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Abstract 

Storing& processing data for supply chain management (SCM) systems requires design of high-security and quality of service (QoS) aware 

models. These modelsassist in improving traceability performance of SCM deployments via integration of transparent & distributed 

mechanisms. A wide variety of security models are proposed by researchers to perform these tasks, and it is observed that blockchain-based 

SCM implementations outperform other models in terms of security & QoS metrics.But most of these implementationsare general-purpose and 

do not incorporate SCM-specific consensus & mining rules. It is also observed that, mining speed& throughput performance of these 

blockchain-based implementations reduces exponentially w.r.t. number of SCM transactions. To resolve these issues, this paper discusses design 

of a novel Proof-of-Supply Chain (PoSC) based consensus model, which is specifically designed for sidechain based SCM deployments. The 

PoSC consensus model is used for high-efficiency SCM-based data storage and communication scenarios. The proposed PoSC consensus model 

is capable of resisting selfish mining, time jacking, and sybil attacks, which are targeted towards SCM deployments. The model uses temporal 

performance metrics of miner nodes, and combines them with relationship graphs to form an SCM miner rank. Based on this rank, miner nodes 

are selected, and their consensus responses are recorded. These responses are processed using an augmented deep learning model, that is trained 

over 8 different SCM implementations via machine learning. After successful mining, responses obtained from these miners are used to 

incrementally train the machine learning model which assists in continuous performance improvement. The SCMBQA model was tested on milk 

supply chain, agriculture supply chain, and electronic supply chain applications, in terms of computational speed, throughput, energy 

requirement, retrieval & verification delay, and storage requirements. It was observed that the proposed PoSC consensus was capable of 

improving the computational speed by 8.5%, reduce energy consumption by 4.9%, improve throughput by 9.6%, and reduce storage costs by 

15.4% when compared with standard blockchain-based SCM consensus models. This is because the proposed model deploys an intelligent 

sidechaining approach, that is capable of optimizing number of generated sidechains via temporal QoS & security performance metrics. Due to 

use of smaller chain lengths, the proposed model is capable of integrating privacy-aware & secure approaches depending upon different SCM 

stages. Thus, distributor-level security models are different than retailer-level security models, which assists in context-sensitive block 

deployments. Due to use of PoSC, the proposed model was observed to be 99.5% resilient against internal and external attacks, which makes it 

useful for real-time SCM deployments. 
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1. Introduction 

Design of supply chain management (SCM) models is a 

multidomain task, which incorporates data management, 

tracking, entity-based storage, security deployment, and data 

validations. SCM data should be immutable, which ensures 

that data, once written should not be modified or removed. 

The stored data should be transparent, thus enabling entity-

based access for improved trust. It should be traceable, thus 

ensuring that access to temporal data should be delay-aware, 

and tamper-proof. The data should also be processed in a 

secure & distributed manner, which ensures better QoS 

performance, and assists multiple trusted entities to 

incorporate progress updates. All these characteristics are 

present in blockchain-based models, which makes them 

highly useful for deploying SCM applications [1]. A typical 

blockchain-based SCM model is depicted in figure 1, wherein 

different components including supplier, manufacturer, 

distributor, and retailer are connected via different smart 

contract-based blockchains [2].It can be observed that supplier 

& manufacturer are linked via smart contracts, and 

information related to raw materials & manufacturing details 

are stored on the blockchain. Another smart contract is used to 

store retailer & product information along with inventory 

status, which assists in tracking product-level sale, purchase, 

and procurement details. While adding a block to SCM 

blockchains, a number of delay components are encountered. 
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Figure 1. A typical blockchain based SCM model 

These components can be observed via equation 1, wherein 

block reading delay, writing delay, verification delay, and 

hashing delay are combined with different SCM operations. 

𝐷(𝑚𝑖𝑛𝑖𝑛𝑔) = | ∑ 𝑁 ∗ 𝐷𝑟𝑒𝑎𝑑 + (𝑁 − 1)

𝑁𝑟𝑜𝑢𝑛𝑑𝑠

𝑖=1

∗ (𝐷𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒 + 𝐷ℎ𝑎𝑠ℎ) + 𝐷𝑤𝑟𝑖𝑡𝑒|

𝑁𝑆𝐶𝑀

… (1) 

Where, 𝑁𝑟𝑜𝑢𝑛𝑑𝑠, &𝑁𝑆𝐶𝑀 indicates number of rounds needed to 

verify the block, and number of SCM operations needed to 

create a block, while 𝑁 represents number of blocks currently 

present in the blockchain. Based on this equation, it can be 

observed that delay needed to add a block to the chain is 

directly proportional to chain length, thus, as length of chain 

increases, the delay needed to mine/add these blocks will also 

increase. To reduce this delay, various sidechaining based 

SCM models are proposed by researchers. Survey of these 

models [3,4,5] along with their nuances, advantages, 

limitations, and future research scopes is discussed in the next 

section of this text. Based on this discussion, it can be 

observed that very few blockchain-based models are 

specifically designed to handle SCM-specific issues, which 

limits their QoS & security performance when applied to 

large-scale SCM deployments. To overcome this drawback, 

section 3 proposes design of a novel customised SCM-aware 

sidechaining model for QoS enhancement under attack 

scenarios. The proposed model divides central SCM 

blockchain into different sub-parts using a bioinspired Genetic 

Algorithm (GA), which optimizes number of chains, and 

individual chain lengths. These smaller chains are customized 

depending upon individual SCM entities, wherein their 

security & privacy parameters are tuned for attack resistance 

in real-time scenarios. The proposed model’s performance 

was evaluated in terms of computational speed, throughput, 

energy requirement, retrieval & verification delay, & storage 

requirements in section 4, and compared with various state-of-

the-art models. Based on this performance, researchers will be 

able to validate SCMBQA’s performance, and identify any 

performance issues which can be resolved via model-based 

optimizations. Finally, this text concludes with some 

interesting observations about the proposed model, and 

recommends methods to further improve its performance. 

 

2. Literature Review 

A wide variety of SCM models utilize blockchain-based 

solutions to improve their underlying security & QoS 

performance. For instance, work in [4, 5, 6] proposes 

blockchain Model for Agri-Food SCM, vendor Management 

&inventory SCM (VMI SCM), and Soybean traceability using 

blockchain based SCM models. These models are highly 

application-specific, and cannot be applied to general purpose 

SCM applications. Recommendations to improve blockchain 

scalability for SCM are discussed in [7], wherein 

sidechaining, deep learning, and other machine learning based 

models are proposed. These models are further reviewed in [8, 

9, 10], wherein blockchain for logistics, general purpose 

blockchains for SCM, and healthcare SCM using smart 

contracts (SC)are discussed. Efficiency of these models is 

further enhanced in terms of delay, and throughput 

performance via the work in [11, 12, 13], where researchers 

have proposed simplified user interfaces, strategic product 

deployments, and decentralized digital manufacturing during 

CoVID (DDM SCM) are discussed. These models aim at 

reducing redundancies during mining for enhancement of 

mining speed, with lower energy consumption for different 

applications.  

