
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 11

DOI: https://doi.org/10.17762/ijritcc.v10i11.5778

Article Received: 21 August 2022 Revised: 03 October 2022 Accepted: 18 October 2022

40

IJRITCC | November 2022, Available @ http://www.ijritcc.org

DBRS: Directed Acyclic Graph based Reliable

Scheduling Approach in Large Scale Computing

Manjeet Singh*, Dr. Javalkar Dinesh Kumar2
1Department of Computer Sciences & Engineering,

Lingaya’s Vidyapeeth

 Faridabad, India

19phcs05w@lingayasvidyapeeth.edu.in
2Department of Electronics & Communication Engineering

Lingaya’s Vidyapeeth

 Faridabad, India

Abstract— In large scale environments, scheduling presents a significant challenge because it is an NP-hard problem. There are basically

two types of task in execution- dependent task and independent task. The execution of dependent task must follow a strict order because output

of one activity is typically the input of another. In this paper, a reliable fault tolerant approach is proposed for scheduling of dependent task in

large scale computing environments. The workflow of dependent task is represented with the help of a DAG (directed acyclic graph). The

proposed methodology is evaluated over various parameters by applying it in a large scale computing environment- ‘grid computing’. Grid

computing is a high performance computing for solving complex, large and data intensive problems in various fields. The result analysis shows

that the proposed DAG based reliable scheduling (DBRS) approach increases the performance of system by decreasing the makespan, number of

failures and increasing performance improvement ratio (PIR).

Keywords- Large Scale Computing, Reliability; Scheduling; Workflow; DAG- Directed Acyclic Graph; Fault- Tolerance;

I. INTRODUCTION

The term "grid computing" refers to a type of high-

performance computing environment that makes it easier to

meet the needs of large-scale computations. It encompasses a

variety of research challenges, including resource management,

work scheduling, information management, and security

difficulties. Scheduling of tasks is an essential component of

parallel computing, as well as distributed computing and grid

computing. In grid computing, the primary objective of task

scheduling is to maximize system throughput and performance

while simultaneously satisfying the resource requirements of

the work [1].

A programme known as Grid scheduler is accountable for

controlling the allocation and execution of tasks on appropriate

machines [2]. Computing on a grid can be useful in a wide

variety of contexts, including the fields of medicine,

meteorology, engineering, and research, amongst others. When

it comes to research, the most important aspects of grid

computing are task scheduling and ensuring fault tolerance [3].

The workflow of dependent task is represented by DAG in

grid computing. A workflow is a series of tasks that must be

completed in the specified order to achieve the desired end

result. In most cases, the term "dependency" refers to the

presence of a precedence order within the tasks. This means

that a task cannot begin, and in some cases cannot even

advance, until its predecessors have been completed.

Dependency has a substantial effect on how fault tolerance is

achieved [4]. A graph is a collection of vertexes joined by

edges. Each node in the graph is in a specific order according to

a topological sorting. Each edge runs from a previous edge to a

subsequent edge. Topological ordering of graph is another

name for DAG. Scheduling, circuit design, and Bayesian

networks are some examples of applications of DAG. Figure 1

below shows an example of directed acyclic graph. The

vertices of DAG represent the task. The directed edge between

two vertices v1→v2 shows that v2 is dependent on v1. The

weight on each edge depicts the communication cost between

vertices.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 11

DOI: https://doi.org/10.17762/ijritcc.v10i11.5778

Article Received: 21 August 2022 Revised: 03 October 2022 Accepted: 18 October 2022

41

IJRITCC | November 2022, Available @ http://www.ijritcc.org

Figure 1. Dependent Task as Directed Acyclic Graph (DAG)

II. RELATED WORK

This section reviewed the numerous tasks scheduling

techniques that have been developed by various academicians

and researchers. An algorithm for fault-tolerant scheduling of

dependent tasks in computational grids was proposed by R.

Garg et al. [5]. The method used is Weibull failure distribution

and checkpoint rollback recovery method is used to handle

failure. R. Garg et al. [6] designed a dependent task scheduling

algorithm for computational grid. The workflow was

represented with the help of DAG and resource availability was

dynamic in nature. The computational analysis show that this

method is capable of dealing with fluctuations in available

resources and offers complete optimal performance. The

simulations were carried out using task graphs generated at

random as well as task graphs relating to real world problems.

Y. Zhang et al. [7] make some suggestions for new methods

that integrate the fault tolerance strategies with the workflow

scheduling algorithms already in place. It designed a HEFT and

DAG with over-provisioning algorithm for scheduling with

checkpointing methods.

