Multiplication

ASM is used to implement the floating-point added

technique, which is a step-by-step operation. Figure 1.1 depicts

the whole technique for adding two double-precision floating-

point values, such as ADBL and BDBL. There are several

phases involved in floating-point multiplying, as shown in

Figure 1.2. Figure 1.1 shows the procedures involved in

converting a fixed-point value to its corresponding floating-

point number and depicts the whole technique for converting a

floating-point value to a set amount. The data route of the

computing unit is utilized with the floating-point unit described

in this article to conduct the essential operations for polynomial

solution. The following part describes the design and

implementation of the data route and its peripherals.

III. RELATED WORK

Machupalli Lahari et.al. (2020) “Efficient Floating-Point

HUB Adder For FPGA” An effective floating-point HUB

adder for FPGA was designed and built. Both a single route

and a double route approach are used to build and study the

HUB adder. When compared to the single path technique, the

power and latency of the double path strategy are bearable.

Furthermore, spurious power suppression is described as a way

for reducing Dynamic power consumption. The propose

doubled path HUB floating point adder with SPST decreases

power and latency by 15% and 13%, respectfully, when

compared to the current double path HUB precision floating -

point adder.

D S Bormane et.al. (2020) “Acceleration Techniques using

Reconfigurable Hardware for Implementation of Floating Point

Multiplier” Two Algorithms for doing a 24*24 significant

multiplying for IEEE single precision values are described.

When it comes to LUTs, the first technique takes up less space

than the second method. Furthermore, the computing time

needed to do the multiplying is around one-third of that

required by the second method. The suggested multiplier

surpasses all prior techniques, and the power delay parameter

has been shown to be quite useful.

Alahari Radhika et.al. (2020) “Low Complexity Fused

Floating Point FFT Using CSD Arithmetic for OMP CS

System” The application-driven hardware fusing and Canonical

sign digit-driven shift accumulation-based mantissa calculation

approaches are used to minimize the computational complexity

that occurs in floating point arithmetic-based complex FFT

computing. Hardware sharing is accomplished by utilizing the

FFT butterfly structure's inherent redundant computing

features, which significantly minimises computational

complexity overhead. It is also shown that during FPU

multiplication, utilizing a multiplier-less mantissa calculation

reduces complexity significantly. Finally, the metrics of these

two numerical optimization are evaluated in a twiddle factors

optimized FFT structure. The basic link among floating point

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 12

DOI: https://doi.org/10.17762/ijritcc.v10i12.5896

Article Received: 10 October 2022 Revised: 14 November 2022 Accepted: 16 December 2022

157

IJRITCC | December 2022, Available @ http://www.ijritcc.org

unit and performance measures of both hardware and twiddle

factors optimization approaches has been carefully

investigated, and FPGA hardware creation for qualitative and

quantitative testing has been undertaken.

V. Ramya et.al. (2020) “Low power single precision BCD

floating–point Vedic multiplier” A low-power, delay-efficient

BCD-floating point multiplication (BCD-FPM) for single

precision is developed using the UT sutra. Methods I and

Method II have been proposed for BCD-FPM, with BFPM

being produced applying KSA to compare the findings.

According to the statistics, the BCD-FPM Method II exceeds

the BFPM by 73.41 percentage in terms of strength and 30.37

percent in terms of delay, while the BCD-FPM Methods I out

performs the BFPM by 59.48 percentage in terms of strength

and 6.9 percent in terms of latency. To boost performance even

more, BCD-FPM Method II is parallelized. When comparing to

design without pipes, the power-delay result of innovation by

43.44 percent as the size of a pipelined structure grows. As a

consequence, the pipelined BCD-FPM System II is

outperformed both the BCD-FPM Method I and the BFPM

Methods.

Mohamed Al-Ashrafy et.al. [2019] "An Efficient

Implementation of Floating Point Multiplier" For the Virtex-5

FPGA from Xilinx, the proposal outlines a quick

implementation of an IEEE 754 decimal numbers floating point

multiplication. VHDL is used to create a technology-

independent pipelined design. The multiplier implementation

handles overflow and underflow circumstances. Rounding is

not employed when using the multipliers in a Multiple and

Accumulation (MAC) unit to improve accuracy. With a three-

clock-cycle delayed, the design provides 301 MFLOPs. The

multiplier was compared to a Xilinx floating point

multiplication core.

