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Abstract— Multicore systems have emerged as a cost-effective option for the growing demands for high-performance, low-energy 

computing. Thread management has long been a source of concern for developers, as overheads associated with it reduce the overall throughput 

of the multicore processor systems. One of the most complex problems with multicore processors is determining the optimal number of threads 

for the execution of multithreaded programs. To address this issue, this paper proposes a novel solution based on a modified symbiotic organism 

search (MSOS) algorithm which is a bio-inspired algorithm used for optimization in various engineering domains. This technique uses 

mutualism, commensalism and parasitism behaviours seen in organisms for searching the optimal solutions in the available search space. The 

algorithm is simulated on the NVIDIA DGX Intel-Xeon E5-2698-v4 server with PARSEC 3.0 benchmark suit.  The results show that keeping 

the thread count equal to the number of processors available in the system is not necessarily the best strategy to get maximum speedup when 

running multithreaded programs. It was also observed that when programs are run with the optimal thread count, the execution time is 

substantially decreased, resulting in energy savings due to the use of fewer processors than are available in the system.. 

Keywords- optimization, threads, parallel programming, benchmarks. 

 

I.  INTRODUCTION 

Many OS and hardware factors have been observed to 

affect the thread performance, resulting in a direct detrimental 

impact on computer system throughput. In order to complete 

tasks efficiently in high-performance computing, parallel 

programs must utilize all of the cores available on the machine. 

Many times, the programmer's job is to select the optimal 

number of threads before starting the execution on the target 

machine. As a result, programmers devote a significant amount 

of time to investigating parallel program issues and determining 

the count of threads. Thus, rather than spending time analysing 

the programs for the target machine, programmers can use 

optimization algorithms based on bio-inspired optimization 

techniques to quickly find optimal thread count [1]. The bio-

inspired algorithms are designed to identify the best answer in 

a known search space by mimicking the nature of organisms. 

These algorithms travel to various locations and attempt to 

arrive at the required points as quickly as possible. 

Multithreading is a parallel programming technique 

used on a shared memory-multicore processor system. 

Programmers find parallelism in the serial code or rewrite the 

code to separate out the multiple sub-tasks to execute them 

parallelly on multiple processors. Parallel execution requires 

that work be partitioned [2], but partitioning requires great care. 

Also, dividing the multithreaded applications unevenly can lead 

to a single-threaded execution once the other running short 

threads have finished their execution. A parallel program may 

need to carry out synchronization in order to safely proceed with 

such the processing [3]. After dividing the program into small 

tasks, these tasks need to communicate with each other: after 

all, if a given thread did not communicate at all, it would have 

no effect and would thus not need to be executed [4]. However, 

because communication involves overhead, poor partition 

boundary selection can result in significant performance 

deterioration. Because each simultaneous thread consumes 

shared resources, such as space in processor caches, the number 

of simultaneous threads must frequently be limited. The 

processor caches will overload if too many threads run 

simultaneously, resulting in a higher cache miss probability, 

which will decrease performance [5]. On the other hand, when 

programmers need more numbers of threads, they have to 

overlap thread execution and I/O operations. Also, permitting 
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threads to execute concurrently greatly increases the program’s 

complexity [6], which can make the program difficult to 

understand, degrading productivity.   

Many difficulties in parallel programming have been 

observed by the researchers [7][8][9] in the last few years & 

many attempts have been made to provide solutions for these 

problems. It's difficult to write parallel programs without a 

strong understanding of parallel programming techniques. The 

researchers have developed many software tools to help 

programmers correctly identify the problems in parallelism 

[10][11].  The taxonomy for parallel processing performance 

problems in multi-core systems is presented in [12]. The 

problems can be classified into seven categories as Task 

Granularity, Synchronization, Data Sharing, Load Balancing, 

Data Locality, Resource Sharing and Input/Output. Task 

granularity refers to the number of threads within a task [13]. In 

parallel programs, it is challenging to find parallelism to fully 

utilize the capacity of the machine. Under task granularity [14]. 

oversubscription is one of the issues which occurs when the 

work of the application is divided into smaller tasks than 

required to exploit the multicore or multiprocessor platforms.  