A. Iosup et al. [8] perform an analysis of resource

availability of Grid'5000, consisting of more than 2,500

processors. When availability is taken into account, there is an

almost 5 percentage point increase in the average utilization of

the trace that was studied. A model for the availability of grid

resources is proposed based on the findings.

Zhifeng Yu et al. [9] introduced FLAW, a technique for

failure-aware workflow scheduling using failure prediction. L.

Yu et al. [10] a revised communication inclusion generational

scheduling (CIGS) algorithms based on DAG has been

demonstrated and found to be effective for grid computing

environments.

Grid makes it possible to share, pick, and aggregate

geographically dispersed "autonomous" resources. However,

users must have the appropriate access permissions in order to

access resources on a remote server. The usage of a password

authentication technique is one of the most straightforward and

practical security mechanisms. Consequently, the security issue

is crucial for grid computing. The technique suggested by C. C.

Lee et al. [11] is extremely straightforward and effective, it use

only a one-way hash function and the server's private key.

H. Sing et al. [12] proposed an efficient resource scheduling

algorithm. Prior to dispatching a resource, the scheduling

procedure involves a methodical low for determining work-

load requirements. User tasks are portrayed as an erratic

workload that cloud users send. The objective of solution

evaluation is to get the minimum execution time and cost. To

save money and effort, it used pheromone-based heuristic data.

It was inspired by how scattered ants communicate with one

another, utilizing pheromones to determine the quickest, most

efficient route.

R. Changan et al. [13] on the basis of adaptive genetic

optimization presented a quick information scheduling solution

for extensive logistics supply chains. The GA is utilized to find

a solution. Experiments demonstrate that the suggested

approach can successfully increase scheduling effectiveness

and address the issues that currently exist.

M. K. Gourisaria et al. [14] proposed EPTS - an algorithm

for energy-saving of resource and distributes the amount of

energy consumed by tasks in an equal manner. This is

accomplished by pre-empting jobs that have high energy

demands with tasks that have lower energy demands.

III. PROPOSED MODEL

The proposed scheduling method DBRS uses the DAG

workflow, performance and failure parameter of resources for

making the scheduling decision. It is considered that

communication links may be relied upon completely. The

reliability is ensured with the help of full checkpoint fault

tolerant mechanism. The time between failures of different

resources is modeled as Weibull failure distribution [15, 16, 17-

19]. Scale parameter (α) and shape parameter (β) are the two

parameters that make up the Weibull failure distribution. When

β = 1, it means that the failure rate is constant over time, β > 1,

it means that it rises over time, and β <1 it means that it falls

over time. The time between failures in this study is predicated

on the Weibull failure distribution with increasing hazard rate.

As the failures are inevitable in grid due to heterogeneity of

resources, they consume a big chunk of execution time. So, the

concept is to find out the expected wasted time during

execution due to failure and recovery from failure. This

wasted time information is used to recalculate the resource

computing capacity and later scheduling is done such that we

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 11

DOI: https://doi.org/10.17762/ijritcc.v10i11.5778

Article Received: 21 August 2022 Revised: 03 October 2022 Accepted: 18 October 2022

42

IJRITCC | November 2022, Available @ http://www.ijritcc.org

can minimize the wasted time due to failures and improve the

system performance. The wasted time is calculated with the

help of Eq. 1.

𝑊𝑎𝑠𝑡𝑒𝑑 𝑇𝑖𝑚𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎 𝑇𝑎𝑠𝑘 =

(𝑇𝑖𝑚𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑓𝑜𝑟 𝑡𝑎𝑘𝑖𝑛𝑔 𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 +

𝑇𝑖𝑚𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒 𝑓𝑜𝑟 𝑟𝑒 − 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑎𝑖𝑙𝑒𝑑 𝑗𝑜𝑏 +

𝑇𝑖𝑚𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑓𝑜𝑟 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑓𝑟𝑜𝑚 𝑠𝑎𝑣𝑒𝑑 𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡) (1)

The expected wasted time for Weibull distribution and full

checkpointing mechanism is given by Eq. 2 [20]:

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑊𝑎𝑠𝑡𝑒𝑑 𝑇𝑖𝑚𝑒 =

∫ [𝑂𝐹 ∫ 𝑛(𝑡). 𝑑𝑡
𝑡

0
+

𝑘

𝑛(𝑡)
+ 𝑅𝐹]

∞

0
. 𝑓(𝑡). 𝑑𝑡 (2)

Where, OF -denotes the time required for saving checkpoint

RF -denotes the time required for recovery

f(t) -is a PDF (probability density function)

k -is a coefficient of recomputing time

n(t) -is checkpoint function, given by Eq. 3 [20]

𝑛(𝑡) = √
𝑘

𝑂𝐹
 .