Blockchain-based SCM systems are also used for enterprise 

[14], drug traceability [15], general purpose deployments [16], 

pharma tracking [17], and agricultural food supply tracking 

via reinforcement learning & safety management [18, 19, 20] 

with highly efficient deployments. A combination of these 

models is discussed in [21], wherein distributed ledger 

technology (DLT) based tagging is performed to improve 

overall SCM performance. Extended applications of 

blockchains for SCM are further discussed in [22, 23, 24], 

wherein technical products SCM, data sanitization based 

SCM, and enhanced logistics based SCM are discussed in 

details. These models have better security and QoS 

performance, but cannot be used for multiple SCM 
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applications, which limits their scalability. To improve this 

scalability, work in [25, 26, 27] proposes use of machine 

learning, Economic SCM, and product traceability with high 

throughput via distributed computing models. These 

approaches are further explored in [28, 29, 30], wherein 

challenges with blockchain based SCM models, reviews from 

product managers about blockchain based SCMs, and their 

applications to different food industries are discussed in 

details. Based on these approaches, work in [31, 32, 33] 

propose sustainable models for automotive industry, CoVID-

19 based SCM applications, and Governance design of 

blockchain-based consortia are proposed by researchers. 

These models aim at reducing redundancies in application-

specific SCM deployments. Other models that reduce 

managing risks of blockchain for SCM [34], alternatives to 

blockchain for SCM [35], and factors needed for adoption & 

accpetance of blockchain in SCM [36] are discussed. Based 

on these discussions, it can be observed that none of the 

existing approaches proposed SCM-specific consensus & 

blockchain models, which limits scalability of SCM 

application deployments. To improve this scalability, while 

maintaining high security, next section proposes a customised 

SCM-aware sidechaining model for QoS enhancement under 

attack scenarios. Performnace of the proposed model was also 

evaluated under different network scenarios, and compared 

with various state-of-the-art blockchain based SCM models 

for validation of the proposed model, and its applicability 

under different attack scenarios. 

 

3. Design of acustomised SCM-aware sidechaining 

model for QoS enhancement under attack scenarios 

From the literature survey, it can be observed that a wide 

variety of blockchain models are proposed for design of SCM 

based deployments. These models utilize general purpose 

consensus methods including Proof-of-Work (PoW), Proof-

of-Stake (PoS), Practical Byzantine Fault Tolerance (PBFT), 

etc. which reduces their scalability when applied to real-time 

SCM applications. This is because SCM-based deployments 

require entity-specific privacy & security models that must be 

tuned as per instantaneous scenario requirements. Moreover, 

performance of existing blockchain-based SCM models 

reduces exponentially w.r.t. length of the blockchain, which 

further limits their deployment capabilities. To overcome 

these drawbacks, this section proposes design of SCMBQA, 

which is a customised SCM-aware sidechaining model for 

QoS enhancement under attack scenarios. Overall flow of the 

proposed model is depicted in figure 2, wherein creation of 

sidechain along with SCM based Proof-of-Supply Chain 

(PoSC) consensus method is visualized.From this flow it can 

be observed that, the proposed model is built using the 

following components, 

• An entity-level analysis block, which is capable of evaluating 

context-sensitive parameters like delay, security level, and 

other QoS metrics 

• A miner selection layer, which assists in identification of 

miner rank, based on entity & miner relationship 

• A Proof-of-Supply Chain (PoSC) block that enables SCM 

based consensus 

• Deep learning & incremental learning models, that assist in 

sidechain formation and performance tuning via Q-learning 

based decisions 

 
Figure 2. Overall flow of the proposed SCM-based 

sidechaining model 

Design of these blocks, along with their internal processes are 

discussed in different sub-sections of this text. Researchers 

can implement the entire model is part(s) or as a whole after 

referring these sub-sections. 

 

3.1. Design of entity-level analysis block, for evaluating 

context-sensitive parameters 

A typical SCM model is built up of multiple entities, which 

include but are not limited to, product manufacturer, 
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distributor, retailer, and customer. Each of these entities 

require a different level of security & QoS performance. For 

each entity, security level (𝑆𝐿) is evaluated via equation 2, 

𝑆𝐿𝑖 = ∑ 𝑃𝑙

𝑁𝑖𝑎

𝑙=1

∗
log (

1

𝑃𝑙
)

𝑁𝑖𝑎

… (2) 

Where, 𝑁𝑖𝑎
 represents number of attacks prevalent for the 

given entity, while 𝑃𝑙  represents probability of that attack. 

This attack probability is evaluated via equation 3, by 

reviewing different attack models, and estimating their effect 

on SCM performance. 

𝑃𝑙 = ∑
𝑁(𝑏𝑙𝑜𝑐𝑘𝑠)𝑖𝑛𝑣𝑎𝑙𝑖𝑑

𝑁(𝑏𝑙𝑜𝑐𝑘𝑠)𝑡𝑜𝑡𝑎𝑙

∗
1

𝑁𝑆𝐶𝑀

… (3)

𝑁𝑆𝐶𝑀

𝑖=1

 

Where, 𝑁𝑆𝐶𝑀 represents total number of SCM models used for 

validation, 𝑁(𝑏𝑙𝑜𝑐𝑘𝑠)𝑡𝑜𝑡𝑎𝑙& 𝑁(𝑏𝑙𝑜𝑐𝑘𝑠)𝑖𝑛𝑣𝑎𝑙𝑖𝑑  represents total 

blocks in the chain, and number of blocks invalidated due to 

given attack type. Similarly, QoS level for a given entity is 

evaluated via equation 4, wherein delay requirements, energy 

requirements, and throughput requirements of the entity are 

considered. 

𝑄𝑜𝑆𝑖 = (∑
𝐸𝑗

𝑀𝑎𝑥(𝐸)
+

𝐷𝑗

𝑀𝑎𝑥(𝐷)
+

𝑀𝑎𝑥(𝑇𝐻)

𝑇𝐻𝑗

𝑁𝑃

𝑗=1

) ∗
1

𝑁𝑃
… (4) 

Where, 𝐸, 𝐷, 𝑎𝑛𝑑 𝑇𝐻 represents energy requirement, delay 

requirement, and throughput requirement for a given entity, 

while 𝑁𝑃 represents total number of SCM models previously 

processed for estimating these values. Based on temporal 

evaluation from different SCM deployments, security & QoS 

levels are estimated, and given to the miner selection layer. 