When a machine synchronizes threads that don't do 

enough work to justify the synchronization overhead, low work 

to synchronization ratio issue arises [15][16]. The lock 

contention and badly behaved spinlocks are the problems that 

arise in synchronization. When a thread tries to acquire a lock 

that is already acquired by some other thread, lock contention 

happens [17][18]. In most cases where a thread attempts to 

acquire a contended lock, the thread must wait for the lock to be 

released before the thread can continue execution. Thus, when 

locks contend, threads are blocked from executing until the lock 

becomes free. When the thread is already locked by spinlock, 

all other running threads that try to gain the same lock go into a 

loop waiting for the lock to become free, which can result in 

useless spinning around the loop [19][20].  

II. LITERATURE REVIEW 

AbdurRouf, et al [21] analyse the allocation of 

multiple threads on multiple processors. The Open MP style 

parallel programming API is being used to launch different 

numbers of threads.  The performance is checked in single as 

well as multithreaded applications. Through various 

experiments on different multicore architectures, they found 

that the execution time of the program is reduced when the 

number of threads increased proportionally. Similarly, their 

studies suggest that when thread allocation is done correctly, 

performance improves. The thread count should be determined 

by the number of cores in the system, and it should be kept to 

be equal to the number of cores available. 

Lim, et al [22] proposed a thread evolution kit (TEK) 

with a CPU mediator, stack tuner, and thread identifier for 

CE/IoT devices. Using this kit software developers can identify 

and correct the problems in parallel programs. When the 

program codes are compiled, the enhanced Thread Identifier 

inspects this information in order to properly manage each 

thread. This kit was checked on a CE/IoT development platform 

and compared to other approaches. However, because the APIs 

are also not POSIX compatible, they are challenging to convert 

to new CE/IoT systems. 

Sethia et al [23] proposed an equaliser, which is a low-

overhead device execution system that tracks an application's 

resource specifications and adjusts the on-chip parallel 

processing, processor speed, and memory bandwidth to meet 

the operating demands. It can save energy without sacrificing 

efficiency by throttling underutilized resources. It can also 

increase bottleneck resources to minimize contention and 

improve efficiency without significantly increasing energy 

consumption. Moreover, the performance of the proposed 

equalizer is very close to the DynCTA. 

Qin et al [24]. has presented a solution that delivers both fast 

response time and throughput for programs with short threads. 

Based on system’s load, each program decides how many cores 

it requires. It always knows precisely the cores it has been 

assigned, and it has complete control over the location of its 

threads on those cores. A central core arbiter manages the 

allocation of cores amongst programs.  

Awatramani, et al [25] proposed a thread block 

scheduler to perform kernel-to-core mapping as well as 

scheduling thread blocks from active kernels on the mapped 

cores. When a new kernel starts or a kernel stops, the 

interleaved scheduler conducts an occupancy inspection. The 

maximum block area of all kernels within each centre is 

modified based on the results obtained.  

Pusukuri, et al [26] developed a simple method called 

thread reinforcer for proactively calculating the required 

number of threads without resetting the program or changing 

Operating System rules. Since calculating the proper number of 

threads for a multithreaded program periodically is a difficult 

task. Furthermore, architectural specifications such as memory 

management issues are not considered here. 

Sasaki et al. [27] created a complex scheduler that uses 

hardware monitoring and evaluation units to dynamically 

forecast application scalability and decides the best CPU cores 

to allot for each program. Because each program has its own set 

of characteristics different applications need different shared 

resources like processor cores and memory systems.  As a 

result, it's apparent that OS thread scheduling becomes critical 

in attaining high systems throughput.  