Gokul Govindu et al.[2019] "Analysis of High-performance

Floating-point Arithmetic on FPGAs" Inside the high-

performance and experimental computational fields, the

suggested FPGAs are rapidly being used to develop floating-

point based hardware accelerators. The floating-point

multiplication and adder/subtractor units are investigated in this

study using the numbers of pipeline stages as a parameter and

throughput/area as a metric. The authors achieve throughput

ratios of much more than 240Mhz (200Mhz) for singles

(double) precision processes by substantially pipelining the

devices. To demonstrate the influence of floating-point

modules on kernels, the author develops a multiplications

kernel based on our floating-point units & show that state-of-

the-art FPGA devices can reach roughly 15GFLOPS for single

(double) precision floating-point based multiplications

(8GFLOPS). The authors also show that FPGAs may

outperform general-purpose CPUs by up to 6 times in terms of

GFLOPS/W (performance per unit power) (for single

precision). The authors then go into the effects of floating-point

unit on the construction of energy-efficient matrices multiple

kernels structure.

Soner Yes et.al. (2018) “Experimental Analysis and FPGA

Implementation of the Real Valued Time Delay Neural

Network Based Digital Predistortion” RVTDNN-based Digital

Predistortion has indeed been experimentally investigated on

hardware, and an FPGA implementation with really resource -

constrained use has been given. Effective usage of the DSP48

basic blocks' dedicated instruction register, restricted learning,

and contribute to creating linearly approximation artificial

neurons are the underlying drivers of the difference in resource

consumption and operating clock frequency. The proposed

approaches allow for compact and adaptable FPGA

implementations of complex neural networks with such a group

of neurons and increased pulse bandwidths.

 Junzhong Shen et.al. (2018) “Towards a Multi-array

Architecture for Accelerating Large-scale Matrix

Multiplication on FPGAs” The focuses are on the architectural

expansion of the linear array structure for matrix multiplication

on FPGA by providing a highly customizable and scalable

multi-array architecture. We employ a work-stealing strategy to

establish workload balancing among PE arrays. An effective

analytical model is constructed to find the optimum design

possibilities for the architectural expansion. According to

testing data, our ideal extension of the linear array design may

deliver the best performance and processing efficiency.

Y. R. Annie Bessant et.al. (2018) “Analysis of Area and

Delay for Floating Point Matrix Multiplication” The different

floating point multiplications designs, each having a memory

and velocity trade-off, are demonstrated. Matrices are the most

essential part in terms of the size & delayed consumed for

multiplications. The recommended design employs floating

point multiplication and UrdhvaTiryagbhyam multipliers.

According the findings of the performance monitoring, our

method's performance improved in terms of delay and area.

With a design frequency of 189.517 MHZ on the virtex-6

xc6vlx240t FPGA, the algorithms can retain top performance.

IV. PROPOSED METHDOLOGY

To obtain the final outcome of Multiplying, a summing of

these partial products is calculated using ADDER. The number

of partial products created grows in proportion to the bit size of

the Multiplication. The 256 partial products are created for a 16

bit adder. Booth's Encode, a method for reducing the amount of

partial products formed during multiplications, can help lower

this quantity.

Components and connectivity can be shared across several

data routes using data path merging techniques, resulting in a

shared data path. When space conservation is a top issue, such

sharing is extremely vital. Resource sharing has always been

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 12

DOI: https://doi.org/10.17762/ijritcc.v10i12.5896

Article Received: 10 October 2022 Revised: 14 November 2022 Accepted: 16 December 2022

158

IJRITCC | December 2022, Available @ http://www.ijritcc.org

limited to components and bit widths of the same size. While

this saves space, it does not allow for the full utilization of

available shares. Because floating-point data routes are

complicated and comprise many components with various bit

widths, this is a significant hurdle to merging them.