Design of this layer is discussed in the next sub-section of this 

text. 

 

3.2. Design of miner selection layer for miner rank 

evaluation, based on entity & miner relationship 

This layer evaluates miner rank based on SCM entity, and its 

relationship with current set of miners. In this layer, 

parameters includingentityinformation, temporal mining 

validations, mining performance, and approximate energy 

requirements for mining blocks are used for evaluation of 

intermediate miner rank. This rank is fine-tuned via 

relationship estimation between miner node and current entity 

parameters.These parameters includeminer node to entity 

distance, and temporal probability of miner to minecurrent 

entityblocks. The information collected during this phase is 

stored on edge nodes, for faster analysis & future retrieval 

purposes. The miner selection mode worksvia the following 

process, 

• Initialize model parameters including, 

o Total number of blocks in current sidechain = 𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

o Location of node from which block request is 

originating(𝑠𝑥 , 𝑠𝑦), andlocation of miner nodes (𝑀𝑥, 𝑀𝑦) 

• Evaluate mining performance for each miner, using the 

following metrics, 

o Total number of correctly mined blocks by the miner 

(𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡) is evaluated via equation 5, 

𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = ∑ |𝑃𝑀𝑖 = 1|

𝑁𝑡𝑜𝑡𝑎𝑙

𝑖=1

… (5) 

Where, 𝑃𝑀is probability of mining the block correctly, and 

𝑁𝑡𝑜𝑡𝑎𝑙 represents total number of blocks mined by the miner. 

o Average mining delay for the current miner is evaluated via 

equation 6, 

𝐴𝑉𝐺(𝐷𝑒𝑙𝑎𝑦) =
1

𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡

∑ 𝑀𝑖𝑛𝑒(𝐷𝑒𝑙𝑎𝑦𝑖) … (6)

𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑖=1

 

Where, 𝐴𝑉𝐺(𝐷𝑒𝑙𝑎𝑦), 𝑎𝑛𝑑 𝑀𝑖𝑛𝑒(𝐷𝑒𝑙𝑎𝑦) represents average 

mining delay, and total mining delay for correctly mined 

blocks. 

o Energy needed to mine the blocks by this miner is 

evaluated via equation 7 as follows, 

𝐴𝑉𝐺(𝐸𝑛𝑒𝑟𝑔𝑦) =
1

𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡

∑ 𝑀𝑖𝑛𝑒(𝐸𝑛𝑒𝑟𝑔𝑦𝑖) … (7)

𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑖=1

 

Where, 𝐴𝑉𝐺(𝐸𝑛𝑒𝑟𝑔𝑦), 𝑎𝑛𝑑 𝑀𝑖𝑛𝑒(𝐸𝑛𝑒𝑟𝑔𝑦) represents 

average mining energy, and total mining energy for correctly 

mined blocks. 

• For the entity that is requesting to add a block to the 

chain, following metrics are evaluated, 

o Distance between the entity and miner node is evaluated 

via equation 8, 

𝐷(𝑀, 𝑆) = √(𝑀𝑥 − 𝑠𝑥)2 + (𝑀𝑦 − 𝑠𝑦)
2

… (8) 

o Probability with which the current miner node is 

temporally mining blocks from current entity is evaluated 

via equation 9, 

𝑃(𝑀, 𝑆) =
∑ 𝐵(𝑀, 𝑆)𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑖=1

𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡

… (9) 

Where, 𝐵, & 𝑃 represents number of blocks originated by this 

entity which are mined by current miner node, and probability 

of miner to source relationship. These metrics are combined to 

form the final miner rank via equation 10, 

𝑀𝑟𝑎𝑛𝑘𝑖
= [(1 −

𝐴𝑉𝐺(𝐷𝑒𝑙𝑎𝑦𝑖)

𝑀𝑎𝑥 (⋃ 𝐷𝑒𝑙𝑎𝑦𝑗
𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡
𝑗=1 )

) + 
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𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖

𝑁𝑡𝑜𝑡𝑎𝑙

+
𝑁𝑥 + 𝑁𝑦 − 𝐷(𝑀𝑖 , 𝑆)

𝑁𝑥 + 𝑁𝑦

+ (1 −
𝐴𝑉𝐺(𝐸𝑛𝑒𝑟𝑔𝑦𝑖)

𝑀𝑎𝑥 (⋃ 𝐸𝑛𝑒𝑟𝑔𝑦𝑗
𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡
𝑗=1 )

)

+ (1 − 𝑃(𝑀𝑖 , 𝑆))]

∗
𝑂𝑙𝑑(𝑀𝑟𝑎𝑛𝑘)

𝑀𝑎𝑥[⋃ 𝑂𝑙𝑑(𝑀𝑟𝑎𝑛𝑘𝑗
)

𝑁(𝑀𝑖𝑛𝑒𝑟𝑠)

𝑗−1 ]
… (10) 

Where, 𝑁𝑥, &𝑁𝑦 represent X & Y dimensions of the network, 

𝑀𝑎𝑥(𝐷𝑒𝑙𝑎𝑦), & 𝑀𝑎𝑥(𝐸𝑛𝑒𝑟𝑔𝑦) represents maximum delay 

incurred during mining, and maximum energy needed for 

mining a block from the total number of blocks currently 

mined in the sidechain, 𝑂𝑙𝑑(𝑀𝑟𝑎𝑛𝑘) represents old miner 

ranks which are initialized to ‘1’, and later modified via Q-

learning process. These ranks are evaluated for each miner 

node, and a rank threshold is evaluated via equation 11, 

𝑀𝑟𝑎𝑛𝑘𝑡ℎ
= ∑

𝑀𝑟𝑎𝑛𝑘𝑖
∗ 𝑁𝑓𝑖𝑒𝑙𝑑𝑠

𝑁𝑓𝑡𝑜𝑡𝑎𝑙
∗ 𝑁𝑢𝑚(𝑀𝑖𝑛𝑒𝑟𝑠)

… (11)

𝑁𝑢𝑚(𝑀𝑖𝑛𝑒𝑟𝑠)

𝑖=1

 

Where, 𝑁𝑓𝑖𝑒𝑙𝑑𝑠&𝑁𝑓𝑡𝑜𝑡𝑎𝑙
 represents total number of modifiable 

fields in the current block structure which assist in unique 

identification of hash values, and total number of fields in the 

block structure, while𝑁𝑢𝑚(𝑀𝑖𝑛𝑒𝑟𝑠) represents total number 

of miners in the current blockchain network deployment. All 

miners that have a rank above threshold are selected for final 

mining process, while others are not used for current 

consensus. Responses of these miners are processed via a 

PoSC based consensus model which is described in the next 

section of this text. 