Heirman, et al [28] extended CRUST (Cluster-aware 

Undersubscribed Scheduling of Threads), a technique for 

determining the best thread count for OpenMP applications 

running on clustered cache architectures, for the Xeon Phi's 
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processor. By leveraging application phase behaviour at 

OpenMP parallel section borders, CRUST can automatically 

identify the optimal thread count at sub-application granularity. 

It also uses hardware performance counter information to get 

insight into the program's behaviour. This method controls the 

threads inside the CPU hardware cores at the moment of 

execution.  

Kanemitsu, et al [29] proposed a task scheduling 

approach based on clustering for minimising the scheduled time 

in a large number of distinct processors. The number of 

processors utilized for actual execution is controlled in order to 

reduce the Worst Schedule Length (WSL). Real-time task 

assignment and task clustering are used to decrease the 

scheduling time until the total processing time in a task cluster 

reaches the lower limit. It concentrates on the near-optimal 

selection of processors without taking into account the impact 

of the number of active threads on system performance. 

 
Figure 1 

 
Figure 2

III. MOTIVATION AND PROBLEM STATEMENT 

Figure 1 shows the graphs of execution time vs the number of 

threads on a 40 core Xeon processor system for streamcluster 

(left), swaptions (middle), and ferret (right) of the PARSEC 

benchmark.  The X-axis represents the number of threads, 

while the Y-axis represents the execution time. The execution 

time lowers as the number of threads increases. We can see 

that the execution time for a certain number of threads 

reduced significantly at first but then fluctuated by a very 

random amount. This occurred because of the number of OS-

level factors and their overheads interfering with and 

affecting the program's execution. It can be said that the 

streamcluster works well up to ten threads, but as the number 

of threads exceeds forty, it becomes unpredictable. Both 

swaptions and ferret operate excellently up to twenty and 

twelve threads respectively and do not greatly improve after 

that.  

The areas in Figure 1 where these benchmarks ceased to 

progress as the number of threads grew are depicted in Figure 

2. In order to get the best performance on multicore 

processing systems, the number of threads in multicore 

processing applications should always equal the number of 

cores. However, this is not the case with the benchmark 

results presented here. Because the execution time varies 

randomly as shown in Figure 2, no method or strategy can be 

used to find the thread count to minimize execution time. 

Thus, in this paper novel, searching optimization strategy for 

estimating an optimum number of threads in multithreaded 

programs is proposed to overcome this issue. 

IV. PROPOSED METHODOLOGY 

In [1], a population-based bio-inspired algorithm called 

Symbiotic Organism Search (SOS) was developed for 

addressing numerical optimization algorithms in the available 

search space. An SOS is a simulation of three symbiotic 

relationships between organisms: mutualism, commensalism, 

and parasitism. Mutualism refers to a relationship between 

two species in which both of them benefit from the 
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interaction. In a commensalism relationship, one organism 

benefits and another is not affected. In a parasitism 

relationship, one organism gets the benefits while the other 

one is harmed intentionally. The possible solutions represent 

the organism's positions in the search space, and these 

organisms always travel through the three phases described 

in SOS to reach new places. The fitness of these new positions 

is examined, and the best among all is selected as the better 

alternative. The user needs a fitness function that can assess 

the present position and calculates how near the organism is 

to reach the best solution. The user can choose a specific 

number of iterations or set certain exit criteria to get the 

desired results. 

A. Phases in symbiotic organism search algorithm 

 In order to generate new solutions, the SOS 

optimization algorithm goes through three phases: 

mutualism, commensalism, and parasitism. The 

mathematical models for these phases are explained in this 

section. 

 

1) Initialisation 

The Xbest is initialised to the number of cores 

available in the system in this modified SOS (MSOS) method, 

as it is typically considered that the number of threads should 

match the number of processors available in multicore 

systems. The search space is also constrained to the (Min, 

Max) pair. Here Min & Max represent minimum & maximum 

values allowed for organisms. The Max is set to two times the 

number of processors available in the target computer system.  