𝑓(𝑡)

1−𝐹(𝑡)
 (3)

Where, F(t) is CFD (cumulative distribution function) .

𝑓(𝑡) = (
𝛽

𝛼
) . (

𝑡

𝛼
)

𝛽−1

. 𝑒−(𝑡/𝛼)𝛽
 (4)

𝐹(𝑡) = 1 − 𝑒−(𝑡/𝛼)𝛽
 (5)

Using Eq. 4 and Eq. 5, Eq. 3 can be written as Eq. 6.

 𝑛(𝑡) = √
𝑘

𝑂𝐹
 . (

𝑡

𝛼
)

𝛽−1

2
 . √

𝛽

𝛼
 (6)

The Figure 2 below show the flowchart of the proposed

DAG based reliable scheduling (DBRS) approach.

Figure 2. Flowchart for DAG based Reliable Scheduling Approach

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 11

DOI: https://doi.org/10.17762/ijritcc.v10i11.5778

Article Received: 21 August 2022 Revised: 03 October 2022 Accepted: 18 October 2022

43

IJRITCC | November 2022, Available @ http://www.ijritcc.org

The proposed DAG based reliable scheduling approach

(DBRS), schedule the dependent task in large scale computing

environment like grid computing. The job to be performed is

given as input to the system in the form of a directed acyclic

graph (DAG). The nodes/vertex of the graph indicates the

subtasks among the job. The direction of an edge from one

node to another node in DAG represents the dependency of

task. For example if there is an edge from node v1 to v2, it

indicates that v2 is dependent on v1 i.e. the task v2 can’t start

its execution until the task v1 finishes its execution and its

result is available to task v2. The weight of an edge in DAG

represents the communication cost between two vertices.

Values within the vertex represent the size of subtask.

The procedures for the suggested method are outlined as

follows:

Step 1: Input the job to be performed as DAG with

workload of vertices and communication cost of

edges.

Step 2: Based on successor of each vertex in DAG, find

out predecessor subtask of each subtask.

Step 3: Calculate the average execution time of each

subtask by computing the execution time of each

subtask on each resource.

Step 4: Find arrival/start time of a subtask based on its

execution time, communication cost and

predecessor availability.

Step 5: Assign rank to each subtask based on its arrival

time.

Step 6: Find expected wasted time of the system due to

failure, recovery and fault tolerant mechanism.

Step 7: Calculate capacity reducing factor based on

expected wasted time of the system using Eq. 2.

Step 8: Calculate actual effective computing capacity of

resources based on capacity reducing factor.

Step 9: Arrange task in descending order of their rank.

Step 10: Arrange resources in decreasing order of their

computational capacity.

Step 11: Schedule task according to rank and new capacity.

Step 12: Check resource availability

while (all task not scheduled and executed)

if (resource available)

schedule the task

if (failure occurs during execution)

recover from failure and restart

execution

end if;

else

wait for resource to become available

end if;

end while;

Step 13: End;

IV. RESULT AND DISCUSSION

To check effectiveness of proposed algorithm DBRS is

compared with other algorithm over various evaluation

parameters. A model is created with eight computing

nodes/resources. We took into account the shape parameter (β)

with increasing failure rate, which ranges from 1.8 to 3.6. The

scale parameter's value is α =20. The recovery time and

checkpoint storage cost are 2 minutes. The value of re-

computing time coefficients is 0.5. Grid application run with a

variable number of dependent tasks (DAG) ranging from [5,

25]. Various parameters are referred from [8, 17-18].

The performance of the proposed DAG-based reliable

scheduling (DBRS) algorithm is compared to that of the Speed-

only approach (SOSA). The SOSA algorithm only takes into

account resource performance characteristics for scheduling

tasks. Performance of DBRS is assessed using the metrics

listed below [20].

PIR: Performance Improvement Rate reveals the percentage

difference between the DBRS method and the competing

SOSA method.

PIR(%)=(
𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 (𝑆𝑂𝑆𝐴) − 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 (𝐷𝐵𝑅𝑆)

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 (𝐷𝐵𝑅𝑆)
) × 100 (7)

Failure Ratio (FR): It is the ratio of overall crashes using the

suggested way to overall crashes using the current method.

The proposed failure-aware scheduling strategy will work

better if the value of FR is smaller than 1.

Throughput: That's the number of tasks finished in a certain

amount of time. It demonstrates the number of jobs that were

completed or processed in the allotted amount of time.