 

3.3. Design of Proof-of-Supply Chain (PoSC) that enables 

SCM based consensus 

Once miners are selected, then their temporal security 

performance is evaluated to form PoSC based consensus. To 

evaluate this performance, following process is followed, 

• For each selected miner node, perform 𝑁 dummy attacks, 

and evaluate its security level via equation 12, 

𝐼𝑠𝑙 =
∑ ∑ 𝐻𝑎𝑠ℎ𝑗−1 =

𝑁𝑏𝑙𝑜𝑐𝑘𝑠
𝑗=2

𝑁
𝑖=1 𝐻𝑎𝑠ℎ𝑝𝑟𝑒𝑣𝑗

𝑁 ∗ 𝑁𝑏𝑙𝑜𝑐𝑘𝑠

… (12) 

Where, 𝐻𝑎𝑠ℎ, & 𝐻𝑎𝑠ℎ𝑝𝑟𝑒𝑣  represents hash of current block, 

and previous hash of current block. Both these values assist in 

verification of current sidechain. Once these values are 

evaluated, revert the blockchain of current miner node to its 

pre-attack state to maintain validity. 

• Estimate temporal attack resilience of the miner via 

equation 13, 

𝑇𝐴𝑅 =
∑ 𝐼𝑠𝑙(𝑖)

𝑁𝑎𝑡𝑡𝑎𝑐𝑘𝑠
𝑖=1

𝑁𝑎𝑡𝑡𝑎𝑐𝑘𝑠

… (13) 

Where, 𝑁𝑎𝑡𝑡𝑎𝑐𝑘𝑠 represents number of attacks previously 

identified by the miner node for current sidechain blocks. 

• Evaluate the final miner score for selected miners via equation 

14 as follows, 

𝑀𝑓𝑖𝑛𝑎𝑙 = 𝑀𝑟𝑎𝑛𝑘 ∗ 𝑇𝐴𝑅 ∗ 𝐼𝑠𝑙 … (14) 

Miners, where 𝑀𝑓𝑖𝑛𝑎𝑙  is positive are selected for mining, 

while other miner nodes are discarded from the mining 

process. This ensures that miners with validated sidechains are 

used for mining new blocks. Miner nodes with value of 

𝑀𝑓𝑖𝑛𝑎𝑙 = 0, are reported to network administrator, which will 

assist in validation and correction of their internal 

blockchains. 

 

3.4. Design of deep learning & incremental learning models 

for sidechain management 

Once miner nodes are selected, and blocks are now ready to 

be added to the blockchain, a novel deep learning model that 

uses Genetic Algorithm (GA) with Q-learning is used for 

sidechain management. This model is activated for each block 

addition request, and works via the following process, 

• Initialize GA parameters, which include, 

o Number of iterations (𝑁𝑖) 

o Number of solutions (𝑁𝑠) 

o Learning rate (𝐿𝑟) 

o Number of sidechains currently present (𝑁𝑠𝑐) 

• Initially mark all solutions as ‘to be modified’ 

• For each iteration in 1 to 𝑁𝑖 

o For each solution in 1 to 𝑁𝑠 

▪ If this solution is marked as ‘not to be modified’, then go to 

the next solution 

▪ Else, generate a new solution via the following process, 

• Select a random chain from the list of chains via equation 15, 

𝐶𝑠𝑒𝑙𝑒𝑐𝑡 = 𝑟𝑎𝑛𝑑𝑜𝑚(1, 𝑁𝑠𝑐) … (15) 

• Evaluate solution fitness, which combines average delay & 

energy needed for adding 𝑁 dummy transactions in the chain 

via equation 16, 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = ∑
𝐷𝑖(𝐶𝑠𝑒𝑙𝑒𝑐𝑡)

𝑁𝑠𝑐 ∗ 𝑀𝐴𝑋(𝐷)
+

𝐸𝑖(𝐶𝑠𝑒𝑙𝑒𝑐𝑡)

𝑁𝑠𝑐 ∗ 𝑀𝑎𝑥(𝐸)

𝑁

𝑖=1

+
𝑀𝑎𝑥(𝑇𝐻)

𝑁𝑠𝑐 ∗ 𝑇𝐻𝑖

… (16) 

Where, 𝐷, 𝐸, 𝑎𝑛𝑑 𝑇𝐻represents average delay of adding new 

blocks, energy needed to add new blocks, and throughput 

obtained after adding new block into the current sidechain. 

• If this fitness is more than current average fitness of all 

solutions, then it is discarded, and solution is marked as ‘to be 

modified’ 

▪ Count total number of solutions per iteration which are 

marked as ‘to be modified’ (𝑇𝑠𝑖
) via equation 17, 
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𝑇𝑠𝑖
= ∑ |𝑆𝑖 == 𝑀𝑜𝑑𝑖𝑓𝑦|

𝑁𝑠

𝑖=1

… (17) 

o Repeat this for all iterations, and identify value of 𝑇𝑠𝑖
 for 

the last iteration 

• If at the final iteration, 𝑇𝑠𝑖
 is more than solution threshold 

(𝑇𝑠𝑜𝑙), then a new sidechain is generated, else chain with 

lowest number of blocks is used for adding new blocks 

into the system. Value of 𝑇𝑠𝑜𝑙 is evaluated via equation 18 

as follows, 

𝑇𝑠𝑜𝑙 = 𝐿𝑟 ∗
∑ 𝑇𝑠𝑖

𝑁𝑠
𝑖=1

𝑁𝑠

… (18) 

The value of 𝐹𝑓𝑎𝑐𝑡  is selected via equation 19, and it assists in 

creating an optimum number of sidechains for the current 

SCM model. 