The exponent and mantissa components of a floating-point

number, for example, are computed using floating-point

arithmetic data pathways. The exponent and mantissa

components for single-precision would typically be 8-bits and

24-bits, respectively. Exponent and mantissa constituents for

double-precision would typically be 11-bits and 53-bits,

respectively. 8-bit, 24-bit, 11-bit, 53-bit, and 32-bit component

will be used in converting operations between integer, single-

precision, and double-precision formats. This results in a large

number of various bit-width components that might be shared,

and limiting sharing to only similarly sized components would

significantly limit the possibility for space savings.

Sharing components with varied bit-widths is required to

maximise resource sharing. Whenever the data paths of two

distinct operations, also with a 24-bit adder and the other with a

32-bit adder, are combined, the two adders should indeed be

replace with a single shared 32-bit adder, as illustrated in

Figure 1.3.

Figure 1.3: Merging of 24-bit and 32-bit adders

When a bigger component or interconnection is merged, the

bit-alignment problem is solved by determining how a smaller

component or interconnection should be aligned inside the

larger component or connection. Some components require

precise alignment to work effectively, whereas others can

function successfully even if they are not aligned. When a

chain of subsequent components and interconnects is

maintained and must be aligned precisely in relation to one

another, the problem becomes much more problematic.

The data route merging approach allows resources available

with mismatched bit widths to be combined, but it does not

take into consideration alignment difficulties. Furthermore,

there has been relatively little research on the bit-alignment

problem in the literature. Many works presume a constant bit

width throughout one design, or neglect the bit representation

of signals entirely, or require the user to manually adjust the

size of the data words to matching the hardware size. Bit-

alignment errors, on the other hand, had to be manually

addressed, which was a time-consuming procedure. Because a

pair of connections that are recognized as shared may turns out

to be non-shareable owing to alignment concerns, ignoring bit-

alignment during data route merges may result in sub-optimal

merger outcomes. As a result, a solution to this situation is

urgently required. A unique technique was created to satisfy the

demand for a bit-alignment method during data plane merging.

The introduction of this unique solution is the major topic of

this chapter. This new bit-alignment approach permits the

merging of resource with non-matching bit-widths while

addressing the bit-alignment problem, optimizing area savings

and allowing for more sophisticated data path combining.

Another drawback of the custom FPU generation process

described in Chapter 4 is that it ignores the volume and

throughput trade-off among hardware implementation and

software emulation instruction. A selection of the floating-point

instructions required for the applications is implemented in the

hardware FPU, and the floating-point operations that are not

implemented in the hardware FPU are emulated in software

when developing a bespoke FPU. As a result, there are various

trade-offs to consider as floating-point instructions are off-

loaded onto specialised floating-point hardware. In general, the

more processes done in hardware, the more space is utilised,

but the fewer cycles are required to finish the application's

execution. More hardware, on the other hand, may cause the

clock time to lengthen. This is especially the case in datapath

merging, where adding multiplications to the crucial path might

cause delays.

As a result, a quick design space exploration was carried

out in this chapter to study these trade-offs in the FPU

generation methodology.

Starting with a fixed alignments component, the

consistency chart is traversed to promote the needed alignments

all through the graph. An alignments tree is used to hold the

traversal route and alignments data. In the compatibility graph,

this is repeated for each fixed alignments components. After

that, the alignments trees are integrated into a single alignments

tree that is used to trim and annotation the compatibil graph.

The maximum weight coterie may then be solved using the

processed compatibility graph, as shown in. Data structures

defining components and interactions are created from the

datapath descriptions. Using a library of VHDL descriptors for

each components, the components data structures are then

utilised to construct VHDL constituent declarations and port

mapping. All of the functional departments that were developed

during the creation of the floating-point datapaths in VHDL

were separated and grouped to create the library of VHDL

description. To make signal assignment easier, each

component's input and outputs ports are given a distinct

signaling name in the port mappings.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 12

DOI: https://doi.org/10.17762/ijritcc.v10i12.5896

Article Received: 10 October 2022 Revised: 14 November 2022 Accepted: 16 December 2022

159

IJRITCC | December 2022, Available @ http://www.ijritcc.org

The signal assignments are generated using the connecting

data structures. The auxiliary information instructs the VHDL

generation where processing elements are inserted and how to

construct the datapath to complete each task.