Eq. (1) is used to initialise the positions of organisms. 

𝑋(𝑖) = 𝑟 ∗ (𝑀𝑎𝑥 − 𝑀𝑖𝑛) + 𝑀𝑖𝑛    (1) 

Where r is a random number between [0,1], Xbest 

represents the optimal solution. The X is an Organism Vector 

and stores the current positions of the organisms inside the 

search space. 

 

2) Mutualism phase 

The interactions between humans and dogs are an 

example of mutualism, which directly benefits both 

organisms involved. The dogs are cared for and fed by 

humans and they guard humans against thievery and stranger 

attacks.  This phase in the SOS algorithm mimics organism 

mutualism association.  In this algorithm, X(i) is a number 

given to an organism that corresponds to the ecosystem's ith 

position. The ecosystem's another organism, X(j), is chosen 

at random to associate with X(i). Both organisms have a 

mutualistic interaction in order to increase their mutual 

survival benefits in the system. The interaction between two 

organisms X(i) and X(j) is used to generate new alternative 

solutions called X(inew) and X(jnew).  Following equations 

eq. (2) and eq. (3) define mathematical model for this phase. 

 

𝑋(𝑖𝑛𝑒𝑤) = 𝑋(𝑖) + 𝑟 ∗ (𝑋𝑏𝑒𝑠𝑡 − (𝑀𝑉 ∗ 𝐵𝐹1))  (2) 

𝑋(𝑗𝑛𝑒𝑤) = 𝑋(𝑗) + 𝑟 ∗ (𝑋𝑏𝑒𝑠𝑡 − (𝑀𝑉 ∗ 𝐵𝐹2))   (3) 

     

where, 

𝑀𝑉 =
𝑋(𝑖) + 𝑋(𝑗) 

2
 

Here, r is a random number between range [0,1]. 

When organism X(i) interacts with organism X(j), it may gain 

a significant advantage from X(j). Meanwhile, while dealing 

with organism X(j), it may only receive adequate or minimal 

advantage. In this case, the values for both variables BF1 and 

BF2 are decided at random as 1 or 2. These variables describe 

the degree to which each creature benefits from the contact, 

and whether an organism gains partially or totally. For 

example, when organism X(i) interacts with organism X(j), it 

may gain a significant advantage. However, when organism 

X(j) interacts with organism X(i), it may only receive 

adequate or marginal benefit.  

Here, MV is a Mutual Vector, and it reflects the 

association between the organisms X(i)  and X(j). The Xbest 

represents position of organism where best fitness value was 

determined. As a result, we use Xbest to mimic the maximum 

degree of profitability as the objective point for both 

organisms. Finally, positions in Organism Vector are only 

updated if fitness values of new positions are better than the 

values before the interactions. 

 

3) Commensalism phase 

An arbitrary organism, X(j), is chosen from the 

search space to interact with X(i), analogous to the mutualism 

phase. In this case, organism X(i) tries to take advantage of 

the situation.  In this phase the interaction, does not make any 

changes in other organism X(j). Following equations 

represents mathematical model for commensalism between 

two organisms.  

𝑋(𝑖𝑛𝑒𝑤) = 𝑋(𝑖) + 𝑟 ∗ (𝑋𝑏𝑒𝑠𝑡 − 𝑋(𝑗))   (4) 

Here, r is a random number and multiplies the 

benefit of X(j) over X(i) with respect to Xbest. 

 

4) Parasitism phase 

Here, X(inew) is formed in the solution space by 

replicating organism X(i) and then changing the randomly by 

allowing it to interact with a parasite organism X(j). Both 

X(i)and X(inew)have their fitness values examined, and if 

X(inew) has a better fitness than X(i), then X(inew) 

completely replaces X(i). 