𝐿𝑟 = 𝐿𝑟𝑜𝑙𝑑
+

[
𝑀𝑎𝑥(⋃ 𝐿𝑖

𝑁𝑠𝑐
𝑖=1 ) ∗ 𝐿𝑟𝑜𝑙𝑑

−𝐴𝑉𝐺(⋃ 𝐿𝑖
𝑁𝑠𝑐
𝑖=1 )

]

𝑀𝑎𝑥(⋃ 𝐿𝑖
𝑁𝑠𝑐
𝑖=1 )

… (19) 

Where, 𝐿𝑖 represents length of chain for the 𝑖𝑡ℎ sidechain. Due 

to use of previous learning rate, equation 19 can reduce 

number of unnecessary sidechains, thereby reducing delay 

needed for sidechain management. Hashes for each block are 

stored on a separate chain, along with sidechain ID, which 

assists in fast retrieval of data whenever necessary.Blocks are 

added to the chain via PoSC consensus, which assists in 

reducing probability of attacks in the SCM network. Once a 

batch of blocks are added to the sidechain, then evaluation of 

average block addition delay, energy required by miners, and 

throughput are calculated. Based on these parameters, miner 

rank is modified via equation 20 that implements Q-learning 

as follows, 

𝑁𝑒𝑤(𝑀𝑟𝑎𝑛𝑘) = 𝑂𝑙𝑑(𝑀𝑟𝑎𝑛𝑘) + 𝐿𝑟

∗ [𝑓𝑖𝑡𝑛𝑒𝑠𝑠 + 𝑃𝑙 ∗ max(𝑀𝑟𝑎𝑛𝑘)

− 𝑂𝑙𝑑(𝑀𝑟𝑎𝑛𝑘)] … (20) 

This new rank metric is used to interpolate miner 

performance, and assists in selection of miners for next set of 

block addition requests. Evaluation of the proposed model in 

terms of computational speed, throughput, energy 

requirement, retrieval & verification delay, & storage 

requirements under different types of attacks is discussed in 

the next section of this text. 

 

4. Results and comparative evaluation 

The proposed SCMBQA model evaluates a miner rank, and 

combines it with Q-learning and GA models for improving the 

efficiency of miner selection in sidechain-based SCM 

deployments. The proposed model also uses a PoSC based 

consensus to further improve overall mining performance. To 

evaluate parametric performance of the proposed model, SCM 

dataset from Auto Supply Chain 

Data(https://data.mendeley.com/datasets/n24z7r2z28/2/files/8

9b1d403-2c23-41e8-888b-793ac998dd0d), SCM dataset from 

Brunel University 

(https://brunel.figshare.com/articles/dataset/Supply_Chain_Lo

gistics_Problem_Dataset/7558679), Global Garment dataset 

from Datahub (https://old.datahub.io/dataset/global-garment-

supply-chain-data), and Smart Supply Chain dataset from 

Kaggle (https://www.kaggle.com/shashwatwork/dataco-smart-

supply-chain-for-big-data-analysis), were used. Each of these 

datasets had 750k blockchain transactions, out of which 75% 

were used for training the model, while the remaining 25% 

were used for model evaluation. Based on this strategy, 

average mining delay (D), energy consumed during mining 

(E), mining throughput in blocks mined per minute (T) & 

storage costs (S) were evaluated, and compared with the 

mining optimization models proposed in VMI SCM [5], SC 

[10], and DDM SCM [13]. All these evaluations were 

performed under different types of attacks, which assists in 

estimating real-time performance of the SCM deployments.  

Evaluation of mining delay is tabulated w.r.t. number of 

blocks mined (NB) in table 1, wherein SCM was deployed 

under selfish mining attacks. In each case, maximum 10% of 

all miner nodes were considered to be affected by the attack, 

which assists in real-time performance estimation of the 

proposed model under different attack types. 

 

Table 1. Average mining delay for Selfish Mining Attack 

w.r.t. number of blocks in the blockchain 

NB D (s) 

VMI 

SCM [5] 

D (s) 

SC 

[10] 

D (s) 

DDM 

SCM [13] 

D (s) 

SCMB 

QA 

24k 1.74 2.00 1.99 1.19 

50k 2.88 3.24 3.29 1.98 

75k 4.68 4.86 5.35 3.21 

100k 8.01 7.80 9.15 5.49 

125k 12.48 11.44 14.26 8.56 

150k 21.48 23.86 24.55 14.73 

176k 33.06 38.25 36.01 22.43 

200k 48.24 58.05 52.55 32.74 

225k 51.57 56.09 56.18 35.00 

300k 54.27 61.29 59.11 36.82 

350k 61.03 69.01 66.47 41.41 

400k 67.78 76.75 73.84 46.00 

450k 74.55 84.49 81.20 50.58 

500k 81.31 92.22 88.57 55.17 

550k 88.07 96.72 91.77 59.21 

600k 94.83 104.20 98.81 63.75 
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650k 101.59 111.69 105.86 68.30 

675k 108.35 119.18 112.91 72.85 

725k 115.12 126.67 119.95 77.39 

750k 121.87 134.14 126.99 81.93 

 

From this evaluation, it can be observed that the proposed 

model is 20.5% faster than VMI SCM [5], 24.3% faster than 

SC [10], and 20.9% faster than DDM SCM [13] for Selfish 

Mining Attack. This is because of optimum miner selection, 

and incorporation of delay while selection of miner nodes. 

Similarly, average mining delay for Time Jacking Attack 

model was evaluated, and can be observed from table 2 as 

follows: 

 

Table 2. Average mining delay for Time Jacking Attack 

model w.r.t. number of blocks in the blockchain 

NB D (s) 

VMI 

SCM [5] 

D (s) 

SC [10] 

D (s) 

DDM 

SCM [13] 

D (s) 

SCMB 

QA 

24k 2.31 2.62 2.64 1.59 

50k 3.79 4.05 4.32 2.59 

75k 6.35 6.33 7.26 4.35 

100k 10.25 9.62 11.71 7.03 

125k 16.99 17.65 19.41 11.65 

150k 27.27 31.05 30.28 18.58 

176k 40.65 48.15 44.28 27.59 

200k 49.91 57.07 54.37 33.87 

225k 52.92 58.68 57.65 35.91 

300k 57.65 65.15 62.80 39.12 

350k 64.40 72.88 70.16 43.70 

400k 71.17 80.62 77.52 48.29 

450k 77.93 88.35 84.88 52.88 

500k 84.69 94.47 90.17 57.19 

550k 91.45 100.45 95.29 61.47 

600k 98.21 107.94 102.33 66.02 

650k 104.97 115.43 109.38 70.57 

675k 111.73 122.92 116.43 75.11 

725k 118.49 130.40 123.47 79.66 

750k 125.26 142.93 137.00 85.07 

 

From this evaluation, it can be observed that the proposed 

model is 18.5% faster than VMI SCM [5], 20.6% faster than 

SC [10], and 23.8% faster than DDM SCM [13] for Time 

Jacking Attack. This is because of optimum miner selection, 

and incorporation of delay while selection of miner nodes. 