Table 1 below lists the various efficiency parameters for

failure ratio, throughput, and PIR.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 11

DOI: https://doi.org/10.17762/ijritcc.v10i11.5778

Article Received: 21 August 2022 Revised: 03 October 2022 Accepted: 18 October 2022

44

IJRITCC | November 2022, Available @ http://www.ijritcc.org

TABLE I. SIMULATION RESULTS FOR DBRS AND SOSA OVER VARIOUS EVALUATION PARAMETERS

No. of

Task

Makespan

(SOSA)

Makespan

(DBRS)

PIR

(DBRS)

Throughput

(SOSA)

Throughput

(DBRS)

NOF

(SOSA)

NOF

(DBRS)

Failure Ratio

(DBRS)

5 375.2548 358.1493 4.78 0.0447 0.077 238.4006 179.878 0.7545

10 437.2227 362.9187 20.47 0.0536 0.0711 441.169 352.7856 0.7997

15 616.855 601.1254 2.62 0.0467 0.0622 887.1631 660.7692 0.7448

20 978.6657 828.1063 18.18 0.0403 0.052 1578.90 1104.80 0.6997

25 1253.80 1057.10 18.61 0.0354 0.045 2606.70 1705.80 0.6544

Figure 3. Makespan Comparison

Figure 4. Performance Improvement Rate (PIR)

Figure 5. Throughput

Figure 6. Number of Failures (NOF) Comparison

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 11

DOI: https://doi.org/10.17762/ijritcc.v10i11.5778

Article Received: 21 August 2022 Revised: 03 October 2022 Accepted: 18 October 2022

45

IJRITCC | November 2022, Available @ http://www.ijritcc.org

Figure 7. Failure Ratio

Table 1, Figure 3 and Figure 4 examine the makespan and

PIR of the proposed approach DBRS over SOSA. From the

mathematical results and graph it can be seen very clearly that

DBRS always achieve lesser makespan, which is a direct

indicator for performance improvement of the system. Lesser

makespan means DBRS take less time to execute the job and

hence is a faster method. For instance in Figure 4, for 10 tasks

PIR is around 20, it means that DBRS is 20% faster than the

SOSA method.

Figure 5 investigate throughput of DBRS over SOSA.

Simulation values and graph pointed out that throughput of

DBRS always higher than SOSA, which means that DBRS

compute more number of tasks in the same timeframe and

hence improve the system performance.

Figure 6 and Figure 7 asses the number of failures (NOF)

and failure ratio (FR). The comparison of analytical data from

Table 1 and these figures shows that NOF in DBRS are less

than SOSA and hence FR continuously comes out to be less

than 1. Reduced number of failures and FR<1, indicates that

the proposed method DBRS improved reliable of the system.

V. CONCLUSION

Researchers have been interested in the scheduling of

dependent tasks application since the inception of Grid

computing because of its NP-Complete nature. Scheduling in a

grid environment determines how to assign tasks to the

resources that are available. When tasks have dependencies and

resources are heterogeneous, grid scheduling become more

difficult. Minimizing make-span is the primary goal of

dependent task scheduling. In this research paper, a DAG-

based reliable scheduling model is proposed with the goal to

increasing the system's reliability while simultaneously

reducing the amount of time required for its execution. The

findings of the simulation indicate that the fault-tolerant

scheduling algorithm DBRS increased the system performance

by around 20% by reducing makespan and decreased the

amount of failures and the failure rate, which increased the

system's reliability. DBRS also improved the overall

throughput of the system.

REFERENCES

[1] Manjot Kaur Bhatia, "Task Scheduling in Grid Computing:

A Review", Advances in Computational Sciences and

Technology ISSN 0973-6107 10(6) (2017) 1707-1714.

[2] H. B. Prajapati, V. A. Shah, "Scheduling in Grid Computing

Environment". 2014 Fourth International Conference on

Advanced Computing & Communication Technologies,

ISBN:978-1-4799-4910-6, DOI: 10.1109/ACCT.2014.32,

(2014).

[3] S. Haider and B. Nazir, “Fault tolerance in computational

grids: perspectives, challenges, and issues”, Springer Plus,

Vol. 5, pp. 1-20, 2016

[4] R. Garg and A. K. Singh, “Fault Tolerance in Grid

Computing: State of the Art and Open Issues”, International

Journal of Computer Science & Engineering Survey

(IJCSES), Vol. 2, No. 1, pp. 88-97, 2011.

[5] R. Garg and A. K. Singh, “Fault Tolerant Task Scheduling

on Computational Grid Using Checkpointing Under

Transient Faults”, Springer, Arab J Sci Eng, Vol. 39, pp.

8775–8791, 2014.