𝑋(𝑖𝑛𝑒𝑤) = 𝑋(𝑖) + 𝑟 ∗ 𝑋     (5) 

 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 10 Issue: 12 

DOI: https://doi.org/10.17762/ijritcc.v10i12.5889 

Article Received: 16 October 2022 Revised: 05 November 2022 Accepted: 16 December 2022  

___________________________________________________________________________________________________________________ 

 

87 

IJRITCC | December 2022, Available @ http://www.ijritcc.org 

B. Msos alogorithm 

The steps in proposed algorithm to predict optimal threads 

count are explained below. 

1. Set the count of organisms (N) to a positive number.  

2. Use Eq. (1) to determine the locations of all organisms 

and put them into Organism Vector.  

3. Set the initial best solution equal to the number of 

compute cores available. (Xbest) 

4. Repeat until the maximum number of iterations have 

been completed or the desired answer has been obtained. 

5. For each organism, i 

6. Perform Mutualism using eq. (2) and eq. (3). If the newly 

determined positions have fitness values less than the 

prior positions, then update the Organism Vector with 

new positions.  

7. Perform Commensalism using eq. (4). If the newly 

determined positions have fitness values less than the 

prior positions, then update the Organism Vector with 

new positions. 

8. Perform parasitism using eq. (5 If the newly determined 

positions have fitness values less than the prior positions, 

then update the Organism Vector with new positions. 

9. The optimal number of threads is determined by the best 

position found in the preceding steps. 

Above algorithm show the working of MSOS, which 

includes all detailed information. All organisms are allowed 

to go through all three steps mentioned in MSOS to determine 

new positions, and the best position among all is chosen as 

the current best solution. This process is repeated until the 

maximum number of iterations have been performed or an 

exit condition has been fulfilled. The fitness value here refers 

to the time it takes for the program to run with the provided 

number of threads. To calculate the fitness value for 

organisms, following steps are performed. 

1. Determine the Organism's current location. 

2. Get the parallelized application and its sample input data 

to determine the thread count. 

3. Run the program with the number of threads equal to the 

current position indicated by the organism. 

4. The fitness value of an organism is the time it takes to 

complete the task. 

When compared to other conventional techniques like 

machine learning (ML), the suggested MSOS-based thread 

predictions model has various advantages, including being 

modest, low overhead, and dynamic in forecasting thread 

count (SR). Because ML-based techniques require greater 

training time to achieve better prediction accuracy, they have 

the higher overheads.  

The proposed method is capable of achieving the best 

combination of prediction accuracy and low overheads. 
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Table 1 . Iteration wise positions and fitness calculations for streamcluster benchmark 

V. RESULTS AND DISCUSSION 

Table 2 Experimental Setup 

Server NVIDIA DGX STATION 

Number of Physical Cores 20 

Number of Logical Cores 40 

Main Memory 256 GB 

Operating System Linux 

 

The proposed MSOS technique is tested on   

PARSEC, a set of well-known benchmark program. The 

ferret, freqmine, streamcluster, swaptions, vips, and vorland 

are among the six benchmarks taken from the PARSEC suite 

for illustration here. Our experimental setup, which 

comprises of an Intel Xeon-E5-2698-v4 2.2 GHz processor, 

is shown in Table 2. This computer has 40 logical cores and 

256 GB of main memory. We chose the Linux based 

computer system for our study because it offers a wide variety 

of tools (ps, top, vmstat, etc) for understanding and analyzing 

application behaviors. Each experiment was repeated ten 

Iteration: 

i Phase 

New Position of 

ith Organism: 

Fitness 

New Position of jth 

Organism: Fitness 

Organism Vector 

Index: [0 1 2 3 4] 

Fitness Vector 

Index: [0 1 2 3 4] 𝑿𝒃𝒆𝒔𝒕 

0:0  M  41:06.4 38:1.526 [40,61,38,24,33] [1.819,12.196,1.526,1.041,1.644] 24 

   C 53:10.485  [40,61,38,24,33] [1.819,12.196,1.526,1.041,1.644]  