Similarly, average mining delay for Sybil Attack was 

evaluated, and can be observed from table 3 as follows: 

 

 

Table 3. Average mining delay for Sybil Attack w.r.t. number 

of blocks in the blockchain 

NB D (s) 

VMI 

SCM [5] 

D (s) 

SC 

[10] 

D (s) 

DDM 

SCM [13] 

D (s) 

SCMB 

QA 

24k 4.51 4.94 5.15 3.09 

50k 7.50 7.69 8.57 5.14 

75k 12.29 11.81 14.05 8.43 

100k 20.17 20.20 23.05 13.83 

125k 32.78 36.07 36.80 22.39 

150k 50.31 58.66 55.23 34.19 

176k 67.08 77.94 73.07 45.52 

200k 76.17 85.75 82.97 51.69 

225k 81.90 91.73 89.21 55.58 

300k 90.41 102.25 98.49 61.35 

350k 100.43 113.71 109.39 68.15 

400k 110.44 125.16 120.29 74.94 

450k 120.46 135.43 129.67 81.53 

500k 130.47 144.39 137.38 87.90 

550k 140.48 154.37 146.39 94.44 

600k 150.50 165.45 156.83 101.18 

650k 160.52 176.55 167.26 107.91 

675k 170.53 187.64 177.70 114.65 

725k 180.55 202.47 192.94 122.02 

750k 190.93 215.25 205.37 129.21 

 

From this evaluation, it can be observed that the proposed 

model is 18.1% faster than VMI SCM [5], 20.6% faster than 

SC [10], and 18.9% faster than DDM SCM [13] for Sybil 

Attack. This is because of optimum miner selection, and 

improving the mapping efficiency of capacity to blockchain 

mining resource requirements. Similarly, evaluation of energy 

needed for mining is tabulated w.r.t. number of blocks used 

for mining (NB) in table 4, wherein Selfish Mining Attack 

model was used.  

 

Table 4. Average mining energy needed by Selfish Mining 

Attack w.r.t. number of blocks in the blockchain 

NB E (mJ) 

VMI 

SCM [5] 

E (mJ) 

SC [10] 

E (mJ) 

DDM 

SCM [13] 

E (mJ) 

SCMB 

QA 

24k 1.71 1.94 1.93 1.16 

50k 2.80 3.00 3.20 1.92 

75k 4.70 4.69 5.37 3.22 

100k 7.59 7.13 8.67 5.21 

125k 12.57 13.07 14.37 8.62 

150k 20.20 23.00 22.43 13.76 

176k 30.11 35.67 32.80 20.43 
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200k 36.97 42.27 40.27 25.08 

225k 39.20 43.47 42.70 26.60 

300k 42.70 48.25 46.51 28.98 

350k 47.71 53.99 51.97 32.37 

400k 52.72 59.72 57.43 35.77 

450k 57.73 65.45 62.88 39.17 

500k 62.73 69.97 66.79 42.36 

550k 67.74 74.41 70.59 45.54 

600k 72.75 79.96 75.81 48.91 

650k 77.75 85.51 81.03 52.27 

675k 82.76 91.05 86.24 55.64 

725k 87.77 96.60 91.47 59.01 

750k 92.78 102.46 97.09 62.43 

 

From this evaluation, it can be observed that the proposed 

model has 16.6% lower energy consumption than VMI SCM 

[5], 20.9% lower energy consumption than SC [10], and 

18.2% lower energy consumption than DDM SCM [13] for 

Selfish Mining Attack model. This is because of optimum 

miner selection, and incorporation of residual energy during 

selection of miner nodes. Similarly, average mining energy 

needed for Time Jacking Attack models was evaluated, and 

can be observed from table 5 as follows: 

 

Table 5. Average mining energy needed Time Jacking Attack 

model w.r.t. number of blocks in the blockchain 

NB E (mJ) 

VMI 

SCM [5] 

E (mJ) 

SC [10] 

E (mJ) 

DDM 

SCM [13] 

E (mJ) 

SCMB 

QA 

24k 2.26 2.47 2.57 1.54 

50k 3.75 3.85 4.29 2.57 

75k 6.15 5.91 7.03 4.21 

100k 10.09 10.10 11.53 6.92 

125k 16.39 18.04 18.41 11.20 

150k 25.16 29.33 27.61 17.10 

176k 33.55 38.97 36.53 22.76 

200k 38.09 42.87 41.48 25.84 

225k 40.95 45.87 44.60 27.79 

300k 45.21 51.12 49.23 30.67 

350k 50.21 56.85 54.69 34.07 

400k 55.22 62.58 60.15 37.47 

450k 60.23 67.71 64.84 40.77 

500k 65.23 72.19 68.69 43.95 

550k 70.25 77.19 73.19 47.22 

600k 75.25 82.73 78.41 50.59 

650k 80.26 88.28 83.63 53.96 

675k 85.27 93.81 88.85 57.32 

725k 90.27 101.23 96.47 61.01 

750k 95.47 107.63 102.69 64.61 

 

From this evaluation, it can be observed that the proposed 

model has 15.8% lower energy consumption than VMI SCM 

[5], 22.9% lower energy consumption than SC [10], and 

22.3% lower energy consumption than DDM SCM [13] for 

Jamming Attack. Similarly, average mining energy needed for 

Sybil Attacks was evaluated, and can be observed from table 6 

as follows: 

 

Table 6. Average mining energy needed Sybil Attack w.r.t. 

number of blocks in the blockchain 

NB E (mJ) 

VMI 

SCM [5] 

E (mJ) 

SC [10] 

E (mJ) 

DDM 

SCM [13] 

E (mJ) 

SCMB 

QA 

24k 1.99 2.09 2.22 1.41 

50k 3.27 3.23 3.70 2.34 

75k 5.31 4.93 6.07 3.83 

100k 8.76 8.48 9.95 6.29 

125k 14.43 15.33 15.91 10.26 

150k 22.37 25.15 23.90 15.76 

176k 29.83 33.43 31.62 20.97 

200k 33.72 36.66 35.89 23.75 

225k 36.24 39.21 38.60 25.53 

300k 40.05 43.74 42.61 28.21 

350k 44.49 48.65 47.33 31.33 

400k 48.94 53.56 52.05 34.46 

450k 53.39 58.00 56.14 37.49 

500k 57.83 61.92 59.53 40.41 

550k 62.27 66.25 63.47 43.42 

600k 66.71 71.01 67.99 46.51 

650k 71.16 75.77 72.51 49.61 

675k 75.61 80.53 77.04 52.71 

725k 80.05 86.77 83.56 56.12 

750k 84.65 92.25 88.95 59.43 

 