V. RESULTS

The graphs depict the runtime as a function of the area.

Each of the combinations that gave the quickest runtimes is

shown by a circle. The higher the area and the shorter the

runtime, as predicted, the more operations executed in

hardware. Over a certain point, the majority of the graphs show

declining re-turns. This because when more data pathways are

integrated into the FPU, the clock period increase, and the

amount of cycles saving by utilising hardware (rather than

software emulation) decreases as lower-ranked operations are

performed in hardware. With the exception of epic and

mpeg2enc, the runtime gradually increases in all scenarios. The

low-ranked commands were implemented so seldom in these

circumstances that the cycles saved by employing hardware

were insufficient to compensate for the increased delay.

Figure 1.4: Power Analysis-I

Figure 1.4 is showing power consumption of the proposed

work and the previous author's work. The variety of Possible

Floating Point Multipliers in the portion with Power (W) in

diagram is 3.294. Iterative single/double-precision merging

floating-point/multiplier on FPGA (2015) has an area and

power efficiency of 1. And the answer is 3.294 in An Actual

Integration of Floating Point/Multiplier.

Figure 1.5: Number of DSP48Es

Figure 1.5 shows the number of DSP48E used in the previous

author's work and proposed work.

VI. CONCLUSION

The implementation is described in this dissertation. In a

suggested technique, a process for automatically producing

FPUs tailored at the instruction level was provided, which

included datapath merging to reduce area. The merging of

complicated floating-point datapaths was approached using a

maximum weight clique technique. Customizable FPUs were

created for several Mediabench application and compare

against a reference FPU that supported all floating-point

operations. Minimizing the floating-point instruction set

resulted in significant space savings, while datapath merging

resulted in even more savings. The FPU size was decreased by

an average of 51% by reducing the floating-point instruction set

to the bare minimum necessary for the application. The FPU

area was lowered by an average of 65% by conducting

instruction reduction and then merging the floating-point

datapaths. The results demonstrated the efficacy of modifying

FPUs at the instruction level, as well as the efficacy of datapath

merging as a way of reducing area.

REFERENCES

[1] Raul Murillo , Alberto A. Del Barrio, Guillermo Botella , Min

Soo Kim, HyunJin Kim and Nader Bagherzadeh “PLAM: a Posit

Logarithm-Approximate Multiplier for Power Efficient Posit-

based DNNs”2021.

[2] Geetam Singh Tomar, Marcus Llyode George, Abhineet Singh

Tomar “Multi‐precision binary multiplier architecture for

multi‐precision floating‐point multiplication” 2021.

[3] Hamzah Abdel-Aziz ,Ali Shafiee ,Jong Hoon Shin , Ardavan

Pedram , Joseph H. Hassoun “Rethinking Floating Point

Overheads For Mixed Precision Dnn Accelerators” 2021.

[4] Varun Gohil, Sumit Walia, Joycee Mekie, Manu Awasthi “A

Floating-Point Representation for Error-Resilient Applications”

2021.

[5] N. Bhavani Sudha, Gamini Sridevi “An Efficient Design Of

Multiplier And Adder In Quantum-Dot Cellular Automata

Technology Using Majority Logic” 2021.

[6] Y Mounica , K Naresh Kumar , Sreehari Veeramachaneni ,

Noor Mahammad “Energy efficient signed and unsigned radix

16 booth multiplier design” 2021.

[7] Yuheng Yang, Qing Yuan1, And Jian Liu “An Architecture of

Area-Effective High Radix Floating-Point Divider With Low-

Power Consumption” 2021.

[8] J. Jean Jenifer Nesam ,S. Sivanantham “Efficient half-precision

floating point multiplier targeting color space conversion” 2020.

[9] TaiYu Cheng , Yukata Masuda , Jun Chen , Jaehoon Yu ,

Masanori Hashimoto “Logarithm-approximate floating-point

multiplier is applicable to power-efficient neural network

training” 2020.

0
1
2
3
4

Power (W)

0

2

4

6

Number of DSP48Es

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 12

DOI: https://doi.org/10.17762/ijritcc.v10i12.5896

Article Received: 10 October 2022 Revised: 14 November 2022 Accepted: 16 December 2022

160

IJRITCC | December 2022, Available @ http://www.ijritcc.org

[10] Thiruvenkadam KRISHNAN , Saravanan S2 “Design of Low-

Area and High Speed Pipelined Single Precision Floating Point

Multiplier” 2020.