   P 69:17.444  [40,61,38,24,33] [1.819,12.196,1.526,1.041,1.644]  

0:1  M  43:07.0 23:0.917 [23,43,38,24,33] [0.917,7.048,1.526,1.041,1.644] 23 

   C 52:10.192  [23,43,38,24,33] [0.917,7.048,1.526,1.041,1.644]  

   P 63:13.859  [23,43,38,24,33] [0.917,7.048,1.526,1.041,1.644]  

0:2  M  31:01.2 17:0.809 [23,43,31,17,33] [0.917,7.048,1.230,0.809,1.644] 17 

   C 37:1.464  [23,43,31,17,33] [0.917,7.048,1.230,0.809,1.644]  

   P 46:8.352  [23,43,31,17,33] [0.917,7.048,1.230,0.809,1.644]  

0:3  M  17:00.8 17:0.812 [23,43,31,17,33] [0.917,7.048,1.230,0.773,1.644]  

   C 18:0.771  [23,43,31,18,33] [0.917,7.048,1.230,0.771,1.644] 18 

   P 25:1.013  [23,43,31,18,33] [0.917,7.048,1.230,0.771,1.644]  

0:4  M  31:01.2 15:0.815 [23,43,31,18,31] [0.917,7.048,1.230,0.771,1.227]  

   C 41:6.325  [23,43,31,18,31] [0.917,7.048,1.230,0.771,1.227]  

   P 51:9.968  [23,43,31,18,31] [0.917,7.048,1.230,0.771,1.227]  

1:0  M  14:00.7 32:1.283 [14,32,31,18,31] [0.694,1.283,1.230,0.771,1.227] 14 

   C 10:0.777  [14,32,31,18,31] [0.694,1.283,1.230,0.771,1.227]  

   P 16:0.891  [14,32,31,18,31] [0.694,1.283,1.230,0.771,1.227]  

1:1  M  25:01.0 29:1.107 [14,25,31,18,31] [0.694,1.014,1.230,0.771,1.227]  

   C 24:1.025  [14,25,31,18,31] [0.694,1.014,1.230,0.771,1.227]  

   P 34:1.701  [14,25,31,18,31] [0.694,1.014,1.230,0.771,1.227]  

1:2  M  26:01.3 11:0.766 [14,25,31,18,31] [0.694,1.014,1.230,0.771,1.227]  

   C 41:6.171  [14,25,31,18,31] [0.694,1.014,1.230,0.771,1.227]  

   P 35:1.806  [14,25,31,18,31] [0.694,1.014,1.230,0.771,1.227]  

1:3  M  17:00.8 22:0.966 [14,25,22,17,31] [0.694,1.014,0.966,0.756,1.227]  

   C 30:1.462  [14,25,22,17,31] [0.694,1.014,0.966,0.756,1.227]  

   P 20:0.921  [14,20,22,17,31] [0.694,0.921,0.966,0.756,1.227]  

1:4  M  29:01.4 19:0.834 [14,19,22,17,31] [0.694,0.834,0.966,0.756,1.227]  

   C 33:1.643  [14,19,22,17,31] [0.694,0.834,0.966,0.756,1.227]  

   P 58:11.377  [14,19,22,17,31] [0.694,0.834,0.966,0.756,1.227]  
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times and the findings were averaged. For each program, the 

PARSEC benchmark specifies six input data sets. The 

"simlarge" input dataset is used in MSOS's fitness function to 

determine the execution time.  

Table 1 shows the results obtained using MSOS up 

to two iterations. The Iteration column in this table shows the 

iteration numbers as well as the indices of organisms selected 

from Organism Vector. The types of interactions applied on 

organisms are listed in “Phase” column. Here, Mutualism, 

Commensalism, and Parasitism phases are represented by 

letters M, C and P respectively. The positions obtained after 

interacting with the other organisms are shown in column 

“New Position of ith Organism: Fitness”. This column also 

shows the fitness values of the new positions.  The column 

"New Location of jth Organism: Fitness" indicates new 

positions determined for the randomly selected jth organisms 

from the Organism Vector. This is done during the Mutualism 

phase. The fitness values are also shown in the same column. 