From this evaluation, it can be observed that the proposed 

model has 16.5% lower energy consumption than VMI SCM 

[5], 19.8% lower energy consumption than SC [10], and 

16.8% lower energy consumption than DDM SCM [13] for 

Sybil Attack. Similarly, evaluation of average throughput in 

blocks mined per minute is tabulated w.r.t. number of blocks 

used for mining (NB) in table 7, wherein Selfish Mining 

Attack model was used.  
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Table 7. Average throughput for Selfish Mining Attack w.r.t. 

number of blocks in the blockchain 

NB T (bpm) 

VMI 

SCM [5] 

T 

(bpm) 

SC [10] 

T (bpm) 

DDM 

SCM [13] 

T (bpm) 

SCMB 

QA 

24k 177.61 159.88 159.31 264.18 

50k 111.04 104.33 96.92 163.20 

75k 72.07 71.47 58.49 102.71 

100k 48.68 49.65 35.43 66.40 

125k 29.57 29.53 21.89 40.61 

150k 14.89 13.43 13.49 22.19 

176k 9.92 8.36 9.19 14.87 

200k 7.83 6.81 7.23 11.71 

225k 7.29 6.68 6.81 10.96 

300k 6.69 5.99 6.27 10.08 

350k 5.99 5.35 5.60 9.01 

400k 5.41 4.83 5.07 8.14 

450k 4.93 4.40 4.63 7.43 

500k 4.53 4.09 4.33 6.86 

550k 4.30 3.84 4.11 6.40 

600k 3.91 3.57 3.83 5.96 

650k 3.65 3.33 3.56 5.56 

675k 3.44 3.13 3.35 5.23 

725k 3.25 2.96 3.16 4.94 

750k 3.09 2.80 2.97 4.68 

 

From this evaluation, it can be observed that the proposed 

model is 6.5% better throughput than VMI SCM [5], 8.9% 

better throughput than SC [10], and 7.4% better throughput 

than DDM SCM [13] for EHR based application model. This 

is because of optimum miner selection, and incorporation of 

delay during miner node selection process. Similarly, average 

throughput for Time Jacking Attack models was evaluated, 

and can be observed from table 8 as follows: 

 

Table 8. Average throughput for Jamming Attack w.r.t. 

number of blocks in the blockchain 

NB T (bpm) 

VMI 

SCM [5] 

T 

(bpm) 

SC [10] 

T (bpm) 

DDM 

SCM [13] 

T (bpm) 

SCMB 

QA 

24k 136.17 126.04 120.53 201.36 

50k 86.87 84.63 72.95 125.57 

75k 57.80 58.43 44.09 80.32 

100k 35.73 36.05 27.04 49.49 

125k 19.13 18.11 16.67 28.04 

150k 11.83 10.28 10.93 17.72 

176k 8.64 7.39 8.04 12.97 

200k 7.49 6.72 7.01 11.28 

225k 6.97 6.32 6.55 10.51 

300k 6.31 5.64 5.92 9.51 

350k 5.68 5.07 5.32 8.55 

400k 5.17 4.61 4.85 7.79 

450k 4.73 4.24 4.49 7.16 

500k 4.36 3.96 4.23 6.63 

550k 4.05 3.71 3.96 6.18 

600k 3.79 3.45 3.69 5.77 

650k 3.55 3.24 3.47 5.41 

675k 3.33 3.05 3.27 5.08 

725k 3.15 2.84 3.03 4.77 

750k 3.04 2.72 2.88 4.58 

 

From this evaluation, it can be observed that the proposed 

model is 9.3% better throughput than VMI SCM [5], 12.8% 

better throughput than SC [10], and 12.3% better throughput 

than DDM SCM [13] for Jamming Attack. Similarly, average 

throughput for Sybil Attacks was evaluated, and can be 

observed from table 9 as follows: 

 

Table 9. Average throughput for Sybil Attack w.r.t. number 

of blocks in the blockchain 

NB T (bpm) 

VMI 

SCM [5] 

T 

(bpm) 

SC [10] 

T (bpm) 

DDM 

SCM [13] 

T (bpm) 

SCMB 

QA 

24k 159.69 167.95 259.48 352.79 

50k 101.05 110.92 157.03 217.17 

75k 66.69 75.13 94.92 135.95 

100k 41.23 46.32 58.21 83.65 

125k 22.37 24.00 35.85 48.89 

150k 14.00 14.00 23.47 31.33 

176k 10.25 10.11 17.25 22.96 

200k 8.85 9.13 15.05 19.96 

225k 8.23 8.57 14.05 18.61 

300k 7.45 7.67 12.70 16.84 

350k 6.71 6.89 11.41 15.14 

400k 6.11 6.27 10.41 13.80 

450k 5.60 5.78 9.63 12.71 

500k 5.16 5.42 9.05 11.80 

550k 4.79 5.07 8.47 10.99 

600k 4.48 4.73 7.90 10.28 

650k 4.19 4.44 7.41 9.62 

675k 3.94 4.19 6.98 9.03 

725k 3.73 3.89 6.48 8.48 

750k 3.60 3.71 6.17 8.13 

 

From this evaluation, it can be observed that the proposed 

model is 31.5% better throughput than VMI SCM [5], 31.8% 
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better throughput than SC [10], and 8.5% better throughput 

than DDM SCM [13] for Sybil Attack. Similarly, evaluation 

of storage cost for mining is tabulated w.r.t. number of blocks 

used for mining (NB) in table 10, wherein Selfish Mining 

Attack model was used.  

 

Table 10. Average storage cost needed by Selfish Mining 

Attack w.r.t. number of blocks in the blockchain 

NB S (MB) 

VMI 

SCM [5] 

S (MB) 

SC [10] 

S (MB) 

DDM 

SCM [13] 

S (MB) 

SCMB 

QA 

24k 3.3 3.7 2.2 1.1 

50k 8.4 9.6 6.1 2.8 

75k 22.0 25.2 17.3 7.6 

100k 54.1 61.8 45.2 19.2 

125k 164.3 187.8 123.9 55.2 

150k 464.6 515.9 308.6 148.0 

176k 1074.0 1170.0 670.1 333.6 

200k 1562.7 1702.2 1010.0 494.6 

225k 1704.0 1856.2 1135.8 548.3 

300k 2060.3 2244.1 1347.9 656.5 

350k 2575.9 2805.9 1682.3 819.9 

400k 3148.4 3429.7 2054.3 1001.6 

450k 3778.4 4115.5 2463.0 1201.5 

500k 4389.2 4673.3 2829.2 1401.1 

550k 5040.5 5252.6 3214.7 1614.8 

600k 5817.1 6061.8 3707.9 1863.1 

650k 6648.4 6928.9 4235.4 2128.6 

675k 7535.3 7852.2 4798.4 2412.2 

725k 8478.6 8836.0 5397.6 2713.7 

750k 9506.2 9947.8 6061.3 3039.7 

 