[6] R. Garg and A. K. Singh. “Adaptive workflow scheduling in

grid computing based on dynamic resource availability”,

Engineering Science and Technology, an International

Journal, Vol. 18, pp. 256-269, 2015.

[7] Yang Zhang, Anirban Mandal, Charles Koelbel and Keith

Cooper, "Combined Fault Tolerance and Scheduling

Techniques for Workflow Applications on Computational

Grids", 9th IEEE/ACM International Symposium on Cluster

Computing and the Grid, pp 244-251, 2009, ISBN: 978-0-

7695-3622-4/09, DOI 10.1109/CCGRID.2009.59

[8] A. Iosup, M. Jan, O. Sonmez and D. H. J. Epema,"On the

Dynamic Resource Availabilty in Grids" IEEE 8th Grid

Computing Conference, pp. 26-33, 2007.

[9] Zhifeng Yu, Chenjia Wang and Weisong Shi, "Failure-

aware workflow scheduling in cluster environments",Cluster

Comput, Vol. 13, pp. 421–434, 2010. DOI 10.1007/s10586-

010-0126-7.

[10] Liang Yu, Gang Zhou, Yifei Pu, “An Improved Task

Scheduling Algorithm in Grid Computing Environment”,

Int. J. Communications, Network and System Sciences, Vol.

4, pp. 227-231, 2011. DOI:10.4236/ijcns.2011.44027.

[11] Cheng-Chi Lee, Hsien-Ju Ko & Shun-Der Chen, An

improved simple user authentication scheme for grid

computing, Journal of Discrete Mathematical Sciences and

Cryptography, Vol. 15(2-3), pp. 113-124, 2012. DOI:

10.1080/09720529.2012.10698368

[12] Ren Changan, Jinguo Zhao & Liping Chen, A fast

information scheduling algorithm for large scale logistics

supply chain, Journal of Discrete Mathematical Sciences

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 11

DOI: https://doi.org/10.17762/ijritcc.v10i11.5778

Article Received: 21 August 2022 Revised: 03 October 2022 Accepted: 18 October 2022

46

IJRITCC | November 2022, Available @ http://www.ijritcc.org

and Cryptography, Vol. 20(6-7), pp. 1459-1463, 2017.

DOI:10.1080/09720529.2017.1392463

[13] Harvinder Singh, Anshu Bhasin & Parag Kaveri, SECURE :

Efficient resource scheduling by swarm in cloud computing,

Journal of Discrete Mathematical Sciences and

Cryptography, Vol. 22(2), pp. 127-137, 2019. DOI:

10.1080/09720529.2019.1576334.

[14] Mahendra Kumar Gourisaria, Pabitra Mohan Khilar &

Sudhansu Shekhar Patra, EPTS: Energy-saving pre-emptive

task scheduling for homogeneous cloud systems, Journal of

Discrete Mathematical Sciences and Cryptography, Vol.

24(8), pp. 2415-2441, 2021. DOI:

10.1080/09720529.2021.2016191.

[15] P. Jiang, Y. Xing, X. Jia, and B. Guo, “Weibull Failure

Probability Estimation Based on Zero-Failure Data”,

Hindawi Publishing Corporation, Mathematical Problems in

Engineering Volume , pp. 1-8, 2015.

[16] Lulu Zhang , Guang Jin, and Yang You, “Reliability

Assessment for Very Few Failure Data and Weibull

Distribution”, Mathematical Problems in Engineering,

Hindawi, Vol. 2019, pp. 1-9, 2019.

https://doi.org/10.1155/2019/8947905.

[17] Cappello, F.: Modeling and tolerating heterogeneous

failures in large parallel systems. In: Proceedings of the

SC’2011 International Conference for High Performance

Computing, Networking, Storage and Analysis, ACM Press

(2011)

[18] Liu, Y.; Nassar, N.; Leangsuksun, C.; Nichamon, N.; Paun,

M.; Scott, S.: An optimal checkpoint/restart model for a

large scale high performance computing system. In: IEEE

International Symposium on Parallel and Distributed

Processing (IPDPS 2008), pp. 1–9 (2009)

[19] Schroeder, B.;Gibson, G.A.:Alarge-scale study of failures in

highperformance computing system. IEEE Trans.

Dependable Secur. Comput. 7(4), 337–350 (2010).

[20] Manjeet Singh and Javalkar Dinesh Kumar (2022),

Designing and Implementation of Failure-Aware Based

Approach for Task Scheduling in Grid Computing. IJEER

10(3), 651-658. DOI: 10.37391/IJEER.100339.

http://www.ijritcc.org/
https://doi.org/10.1155/2019/8947905Hindawi