The values in Organism Vector after applying the chosen 

interaction types are shown in “Organism Vector" column. In 

this example, Organism Vector contains five organisms. The 

"Fitness vector" column displays fitness values of organisms 

in Organism Vector. Finally, “Xbest" the last column displays 

the best solution found after applying MSOS phases.  

 

  Figure 3 shows graphically all the places visited by 

organisms during the execution of MSOS & Figure 4 depicts 

their fitness values. It is apparent that the places where the 

fitness values were close to the required solution (low in this 

case) were visited more frequently. This also demonstrates 

that MSOS tries to explore areas frequently where good 

solutions exist. The algorithm has jumped to high positions 

from time to time to avoid getting trapped in local minima. 

The MSOS examined the relevant space 36 times out of 45 

visits, accounting for 80 per cent of all efforts.  

In parallel programs, speedup is a great way to 

evaluate performance. If a sequential program on a single 

core takes T(1) seconds and a parallel program on N 

processors takes T(N) seconds, then Speedup, S(N), is 

defined as  

𝑆(𝑁) = 𝑇(1)/𝑇(𝑁)   (6) 

The speedup is calculated for the same benchmark programs 

to determine the prediction accuracy of the proposed MSOS 

based forecasting model. Table 3 shows the speedup gained 

after running the benchmark programs with the optimum & 

40 number of threads. The column N shows optimum thread 

count determined by MSOS.   The improvement in speedups 

obtained using MSOS and traditional method is defined as 

follows:  

𝛿 = (𝑆(𝑁) − 𝑆(𝑛𝑢𝑚_𝑐𝑜𝑟𝑒𝑠))/𝑆(𝑛𝑢𝑚_𝑐𝑜𝑟𝑒𝑠) (7) 

 
Figure 3 Streamcluster: Positions obtained for organisms 

 
Figure 4 Streamcluster: Fitness values obtained for organisms 

The results produced with MSOS are better compared to 

those obtained by keeping the thread count equal to the core 

count of the machine. The comparison between S(40) & S(N) 

is shown graphically in figure 5. The X-axis in this graph 

represents the names of benchmark programs while the Y-

axis represents speedups. The ferret, streamcluster, freqmine, 

swaptions, and vips work much better when the thread count 

is less than 40. The vorland outperformed the others with a 

thread count of 57. When compared to running with 40 

threads, streamcluster enhanced by 127 percent. The 

streamcluster, swaptions and vorland have all seen significant 

improvements in speedups. Figure 6 depicts graphically the 

comparison between the execution time required for optimal 

thread count & single thread (T(1) vs T(N)). The X-axis in 

this graph represents the names of benchmark programs while 

the Y-axis represents execution time in seconds. The 

vorland's execution time has been adjusted down to 

accommodate correctly in the graph. All of the benchmarks 

show an increase in performance. 
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Figure 5 S(40) vs S(N) 

 
Figure 6 T(1) vs T(N) 

Table 3 Performance analysis of PARSEC benchmarks 

VI. CONCLUSION 

In this paper, an efficient and unique threads 

prediction model is developed based on the MSOS algorithm. 

The prediction model determines the optimal number of 

threads for maximum speedups with ease. The simulation 

findings demonstrate that the proposed algorithm can 

efficiently find the available search space and swiftly 

converges to an optimal solution. The method described in 

this paper is straightforward, but it has some downsides as the 

user must run the program with a small quantity of data before 

running it with the actual input data. These overheads become 

minor if the actual input data is extremely large. Therefore, 

while using MSOS to evaluate an application, it's critical to 

choose the right amount of data. 
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