From this evaluation, it can be observed that the proposed 

model has 31.6% lower storage costthan VMI SCM [5], 

34.4% lower storage costthan SC [10], and 20.6% lower 

storage costthan DDM SCM [13] for Selfish Mining Attack 

model. This is because of optimum miner selection, and 

incorporation of residual energy during selection of miner 

nodes. Similarly, average storage costneeded for Time Jacking 

Attack models was evaluated, and can be observed from table 

11 as follows, 

 

Table 11. Average storage costneeded Time Jacking Attack 

model w.r.t. number of blocks in the blockchain 

NB S (MB) 

VMI 

SCM [5] 

S (MB) 

SC [10] 

S (MB) 

DDM 

SCM [13] 

S (MB) 

SCMB 

QA 

24k 5.6 6.3 4.0 1.8 

50k 14.4 16.5 11.0 4.9 

75k 36.3 41.5 29.6 12.7 

100k 101.9 116.5 79.8 34.9 

125k 295.7 332.1 206.2 96.2 

150k 737.9 809.8 472.1 231.6 

176k 1307.4 1423.6 831.4 410.3 

200k 1632.9 1778.2 1071.8 521.2 

225k 1878.4 2045.8 1239.4 601.2 

300k 2311.1 2516.6 1509.9 735.8 

350k 2854.4 3109.1 1863.3 908.4 

400k 3455.7 3764.2 2253.8 1099.2 

450k 4078.2 4390.3 2643.5 1299.6 

500k 4709.0 4958.7 3018.9 1506.0 

550k 5422.6 5649.5 3456.0 1736.7 

600k 6225.4 6486.9 3966.8 1993.6 

650k 7085.4 7382.9 4512.7 2268.5 

675k 7999.2 8335.0 5092.9 2560.4 

725k 9138.0 9765.7 5885.6 2911.3 

750k 10275.4 11052.5 6634.8 3268.8 

 

From this evaluation, it can be observed that the proposed 

model has 46.8% lower storage cost than VMI SCM [5], 

50.2% lower storage costthan SC [10], and 34.8% lower 

storage costthan DDM SCM [13] for Jamming Attack. 

Similarly, average storage costneeded for Sybil Attacks was 

evaluated, and can be observed from table 6 as follows, 

 

Table 12. Average storage costneeded Sybil Attack w.r.t. 

number of blocks in the blockchain 

NB S (MB) 

VMI 

SCM [5] 

S (MB) 

SC [10] 

S (MB) 

DDM 

SCM [13] 

S (MB) 

SCMB 

QA 

24k 4.2 4.6 3.1 1.4 

50k 10.6 12.0 8.7 3.8 

75k 26.2 29.9 23.2 9.8 

100k 74.3 84.4 62.6 27.1 

125k 221.2 243.9 163.2 76.3 

150k 562.6 601.1 376.7 186.6 

176k 997.2 1057.1 663.1 330.6 

200k 1236.2 1315.7 852.4 417.2 

225k 1421.0 1513.5 985.5 480.8 

300k 1751.8 1863.8 1202.0 589.8 

350k 2164.4 2302.6 1482.8 728.1 

400k 2621.2 2787.8 1793.6 881.2 

450k 3096.6 3256.1 2104.7 1042.2 

500k 3580.8 3686.1 2405.6 1208.4 

550k 4125.4 4204.9 2755.9 1393.7 

600k 4737.1 4828.0 3162.2 1599.8 
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650k 5391.8 5494.1 3597.2 1820.5 

675k 6088.9 6204.0 4060.8 2055.5 

725k 6945.9 7250.5 4689.4 2336.7 

750k 7809.0 8205.6 5286.3 2623.4 

 

From this evaluation, it can be observed that the proposed 

model has 43.5% lower storage cost than VMI SCM [5], 

52.8% lower storage costthan SC [10], and 35.9% lower 

storage costthan DDM SCM [13] for Sybil Attack.Due to 

these improvements, the proposed model showcases high 

scalability, and better mining performance. This ensures that 

the model is applicable for high-speed, low energy, and high 

throughput sidechain-based SCM application deployments. As 

the evaluation was done for different types of attacks, it can 

be observed that the model’s QoS performance is consistent, 

thus suggesting that it is capable of resisting these attacks. A 

performance reduction of less than 0.1% was observed under 

attacks, thereby suggesting that the proposed model is capable 

of reducing attack probability by over 99.95% under different 

attack types. This characteristic makes the model highly 

useful for a wide variety of SCM-deployment scenarios. 

 

5. Conclusion 

The proposed SCMBQA model uses a combination of 

machine learning with miner to entity relationship mapping 

for improved miner selection and sidechain creation process. 

This model is further embedded with a PoSC based consensus 

& incremental Q learning model, that assists in resisting 

against a wide variety of SCM based attacks. Due to use of 

these models, it is observed that the proposed method is 

12.7% faster than VMI SCM [5], 15.4% faster than SC [10], 

and 18.2% faster than DDM SCM [13]under different attack 

scenarios. Due to incorporation of energy consumption during 

miner selection, the proposed model has 14.1% lower energy 

consumption than VMI SCM [5], 19.6% lower energy 

consumption than SC [10], and 16.8% lower energy 

consumption than DDM SCM [13] for different attack types. 

The model also incorporates throughput during selection of 

miner nodes, due to which, the proposed model is 14.1% 

better throughput than VMI SCM [5], 16.5% better 

throughput than SC [10], and 14.9% better throughput than 

DDM SCM [13] for under different types of attacks. 

Furthermore, the model incorporates sidechaining, due to 

which 31.6% lower storage cost than VMI SCM [5], 34.4% 

lower storage cost than SC [10], and 20.6% lower storage cost 

than DDM SCM [13]under different attacks is observed. 

Based on this performance enhancement, the proposed 

sidechaining model is useful for a wide variety of SCM 

deployments. In future, the model’s performance can be 

validated on different attack types, which will assist in further 

scaling the model to multiple SCM types. Moreover, the 

model’s QoS performance can be improved via use of deep 

learning-based miner selection methods, which can 

incorporate trust-levels and privacy levels for securing 

multiple types of SCM deployments. 
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