[11] Chuangtao Chen, Sen Yang , Weikang Qian, Mohsen Imani ,

Xunzhao Yin , Cheng Zhuo “Optimally Approximated and

Unbiased Floating-Point Multiplier with Runtime

Configurability” 2020.

[12] Zhaojun Lu, Md Tanvir Arafin, Gang Qu “RIME: A Scalable

and Energy-Efficient Processing-In-Memory Architecture for

Floating-Point Operations” 2020.

[13] Machupalli Lahari, Sonali Agrawal “Efficient Floating-Point

Hub Adder For Fpga” 2020.

[14] D S Bormane, Sushma Wadar, Avinash Patil, S C Patil

“Acceleration Techniques using Reconfigurable Hardware for

Implementation of Floating Point Multiplier” 2020.

[15] Alahari Radhika, Kodati Satyaprasad, and Kalitkar Kishan Rao

“Low Complexity Fused Floating Point FFT Using CSD

Arithmetic for OMP CS System” 2020.

[16] V. Ramyaa, R. Seshasayanan “Low power single precision BCD

floating–point Vedic multiplier” 2020.

[17] Manish Kumar Jaiswal, And Hayden K.-H. So “DSP48E

Efficient Floating Point Multiplier Architectures on FPGA”

[2019].

[18] MohamedAl-Ashrafy,AshrafSalem,WagdyAnis“An Efficient

Implementation of Floating Point Multiplier” [2019].

[19] Ling Zhuo and Viktor K. Prasanna “Sparse Matrix-Vector

Multiplication on FPGAs” [2019].

[20] Gokul Govindu, Ling Zhuo, Seonil Choi and Viktor Prasanna

“Analysis of High-performance Floating-point Arithmetic on

FPGAs” [2019].

[21] Soner Yes ̧ Cansu S ̧ Ali Ozg ¨ ur Yılmaz “Experimental

Analysis and FPGA Implementation of the Real Valued Time

Delay Neural Network Based Digital Predistortion” [2018].

[22] Aneela Pathan , Tayab D Memon and Sheeraz Memon “A

Carry-Look Ahead Adder Based Floating-Point Multiplier for

Adaptive Filter Applications” [2018].

[23] Junzhong Shen, Yuran Qiao, You Huang Mei Wen and

Chunyuan Zhang “Towards a Multi-array Architecture for

Accelerating Large-scale Matrix Multiplication on FPGAs”

[2018].

[24] Y. R. Annie Bessant and T. Latha “Analysis of Area and Delay

for Floating Point Matrix Multiplication” [2018].

[25] Yixing Li, Zichuan Liu, Kai Xu, Hao Yu, Fengbo Ren “A Gpu-

Outperforming Fpga Accelerator Architecture For Binary

Convolutional Neural Networks” [2018].

[26] Vladimir Rybalkin, Alessandro Pappalardo “FINN-L: Library

Extensions and Design Trade-off Analysis for Variable

Precision LSTM Networks on FPGAs” [2018].

[27] Manish Kumar Jaiswal, and Hayden K.-H So “DSP48E Efficient

Floating Point Multiplier Architectures on FPGA” [2017].

[28] Martin Langhammer, Bogdan Pasca “Single Precision Natural

Logarithm Architecture for Hard Floating-Point and DSP-

Enabled FPGAs” [2016].

[29] Prasad Bharade, Yashwant Joshi, Ramchandra Manthalkar

“Design and Implementation of FIR Lattice Filter using Floating

Point Arithmetic In FPGA” [2016].

[30] Mohammed Dali , Ryan M. Gibson , Abbes Amira, Abderezak

Guessoum and Naeem Ramzan “An Efficient MIMO-OFDM

Radix-2 Single-Path Delay Feedback FFT Implementation on

FPGA” [2015].

[31] E. George Walters “24-Bit Significand Multiplier for FPGA

Floating-Point Multiplication” [2015]

http://www.ijritcc.org/

